
Representing Nested Inductive Types
using W-types

Michael Abbott1, Thorsten Altenkirch2, and Neil Ghani1

1 Department of Mathematics and Computer Science, University of Leicester���������
	��

���������	������
	����������
� , ��������
 ����!"�#�
	��#���$���
�
2 School of Computer Science and Information Technology, Nottingham University%�& �

���!$���'� %�% �#���"���
�

Abstract. We show that strictly positive inductive types, constructed from
polynomial functors, constant exponentiation and arbitrarily nested inductive
types exist in any Martin-Löf category (extensive locally cartesian closed
category with W-types) by exploiting our work on container types. This
generalises a result by Dybjer (1997) who showed that non-nested strictly positive
inductive types can be represented using W-types. We also provide a detailed
analysis of the categorical infrastructure needed to establish the result.

1 Introduction

Inductive types play a central role in programming and constructive reasoning. From an
intuitionistic point of view we can understand strictly positive inductive types (SPITs)
as well-founded trees, which may be infinitely branching. The language of SPITs is
built from polynomial types and exponentials, enriched by a constructor µ for inductive
types. In this language we can conveniently construct familiar types such as the natural
numbers, (*) µX .1 + X ; binary trees, BTree ) µX .1 + X , X ; lists parameterised over
a type List A ) µX .1 + A , X ; ordinals, Ord ) µX .1 + X + X - ; and finitely branching
trees as the fixpoint of Lists, FTree ) µY .ListY . µY . µX .1 + X , Y . Categorically, µ
corresponds to taking the initial algebra of a given functor.

The grammar of SPITs can be easily defined inductively, see definition 6.1.
However, we would like to have a simple semantic criterion which guarantees the
existence of SPITs. Dybjer (1997) shows that inductive types over strictly positive
operators constructed using only polynomials in a single type variable and fixed
exponentiation can be constructed in extensional Type Theory using W-types, the type
of well-founded trees introduced in Martin-Löf (1984). However, Dybjer (1997) does
not consider any nesting of inductive types, e.g. the example FTree is not covered by
his definition. Here we present a more general result which shows that nested inductive
types can be constructed using only W-types and we analyse the categorical framework
in more detail.

An important ingredient in our construction is the insight that SPITs give rise to
containers, which we have investigated in Abbott et al. (2003) and which are the topic
of Abbott (2003). The basic notion of a container is a dependent pair of types A / B
creating a functor TA 0 BX ) ∑a :A.XB 1 a 2 . A morphism of containers 3 A / B 46573 C / D 4



is a pair of morphisms 3 u : A 5 C 8 f : u 9 D 5 B 4 . With this definition of a category : of
containers we can construct a full and faithful functor T : :;57< =>8?=>@ .

However, when constructing fixed points it is also necessary to take account of
containers with parameters, so we define T : : I 5A< = I 8B=C@ for each parameter index set
I. For the purposes of this paper the index set I can be regarded as a finite set, but this
makes little practical difference to the development.

It is easy to show that containers are closed under sums and products and constant
exponentiation, see Abbott et al. (2003); this is also done in Dybjer (1997) for containers
in one variable. W-types are precisely the initial algebras of containers in one variable
(theorem 3.6), hence constructing inductive types over a single variable SPITs is
straightforward and already covered (in part) by Dybjer’s work. However, the general
case for nested types corresponds to showing that containers are closed under initial
algebras. The problem boils down (proposition 4.1) to solving an equation on families
of types up to isomorphism, which is achieved in proposition 5.1.

The work presented here also overcomes a shortcoming of Abbott et al. (2003):
there we constructed initial algebras of containers using the assumption that the ambient
category is locally finitely presentable. Alas, this assumption rules out many interesting
examples of categories, in particular realisability models such as ω-sets. This is fixed
here, since we only have to require that the category has all W-types, i.e. initial algebras
of container functors, which can be easily established for realisability models. Since
dependent types and inductive types are the core of Martin-Löf’s Type Theory, we call
categories with this structure Martin-Löf categories, see definition 3.7.

Dybjer and Setzer (1999, 2001) present general schemes for inductive (and
inductive-recursive) definitions but they do not present a reduction to a combinator like
W -types. Moreover, they also use universes extensively.

Recently, Gambino and Hyland (2004) have presented another version of our result,
corollary 5.2. They use the notion of a dependent polynomial functor and present an
apparently simpler construction; however, we have not been able to reconstruct their
proof.

2 Definitions and Notation

This paper uses the dependent internal language of a locally cartesian closed category= : see Streicher (1991), Hofmann (1994), Jacobs (1999) and Abbott (2003) for details.
The key idea is regard an object B DE=CF A as a family of objects of = indexed by elements
of A, and to regard A as the context in which B regarded as a type is defined.

Elements of A will be represented by morphisms f :U 5 A in = , and substitution
of f for A in B is implemented by pulling back B along f to f 9 B DG=CF U . We start to
build the internal language by writing a : A / B 3 a 4 to express B as a type dependent on
values in A, and then the result of substitution of f is written as u :U / B 3 f u 4 . We will
treat B 3 a 4 as an alias for B and B 3 f u 4 as an alias for f 9 B, and we’ll write a : A / B 3 a 4
or even just A / B for B DH=IF A—variables will be omitted from the internal language
where practical for conciseness.

Note that substitution by pullback extends to a functor f 9 : =IF A 5J=CF U : for
conciseness of presentation we will assume that substitution corresponds precisely to a



choice of pullback, but for a more detailed treatment of the issues involved see Hofmann
(1994) and Abbott (2003).

Terms of type A / B correspond to global elements of B, which is to say morphisms
t : 1 5 B in =CF A. In the internal language we write a :A / t 3 a 4 :B 3 a 4 for such a morphism
in = . We will write t for t 3 a 4 where practical, again omitting a variable when it can be
inferred. Given object A / B and A / C we will write A / f : B 5 C for a morphism in=IF A, and similarly A / f : B K. C for an isomorphism.

The morphism in = associated with B D*=CF A will be written as πB : ∑A B 5 A
(the display map for B); the transformation B L5 ∑A B becomes a left adjoint functor
∑A M π 9B, where pulling back along πB plays the role of weakening with respect
to a variable b : B 3 a 4 in context a : A. In the type theory we’ll write ∑A B DN=
as 1 / ∑a : A.B 3 a 4 , or more concisely / ∑A B, with elements /N3 t 8 u 4 : ∑a : A.B 3 a 4
corresponding to elements / t : A and / u : B 3 t 4 .

More generally, all of the constructions described here localise: given an arbitrary
context Γ DO= and an object A DP=CF Γ we can use the isomorphism 3�=CF Γ 4QF A K.=IF ∑Γ A to interpret Γ 8 a : A / B 3 a 4 both as a morphism πB : ∑A B 5 A in =CF Γ and
as πB : ∑A B 5 ∑Γ A in = , and ∑ extends to provide a left adjoint to every substitution
functor. We will write Γ 8 a : A 8 b : B 3 a 4$/ C 3 a 8 b 4 or just Γ 8 A 8 B / C as a shorthand for
Γ 8Q3 a 8 b 4 : ∑A B / C 3 a 8 b 4 .

Local cartesian closed structure on = allows right adjoints to weakening π 9A M ∏A
to be constructed for every Γ / A with type expression Γ / ∏a : A.B 3 b 4 for Γ / ∏A B
derived from Γ 8 A / B. Finally the equality type A 8 A / EqA is represented as an object of=IF A , A by the diagonal morphism δA : A 5 A , A, and more generally Γ 8 A 8 A / EqA.
Given parallel morphisms u 8 v into A the equality type has the key property that an
element of Eq 3 u 8 v 46.;3 u 8 v 4 9 EqA exists precisely when u . v as morphisms of = .

For coproducts in the internal language to behave properly, in particular for
containers to be closed under products, we require that = have disjoint coproducts: the
pullback of distinct coprojections κi : Ai 5 ∑i R I Ai into a coproduct is always the initial
object 0. When this holds the functor =CF A + B 573?=CF A 4S,G3?=TF B 4 taking A + B / C to3 A / κ 9 C 8 B / κ U 9 C 4 is an equivalence: write VXW+*V for the inverse functor. Thus given
A / B and C / D (with display maps πB and πD) we write A + C / B W+ D for their disjoint
sum; this satisfies two identities: ∑A Y C 3 B W+ D 4CK. ∑A B + ∑C D and πB ZY D . πB + πD
(modulo the preceding isomorphism).

Given a (finite) index set I define < = I 8?= J @ to be the category of fibred functors and
natural transformations = I 5[= where the fibre of = I over Γ D\= is the I-fold product3�=CF Γ 4 I . Of course, when J . 1 we will write this as < = I 8B=]@ .
Basic Properties of Containers

We summarise here the development of containers in Abbott et al. (2003).

Definition 2.1. Given an index set I define the category of containers : I as follows:

– Objects are pairs 3 A DH=^8 B D_3?=CF A 4 I 4 ; write this as 3 A ` B 4IDa: I
– A morphism 3 A ` B 4b5c3 C ` D 4 is a pair 3 u 8 f 4 for u : A 5 C in = and

f : 3 u 9 4 ID 5 B in 3?=CF A 4 I .



Note that the alternative of defining an n + 1-ary container as an indexed family of n-ary
containers is equivalent to this definition (Abbott, 2003, proposition 4.1.1).

A container 3 A ` B 4dDe: I can be written using type theoretic notation as

/ A i : I 8 a : A / Bi 3 a 4gf
A morphism 3 u 8 f 4 : 3 A ` B 46573 C ` D 4 can be written in type theoretic notation as

u : A V$5 C i : I 8 a : A / fi 3 a 4 : Di 3 ua 4hV"5 Bi 3 a 4if
Finally, each 3 A ` B 4�Dj: I , thought of as a syntactic presentation of a datatype, generates
a fibred functor TA 0 B : = I 5[= which is its semantics.

Definition 2.2. Define the container construction functor T : : I 57< = I 8?=^@ as follows.
Given 3 A ` B 4hDe: I and X Dk= I define

TA 0 BX ) ∑a : A. ∏i R I XBi 1 a 2
i 8

and for 3 u 8 f 4 : 3 A ` B 46573 C ` D 4 define Tu l f : TA 0 B 5 TC 0 D to be the natural transfor-
mation Tu l f X : TA 0 BX 5 TC 0 DX thus:

3 a 8 g 4 : TA 0 BX / Tu l f X 3 a 8 g 46)m3 u 3 a 4 8n3 gi o fi 4 i R I 4if
The following proposition follows more or less immediately by the construction of T .

Proposition 2.3 (Abbott et al., 2003, proposition 3.3). For each container F Dp: I and
each container morphism α : F 5 G the functor TF and natural transformation Tα are
fibred over = .

By making essential use of the fact that the natural transformations in < = I 8B=C@ are fibred
we can show that T is full and faithful.

Theorem 2.4 (ibid., theorem 3.4). The functor T : : I 5q< = I 8B=]@ is full and faithful.

This theorem gives a particularly simple analysis of polymorphic functions between
container functors. For example, it is easy to observe that there are precisely nm

polymorphic functions X n 5 Xm: the data type Xn is the container 3 1 ` n 4 and hence
there is a bijection between polymorphic functions X n 5 Xm and functions m 5 n.
Similarly, any polymorphic function ListX 5 ListX can be uniquely written as a
function u : (O5J( together with for each natural number n : ( a function fn : un 5 n.

It turns out that each : I inherits products and coproducts from = , and that T
preserves them:

Proposition 2.5 (ibid., propositions 4.1, 4.2). If = has products and coproducts then: I has products and coproducts preserved by T .

Given containers F Dg: I Y 1 and G D*: I we can compose their images under T to
construct the functor

TF < TG @r);3 = I 3 id s I 8 TG 4 = I ,e= K. = I Y 1 TF =H4if



This composition can be lifted to a functor VE<tVu@ : : I Y 1 ,a: I 5v: I as follows. For a
container in : I Y 1 write 3 A ` B 8 E 4dDe: I Y 1, where B D_3�=CF A 4 I and E DH=CF A and define:

3 A ` B 8 E 4�<t3 C ` D 4#@r)xw a : A 8 f :CE 1 a 2 `xy Bi 3 a 4�+ ∑e : E 3 a 4 . Di 3 f e 4Qz i R I { f
In other words, given type constructors F 3
|X 8 Y 4 and G 3�|X 4 this construction defines the
composite type constructor F < G @�3 |X 4S) F 3 |X 8 G 3 |X 4Q4 .
Proposition 2.6 (ibid., proposition 6.1). Composition of containers commutes with
composition of functors thus: TF < TG @ K. TF } G ~ .
This shows how composition of containers captures the composition of container
functors. More generally, it is worth observing that a composition of containers of
the form V��dV : : I ,E: I

J 5�: J reflecting composition of functors = J 5J= I 5[= can
also be defined making containers into a bicategory with 0-cells the index sets I and
the category of homs from I to J given by the container category : J

I (Abbott, 2003,
proposition 4.4.4).

3 Initial Algebras and W-Types

In this section we discuss the construction of initial algebras for container functors and
the principles in the ambient category = used to construct them.

Initial algebras can be regarded as the fundamental building blocks used to introduce
recursive datatypes into type theory. Initial algebras define “well founded” structures,
which can be regarded as the expression of terminating processes.

Definition 3.1. An algebra for a functor F : =O5[= is an object X D\= together with a
morphism h : FX 5 X; refer to X as the carrier of the algebra. An algebra morphism3 X 8 h 4>5�3 Y 8 k 4 is a morphism f : X 5 Y satisfying the identity f o h . k o F f . An
initial algebra for F is then an initial object in the category of algebras and algebra
morphisms.

The following result tells us that initial algebras for a functor F are fixed points of F ,
and indeed the initial algebra is often called the least fixed point.

Proposition 3.2 (Lambek’s Lemma). Initial algebras are isomorphisms.

The following useful result about initial algebras tells us that initial algebras with
parameters extend to functors, and so can be constructed “pointwise”.

Proposition 3.3. Given a functor F : ��,b=�5[= if each endofunctor F 3 X 8QVT4 on = has
an initial algebra 3 GX 8 αX 4 then G extends to a functor G : �O5�= and α to a natural
transformation α : F < G @�5 G.

We can now define an operation µ constructing the least fixed point of a functors. If we
regard a functor F : ��,b=�5[= as a type constructor F 3 X 8 Y 4 then we can can regard
the fixed points defined below as types.



Definition 3.4. Given a functor F : �i,e=�5[= regarded as a type constructor F 3 X 8 Y 4
define µY .F 3 X 8 Y 4 to be the initial algebra of the functor F 3 X 8�VT4 .
To extend this definition of µ types to containers observe that for containers F Dk: I Y 1
and G DH: I the operation G L5 F < G @ , with TF }G ~ X K. TF 3 X 8 TGX 4 is an endofunctor on: I . Thus given F Da: I Y 1 we will write µF for the initial algebra of F <�Vu@ : : I 5v: I .

We will show in this paper that the functor µ : : I Y 1 5�: I exists, and that the initial
algebra of a container functor is a container functor.

W-Types

In Martin-Löf’s Type Theory (Martin-Löf, 1984; Nordström et al., 1990) the building
block for inductive constructions is the W-type. Given a family of constructors A / B
the type Wa : A.B 3 a 4 (or WAB) should be regarded as the type of “well founded trees”
constructed by regarding each a : A as a constructor of arity B 3 a 4 .

The standard presentation of a W-type is through one type forming rule, an
introduction rule and an elimination rule, together with an equation. As the type
theoretic development in this paper focuses entirely on categorical models, we take
W types to be extensionally defined. Indeed, extensional Type Theory as presented in
Martin-Löf (1984) represents the canonical example of a Martin-Löf category.

Definition 3.5. A type system has W-types iff it has a type constructor

Γ 8 A / B
Γ / WAB

(W-type)

together with a constructor term

Γ 8 a : A 8 f : 3 WAB 4 B 1 a 2 / sup 3 a 8 b 4 : WAB (sup)

and an elimination rule

Γ 8 WAB / C
Γ 8 a : A 8 f : 3 WAB 4 B 1 a 2 8 g : ∏b : B 3 a 4 .C 3 f b 4H/ h 3 a 8 f 8 g 4 :C 3 sup 3 a 8 f 4Q4

Γ 8 w : WAB / wrech 3 w 4 :C 3 w 4 (wrec)

satisfying the equation for variables a : A and f : 3 WAB 4 B 1 a 2 :
wrech 3 sup 3 a 8 f 4�4�. h 3 a 8 f 8 wrech o f 4Pf

Note that the elimination rule together with equality types ensures that wrech is unique.

Theorem 3.6. W-types are precisely the initial algebras of container functors in one
parameter:

WAB K. µX . ∑A XB . µX . TA 0 BX f
We consider that this notion summarises the essence of Martin-Löf’s Type Theory from
a categorical perspective, hence the following definition.



Definition 3.7. A Martin-Löf category is an extensive locally cartesian closed category
with an initial algebra for every container functor (i.e. W-types).

We can either assume that = has W-types given axiomatically or, if = satisfies the
necessary preconditions, derive them from theorem 3.9 below. Alternatively if = is a
topos we can appeal to proposition 3.6 of Moerdijk and Palmgren (2000).

Proposition 3.8 (Moerdijk and Palmgren, 2000, proposition 3.6). W-types exist in
any elementary topos with a natural numbers object.

Yet another alternative is to use:

Theorem 3.9 (Abbott et al., 2003, theorem 6.8). If = is locally cartesian closed and
locally presentable then = has all W-types.

4 Initial Algebras of Containers

One consequence of theorem 3.6 is that in the presence of W-types we can immediately
construct µ types for containers in one parameter. However, the construction of a µ
type for a container in multiple parameters is a more delicate matter and will require
the introduction of some additional definitions.

Let F : = I Y 1 5�= be a container in multiple parameters, which we can write as

F 3 X 8 Y 4S) TS 0 Pl Q 3 X 8 Y 4S. ∑s : S. y ∏i R I XPi 1 s 2
i z , Y Q 1 s 2 . ∑S y ∏I XP , Y Q z f

The task is to compute 3 A ` B 4 such that TA 0 BX K. µY .F 3 X 8 Y 4 . Clearly

A K. TA 0 B1 K. µY . F 3 1 8 Y 4 K. µY . ∑s : S. Y Q 1 s 2 K. WSQ 8
but the construction of WSQ / B is more tricky.

In the rest of this paper we will ignore the index set I and write X P for ∏I XP. In
particular, this means that the family B DP3?=IF WS Q 4 I will be treated uniformly (as if
I . 1). The required extra working to take account of I can be routinely added, but
will further complicate a presentation which is quite complex enough already. We will
therefore take

F 3 X 8 Y 4S) ∑S 3 XP , YQ 4if
To simplify the algebra of types we will write S 8 AQ / P + ∑Q ε 9 B as an abbreviation

for the type expression (where ε is the evaluation map AQ , Q 5 A):

s : S 8 f : AQ 1 s 2 / P 3 s 4�+ ∑q : Q 3 s 4 . B 3 f q 4*f
For conciseness write the initial algebra on A . WSQ as ψ : ∑S AQ 5 A.

Proposition 4.1. Given the notation above, if WSQ / B is equipped with an fibred
family of isomorphisms:

S 8 AQ / ϕ : P + ∑Q ε 9 B K. ψ 9 B
then TA 0 BX K. µY .F 3 X 8 Y 4 .



Proof. First we show that each TA 0 BX is an F 3 X 8�VT4 algebra thus:

F 3 X 8 TA 0 BX 46. ∑S w XP , y ∑A XB z Q { K. ∑S w XP , ∑AQ ∏Q Xε � B {K. ∑S ∑AQ w XP , ∏Q Xε � B { K. ∑S ∑AQ XP Y ∑Q ε � B
ϕ � 1K. ∑S ∑AQ Xψ � B 1 ψ l id 2K. ∑A XB . TA 0 BX f

With variables s : S, g : XP 1 s 2 and h : y ∑A XB z Q 1 s 2 note that we can decompose h into
components π o h : AQ 1 s 2 and π U o h : ∏q : Q 3 s 4 .XB 1 πhq 2 and so the algebra morphism
in : F 3 X 8 TA 0 BX 4S5 TA 0 BX can be conveniently written as

in 3 s 8 g 8 h 4�.;3 ψ 3 s 8 π o h 4 8'� g;π U o h � o ϕ � 1 4 ;

conversely, given variables s : S, f : AQ 1 s 2 and k : XB 1 ψ 1 s l f 2�2 similarly note that k o ϕ o κ U
can be regarded as a term of type ∏q : Q 3 s 4 .XB 1 f q 2 and so we can write

in � 1 3 ψ 3 s 8 f 4 8 k 4d.;3 s 8 k o ϕ o κ 863 f 8 k o ϕ o κ U 4Q4gf
To show that in is an initial F 3 X 8QVT4 -algebra we need to construct from any algebra

α : F 3 X 8 Y 465 Y a unique map α : TA 0 BX 5 Y satisfying the algebra morphism equation
α o in . α o F 3 X 8 α 4 :

F 3 X 8 TA 0 BX 4 in

F 3 X 8 α 4
TA 0 BX

α

F 3 X 8 Y 4 α Y f
The map α can be transposed to a term A /*�α : XB � Y which we will construct by
induction on A . WSQ. Given s :S, f :AQ 1 s 2 and k :XB 1 ψ 1 s l f 2�2 construct g ) k o ϕ o κ :XP 1 s 2
and h ) k o ϕ o κ U : ∏q : Q 3 s 4 .XB 1 f q 2 . In this context define H 3 s 8 f 8 β 4�3 k 4d) α 3 s 8 g 8 β 3 h 4Q4
and compute

�α 3 ψ 3 s 8 f 4Q4�3 k 4d. α 3 ψ 3 s 8 f 4 8 k 4h. α o in o 3 s 8 g 8Q3 f 8 h 4Q4. α o F 3 X 8 α 4 o 3 s 8 g 8�3 f 8 h 4�4h. α 3 s 8 g 8 α o 3 f 8 h 4Q4. α 3 s 8 g 8�3��α o f 4�3 h 4Q4�. H 3 s 8 f 8��α o f 4�3 k 4Pf
This shows that �α . wrecH and thus that TA 0 BX is an F 3 X 8�VT4 -initial algebra.

Note that as a corollary of this proposition the isomorphism P + ∑Q ε 9 B K. ψ 9 B over
WSQ defines B up to isomorphism, since the container TA 0 B is determined up to
isomorphism as an initial algebra.

Of course, it remains to prove the hypothesis of the theorem above, that a family
A / B with the given isomorphism ϕ exists; we do this in proposition 5.1.



5 Constructing a Fixed Point over an Initial Algebra

Proposition 4.1 relies on the hypothesis that the functor X L5 P + ∑Q ε 9 X has a fixed
point “over” the initial algebra ψ : TS 0 QA 5 A, or in other words there exists a B such
that P + ∑Q ε 9 B K. ψ 9 B. This fixed point does indeed exist, as a subtype of a W-type.

Proposition 5.1. For each fixed point ψ : TS 0 QA K. A there exists an object A / B such
that there is an isomorphism:

S 8 AQ / P + ∑Q ε 9 B K. ψ 9 B f
Proof. Write S 8 AQ / ϕ : P + ∑Q ε 9 B 5 ψ 9 B for the isomorphism that we wish to
construct. As already noted, we cannot directly appeal to W-types to construct this
fixed point, so the first step is to create a fixed point equation that we can solve. Begin
by “erasing” the type dependency of B and construct (writing ∑QY K. Q , Y , etc)�

B ) µY . ∑S ∑AQ y P + Q , Y z K. µY . w ∑S 3 AQ , P 4�+ y ∑S 3 AQ , Q 4 z , Y {K. List w ∑S 3 AQ , Q 4 { , ∑S 3 AQ , P 4 ;

there is no problem in constructing arbitrary lists in = so
�
B clearly exists.

The task now is to select the “well-formed” elements of
�
B. A list in

�
B can be thought

of as a putative path through a tree in µY .TS 0 Pl Q 3 X 8 Y 4 ; we want B 3 a 4 to be the set of all
valid paths to X-substitutable locations in the tree.

An element of
�
B can be conveniently written as a list followed by a tuple thus

3�<�3 s0 8 f0 8 q0 4�8�fQf�f�8Q3 sn � 1 8 fn � 1 8 qn � 1 4#@#8Q3 sn 8 fn 8 p 4�4
for si : S, fi : AQ 1 si 2 , qi : Q 3 si 4 and p : P 3 sn 4 . The condition that this is a well formed
element of B 3 ψ 3 s0 8 f0 4Q4 can be expressed as the n equations

fi 3 qi 4�. ψ 3 si Y 1 8 fi Y 1 4 for i � n

which can be captured as an equaliser diagram

∑A B e

πB

�
B

ϖ

α

β
ListA

A

where α , β and ϖ are defined inductively on
�
B as follows (and πB ) ϖ o e):

α 3��'����8 p U 4�.������ α 3?�����
��3Q3 s 8 f 8 q 4 8 l 4 8 p U 4S.������
�
3 f q 8 α 3 l 8 p U 4Q4
ϖ 3�������8�3 s 8 f 8 p 4�4d. ψ 3 s 8 f 4 ϖ 3����r����3�3 s 8 f 8 q 4�8 l 4 8 p U 4S. ψ 3 s 8 f 4

β 3��'��� 8 p U 4�.������ β 3����r����3 b 8 l 4�8 p U 4S.������
�
3 ϖ 3 l 8 p U 4 8 β 3 l 8 p U 4�4*f



The property that b :
�
B is an element of B can be written b : B 3 ϖb 4 and can be

expressed inductively as follows:¡ . � 3�������8�3 s 8 f 8 p 4�4 : B 3 ψ 3 s 8 f 4�4 (1)
f q . ϖ 3 l 8 p U 4£¢¤3 l 8 p U 4 : B 3 f q 4e. � 3������
��3�3 s 8 f 8 q 4�8 l 4�8 p U 4 : B 3 ψ 3 s 8 f 4Q4*f (2)

The converse to (2) also holds, since 3?���r����3Q3 s 8 f 8 q 4 8 l 4 8 p U¥4 : B 3 ψ 3 s 8 f 4�4§¦ ����r����3 f q 8 α 3 l 8 p U¨4�46.©�����
�
3 ϖ 3 l 8 p U�4 8 β 3 l 8 p Ut4�4\¦ � f q . ϖ 3 l 8 p U�4£¢¤3 l 8 p Ut4 : B 3 f q 4 .
The isomorphism

�
ϕ : ∑S ∑AQ 3 P + Q , �

B 4 K. �
B can now be used to construct the

isomorphism ϕ for B. Writing an element of ∑S ∑AQ 3 P + Q , �
B 4 as 3 s 8 f 8 κ p 4 or3 s 8 f 8 κ U 3 q 8 b 4�4 , the function

�
ϕ can be computed thus:

∑S ∑AQ 3 P + Q , �
B 4 �

ϕK. List y ∑S 3 AQ , Q 4�z, ∑S 3 AQ , P 4 . �
B

3 s 8 f 8 κ p 4 ªk5 3��'����8Q3 s 8 f 8 p 4�43 s 8 f 8 κ U 3 q 8�3 l 8 p U 4�4Q4Jªk5«3?�����
�
3�3 s 8 f 8 q 4 8 l 4�8 p U 4*f
To show that

�
ϕ restricts to a morphism ϕ : P + ∑Q ε 9 B 5 ψ 9 B we need to show for each

s : S and f : AQ that x : 3 P 3 s 4�+ ∑q : Q 3 s 4 .B 3 f q 4Q4 implies
�
ϕ 3 s 8 f 8 x 4 : B 3 ψ 3 s 8 f 4Q4 .

When x . κ p we immediately have
�
ϕ 3 s 8 f 8 κ p 4T.¬3������ 8Q3 s 8 f 8 p 4�4 : B 3 ψ 3 s 8 f 4�4 by

(1) above. Now let 3 s 8 f 8 κ U#3 q 8�3 l 8 p Ut4�4Q4 be given with 3 l 8 p U�4 : B 3 f q 4 (which means,
in particular, that ϖ 3 l 8 p U 4T. f q) and consider the equation

�
ϕ 3 s 8 f 8 κ U 3 q 8Q3 l 8 p U 4�4Q4T.3������
��3�3 s 8 f 8 q 4 8 l 4�8 p U¥4 , then by (2) this is also in B 3 ψ 3 s 8 f 4Q4 . Thus
�
ϕ restricts to

s : S 8 f : AQ 1 s 2 / ϕs l f : P 3 s 4�+ ∑q : Q 3 s 4 . B 3 f q 4dV"5 B 3 ψ 3 s 8 f 4Q4Pf
We have in effect constructed ϕ making the diagram below commute:

∑S ∑AQ w P + ∑Q ε 9 B { ϕ

π

∑A B

πB

e∑S AQ ψ
A

∑S ∑AQ 3 P + Q , �
B 4 �

ϕ

π �
B

ϖ

f
To show that ϕ is an isomorphism we need to show that

�
ϕ � 1 restricts to an inverse

to ϕ . As before we can analyse b :B 3 ψ 3 s 8 f 4�4 into two cases, and show that in both cases�
ϕ � 1b : P 3 s 4�+ ∑q : Q 3 s 4 .B 3 f q 4 .

When b .N3�������8�3 s 8 f 8 p 4�4 then
�
ϕ � 1b .N3 s 8 f 8 κ p 4 which can be regarded as an element

of P 3 s 4 . When b .�3?�����
��3Q3 s 8 f 8 q 4 8 l 4 8 p U¥4 and so
�
ϕ � 1b .;3 s 8 f 8 κ U?3 q 8Q3 l 8 p Ut4Q4�4 it is enough

to observe that b : B 3 ψ 3 s 8 f 4�4 implies 3 l 8 p U�4 : B 3 f q 4 and hence
�
ϕ � 1b arises from an

element of ∑q : Q 3 s 4 .B 3 f q 4 .



We conclude our development with the following summary result as a corollary.

Corollary 5.2. If = has W-types then containers are closed under the construction of
µ-types.

Note that that since µF is a fixed point, it satisfies the isomorphism µF K. F < µF @ .
6 Strictly Positive Inductive Types

We now have enough machinery in place to observe that all strictly positive types can
be described as containers.

Definition 6.1. A strictly positive inductive type (SPIT) in n variables (Abel and
Altenkirch, 2000) is a type expression (with type variables X1 8Qf�fQfQ8 Xn) built up
inductively according to the following rules:

– if K is a constant type (with no type variables) then K is a SPIT;
– each type variable Xi is a SPIT;
– if F, G are SPITs then so are F + G and F , G;
– if K is a constant type and F a SPIT then K � F is a SPIT;
– if F is a SPIT in n + 1 variables then µX .F is a SPIT in n variables (for X any type

variable).

Note that the type expression for a SPIT F can be interpreted as a functor F : = n 5J= ,
and indeed we can see that each strictly positive type corresponds to a container in : n.

Let strictly positive types F , G be represented by containers 3 A ` B 4 and 3 C ` D 4
respectively, then the table below shows the correspondence between strictly positive
types and containers.

K L5q3 K ` 0 4 Xi L5A3 1 `­3 δi l j 4 j R I 4
F + G L5q3 A + C ` B W+ D 4 F , G L5A3 a : A 8 c :C ` B 3 a 4S, D 3 c 4�4

K � F L5®y f : AK ` ∑k : K. B 3 f k 4Qz
As we have seen in this paper the construction of fixed points can be described in
a uniform way. Let F be represented by 3 S ` P8 Q 4¯DG: I Y 1, then for each fixed point
ψ : TS 0 QA K. A of TS 0 Q we have constructed in proposition 5.1 an isomorphism over ψ ,
written here as A / BA, of the form

s : S 8 f : AQ 1 s 2 / ϕ : P 3 s 4�+ ∑q : Q 3 s 4 . BA 3 f s 4IV$5 BA 3 ψ 3 s 8 f 4�4 ;

we can now define

µY . F L573 WSQ ` BWSQ 4gf
Our development can be summarised by the following:

Theorem 6.2. All strictly positive inductive types can be represented within a Martin-
Löf category.

Proof. This is a consequence of corollary 5.2 and the discussion above.



7 Discussion and further work

An important extension of the work presented here is to include coinductive types,
νX f F, corresponding to terminal coalgebras, to cover non-well founded data structures
such as streams (Stream A . νX f A , X), which are used extensively in lazy functional
programming. We have also established (see Abbott, 2003, p. 78 and Abbott et al.,
2004), that Martin-Löf categories are closed under ν-types—this can be reduced to
constructing the dual of W-types which we dub M-types.

Another interesting extension would be to consider inductive and coinductively
defined families (such as vectors or simply typed λ -terms). Again, we conjecture that
it should be possible to represent those within Martin-Löf categories. This result would
provide further evidence establishing that these categories provide a convenient and
concise base for intuitionistic Type Theory.

References

M. Abbott. Categories of Containers. PhD thesis, University of Leicester, 2003.
M. Abbott, T. Altenkirch, and N. Ghani. Categories of containers. In Proceedings

of Foundations of Software Science and Computation Structures, volume 2620 of
Lecture Notes in Computer Science, 2003.

M. Abbott, T. Altenkirch, and N. Ghani. Representing strictly positive types. Draft,
2004.

A. Abel and T. Altenkirch. A predicative strong normalisation proof for a λ -calculus
with interleaving inductive types. In Types for Proof and Programs, TYPES ’99,
volume 1956 of Lecture Notes in Computer Science, 2000.

P. Dybjer. Representing inductively defined sets by wellorderings in Martin-Löf’s type
theory. Theoretical Computer Science, 176:329–335, 1997.

P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive definitions. In
Typed Lambda Calculus and Applications, pages 129–146, 1999.

P. Dybjer and A. Setzer. Indexed induction-recursion. Lecture Notes in Computer
Science, 2183, 2001.

N. Gambino and M. Hyland. Wellfounded trees and dependent polynomial functors.
available from °�±�±n²u³Q´�´�µ£µ�µu¶�·n²�¸�¸�¹d¶Qº'»
¸T¶�»rºd¶?¼�½r´�¾�¿�ÀrÁnÂ�Â�´�²r»�²�Ã�Ä$¹d¶B°�±�¸�Å , February
2004.

M. Hofmann. On the interpretation of type theory in locally cartesian closed categories.
In CSL, pages 427–441, 1994.

B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999.

P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
I. Moerdijk and E. Palmgren. Wellfounded trees in categories. Annals of Pure and

Applied Logic, 104:189–218, 2000.
B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf’s Type

Theory. Number 7 in International Series of Monographs on Computer Science.
Oxford University Press, 1990.

T. Streicher. Semantics of Type Theory. Progress in Theoretical Computer Science.
Birkhäuser Verlag, 1991.


