A Network-based Kit-of-parts Virtual Building System

1. A Research Programme

Increasingly, powerful computer-aided design
tools have enjoyed greater roles in the design
process. In parallel, the Internet with its World Wide
Web has proved to be a revolution in information
dissemination, providing real-time access to
sources located around the world. Since information
is the ultimate substance from which designs are
conceived, a logical question could be: how can a
design process be enhanced by direct links to
information sources? Considering the increased
proliferation of information-based automated
manufacturing processes, a second question would
logically follow the first: how would direct
instantaneous access to manufacturing processes
affect the design process? Finally, instantly gleaning
performance data from the constructed object itself,
how would an information feedback loop affect
current use and future design improvements to
future objects of a similar type? While these
guestions will probably remain unanswered for
many years, the development of an experimental
environment which sets the stage for linking design,
manufacturing, and use can be facilitated. As a
research programme, it is proposed that a computer
tool be developed which can affect such an
experimental environment. The computer tool has
been conceived in the form of a plug-in to a
common Internet browser. Some functions of the
plug-in will eventually be made available to a
selected number of designers for further research
purposes.

2. VBuild Browser
2.1 VBUILD CONCEPT

The browser plug-in (hereafter called VBuild)
makes maximum use of two powerful concepts:
object-oriented programming and kit-of-parts
philosophy. In a way, the two concepts work hand in
hand.

2.1.1 Object Oriented Programming

VBuild was programmed using an object-
oriented structure in the C++ language. Object-
oriented languages utilize data and code in discrete
structures called classes. Once instantiated, the
class defines types of data called objects. The data
itself is protected and can only be manipulated via
pre-defined methods. The methods are interfaces

A. Scott Howe, architect*

with the rest of the program. Once the interfaces are
defined, the actual coding for implementing the
interfaces can take on any form as long as it
supports the interface methods. In this way specific
elements in a model can be defined independently
of other code according to function or behavior.
Methods and attributes specific to that element’s
behavior can be added as needed to give the coding
completely expandable capabilities.

In an object-oriented program, once a class has
been debugged it becomes a reliable building block
in the entire coding of the program. Object-oriented
design becomes a clean way of defining
functionality without having to deal with loose ends
associated with the complexities of unstructured raw
coding.

2.1.2 Kit-of-parts Philosophy

The active use of kit-of-parts philosophy was
an important element in the conception of VBuild. A
kit-of-parts is a collection of discrete building
components that are pre-engineered and designed
to be assembled in a variety of ways, much similar
to an erector set or toy Lego blocks. When
assembled, the entire kit-of-parts can define a
finished building or artifact. The components fit
together according to rigorously designed interfaces
which provide for flexible configurations.
Components are sized for convenient handling or
according to shipping constraints. Since a well
designed component can be used over and over
again, fabrication processes can be worked out in
advance for real-time manufacturing at time of
need.

Kit-of-parts components can be thought of as
objects in an object-oriented programming
environment. With well-defined interfaces which are
rigorously followed, the component itself can
assume any form. Interfaces can include mounting
points, rules for the transfer of loads, specifications
for thermal performance, and maximum cost
constraints. In short, a kit-of-parts approach lends
itself to cheaper and more efficient manufacturing,
and is a clean way of demonstrating a network-
based virtual building system without having to deal
with loose ends associated with the complexities of
unorganized raw materials.

2.2 VBUILD CLASSES
The programming classes or objects which

have been devised for the browser mostly fall into
three main categories: Geometry classes, Assembly

classes, and Construct classes. The Geometry
classes consist of classes which define geometrical
representations of objects, and include 0D, 1D, 2D,
and 3D geometry. The Assembly classes define
specifications, function, and fabrication processes
associated with individual components in a kit-of-
parts. An assembly would be a discrete component

which is manufactured using a combination of
different fabrication processes, and follows interface
rules for connection to other components (in this
paper, “assembly” and “component” may be used
interchangeably and refer to the same thing).
Construct classes define ways of organizing the
assemblies.

The POINT class represents the most basic form of

o

q

geometry or 0D geometry. One point object would contain XYZ
coordinates as data, and
manipulating the coordinates.

The LINE class represents 1D geometry and includes both
lines and segments. A line will have two point objects as data
and include methods for manipulating itself.

The POLYGON class represents 2D geometry of enclosed
shapes. Eventually it will also represent compound 2D elements
such as splines, curves, and open shapes as well, but for now
only closed shapes constructed of a series of connected vertices
is implemented.

The SOLID class represents 3D geometry. Eventually it will
also represent curved surfaces as well, but for now only faceted
solids are implemented.

include various methods for

Figure 1: VBuild Geometry Classes

The PART class potentially contains one solid or one

stock.

FABRICATION

SUBASSEMBLY g

i

polygon or both, as well as a material definition. A part is meant
to represent a raw material with limited definition of a potential
shape. The solid would be representative of a cast object or
folded sheet fabrication, where the polygon would represent a
section for extruded objects or the shape of a cutout from sheet

The FABRICATION class has exactly one part as well as
paths for extrusion, and includes methods for creating G-code
for actually machine fabricating the part (G-code defines paths
for manufacturing tooling). Implementation of these metho
ds is currently underway, and will always be added to as new
fabrication methods are adopted.

The SUBASSEMBLY class can have many fabrications, as
well as links to sensors and actuators that potentially can be
embedded in the assembly / component.

The ASSEMBLY class represents a kit-of-parts entity. It can
have many subassemblies and would be the largest object that
would potentially be manufactured off-site. Each assembly of a
certain type only exists once and is instantiated as many times

as necessary. The instance would represent real manufactured
components assembled on the site.

Figure 2: VBuild Assembly Classes

The GROUP class is a special collection of instances of

assemblies which have some common purpose or function,
m such as all the column assemblies of a certain type that belong
to a certain floor of a building. A group can have many

N instances. Methods in the group class would manipulate groups.

The SUBSYSTEM class is a collection of groups which have
a common purpose or function, such as all the columns of a
building. Each floor may have its own group of columns, which

added together would constitute the column subsystem. The

express purpose of manipulating subsystems.

The SYSTEM class is a collection of subsystems, such as

q subsystem would contain methods which would be for the

the structural system of a building. The structural system would

subsystem. System class methods would

The CONSTRUCT class is the finished artifact, which
includes all the systems. Construct methods would define
behavior of the construct, and include mechanisms for viewing it
in various ways.

: include column subsystem, floor framing subsystem, and
m foundation
manipulate, view, or analyze entire systems.

Figure 3: VBuild Construct Classes

In addition to the three main groups of classes,
VBuild also has attribute classes and utility classes
for the viewing and general manipulation of the
various data types. In each step of the hierarchy,
methods specific to that data type are implemented.
More methods can be added later as the need
arises.

2.3 PROPOSED VBUILD CONFIGURATION

VBuild will actually consist of several programs
functioning in unison in various locations on the
Internet. The browser Plug-in portion is merely the
local tool which helps the user view and manipulate
the data. Locally the user will create a construct
which can be saved as a file locally. Assemblies /
components will be returned on request from remote
kit-of-parts virtual librarians. Fabrication of real
parts will be coordinated by a virtual contractor, and
remote control and monitoring will be facilitated by a
virtual facility manager. Except for the plug-in, each
of the virtual servers will consist of simple Common
Gateway Interface (CGI) programs, which are small
programs linked to web pages that perform simple
automated tasks. The process is delineated in the
three steps of design, manufacture, and facility
management.

2.3.1 Design

When the user wants to insert another
component, the VBuild plug-in will contact remote
virtual librarians which will return requested
components according to type. The assemblies /
components for the most part are high-level
parametric primitives consisting of collections of
cuboids, cylinders, cones, frustums, and other solids

that can be defined with a limited amount of data.
Since the amount of data is small, Internet transfer
can occur very quickly. The local plug-in then fills in
the rest of the data according to a predetermined
formula based on the type of primitive and creates
an instance of the component. Each time the same
type of assembly is requested by the user, another
instance is created from the previously downloaded
data. When the user saves the construct, the actual
data of each assembly / construct is deleted and
only the instance references and their locations are
preserved. Each time that model is opened, the real
data associated with each instance is once again
downloaded in real time from the source. Using
filters, the user will be able to view the data in
various ways which may include sections and plans.

2.3.2 Manufacture

Once the building is virtually assembled, the
assemblies / components can be manufactured and
delivered. Each assembly / component can consist
of many fabrications. Since the fabrications contain
the data necessary for their own manufacture, the
VBuild plug-in will contact a virtual contractor and
request an estimate based on fabrication type. The
contractor will select a manufacturer based on price
and wait list and return an estimate. The ideal setup
would have a simple list on the manufacturer’s
server which would hold current setup and
processing rates, with another list on the material
supplier's server which would hold current material
costs. A queue could also be maintained on the
manufacturer's side which would hint at possible
wait lists. When the manufacturer finishes
processing the fabrication, it will be shipped directly
to the designer or another designated address (such

as the site). In the case of multiple fabrication types
in a single component, a system of bar codes will
facilitate the forwarding of one finished fabrication to
the next manufacturer, who will build upon the
previous work until the entire component is built and
sent to the site.

2.3.3 Facility Management

Once the building is actually assembled, a
Hypertext Transfer Protocol (HTTP) or remote
access server can be paired with a virtual facility
manager CGI on a local computer installed in the
finished building. An HTTP server would be used to
facilitate an Internet connection, as opposed to a
remote access server which supports private phone
connections. Each subassembly has the capacity to

Local computer

Remote server

link to a CGIl program which can handle bitwise
communication with a LonWorks, CEBus, or X-10
interface device connected to the computer’s serial
port. LonWorks, CEBus, and X-10 hardware are
brand name pseudo-standards which facilitate plug
and play monitoring and control of other devices on
a powerline network or dedicated bus. These
devices can plug into a standard 110 volt outlet, and
send and receive signals along the power wire to
and from other similar devices. The user would be
able to fly-through the VRML model of the building
and click on various parts of the model to affect
monitoring and control. Upon clicking on the link,
special CGI programs would bring up a Java control
panel especially prepared for that device.

On-site server Building site

Virtual ™
Librarian
CGlI

Kit-of-parts
assemblies

A

. ui ™y
Design G
. ¢
\I;:;:Ilii?;g
M A
. VBuUi ™y
Manufacturing & [sugin

Construction .
saved as
instances
e

processes
L -

Virtual
Contractor
” I AL

Manufacturer A ‘o.

Actual Building

registered
fabrication

Manufacturer B

Virtual

~ Facility ‘.
Manager =

Facility VRML
Management www :
private or
public viewing

R m—
VRML "'_'.'..

Virtual Building Actual Building

Figure 4: VBuild Proposed Implementation

Figure 4 describes the processes associated
with the three phases of design, fabrication, and
facility management. In the design stage a designer
on a local computer would install the VBuild plug-in
in a World Wide Web (WWW) Internet browser
such as Netscape. VBuild would allow the designer

to collect kit-of-parts assemblies and assemble
them together in an intuitive way much the same
way a child would construct an object out of Lego
blocks. The assembled virtual building could then
actually be manufactured component by component
through the brokerage of the virtual contractor which

would have various manufacturer’'s fabrication
processes on register. Once the actual building is
built, a VRML version of the virtual building would
be loaded into a computer installed in the actual
building, and would have access to CGl's which
provide an interface to the LonWorks, CEBus, or X-
10 hardware (symbolized in Figure 4 by lines
connecting the virtual building and actual building).
Full Internet access to the VRML virtual building
could be facilitated for public access, or limited
phone connection only could be facilitated for
remote private use.

3. Conclusion

For simplicity’s sake kit-of-parts philosophy is
utilized in this work. When individual designers
begin to use the system they may want to be able to
define their own components rather than use those
already designed by someone else. Along with the
ability to harness various fabricatioin processes for
the purpose of facilitating the manufacture of a pre-
defined kit-of-parts, real time design and
manufacture could be a next step. Regardless of
whether the design consists of extemporaneously
thought-out elements or pre-designed components,
the ability to create a virtual artifact and link it back
to the real one should for the purpose of design,
manufacture, and facility management prove to be a
powerful tool.

The eventual goal would be to have a real
building that adapts to the users needs through
user-initiated instructions affected by the
manipulation of its virtual building counterpart. Initial
construction and renovative construction could
eventually utilize robotic systems which are either
brought in from elsewhere or are actually
incorporated into the components of the building
itself. Redesign and renovation would be facilitated
by changing the virtual building to meet the new
needs, and executing the automated construction
and assembly features to bring about the changes in
the actual building.

NOTES & REFERENCES

Mark Pesce (1995) VRML: Browsing & Building Cyberspace,
New Riders Publishing, Indianapolis, Indiana.

Gregory Satir, Doug Brown (1995) C++ The Core Language, O’
Reilly & Associates, Inc., Sebastopol, California.

Mark Allen Weiss (1996) Algorithms, Data Structures, and Problem
Solving with C++, Addison-Wesley Publishing Company,
Menlo Park, California.

James Turner, et.al., GEDIT solid modeler, The Architecture and
Planning Research Laboratory, University of Michigan, Ann
Arbor, Michigan.

Kisho Kurokawa (1977) Metabolism in Architecture, Westview
Press, Inc., Boulder, Colorado.

Colin Davies (1988) High Tech Architecture, Thames and
Hudson, London, Great Britain, pp42-55, pp68-85.

Martin Pawley (1993) Future Systems: The Story of Tomorrow,
Phaidon Press Limited, London, England.

James Turner, et.al. (August 1990) “AEC Building Systems Model”,
ISO TC/184/SC4/WG1, Document 3.2.2.4, The University of
Michigan, Architecture and Planning Research Laboratory, Ann
Arbor, Michigan.

James Turner (May 1991) “Guide to Reading NIAM Diagrams”, The
University of Michigan, Architecture and Planning Research
Laboratory, Ann Arbor, Michigan.

A. Scott Howe, Hirata Yasutoshi (July 1991) “A Feasibility Study for
a New Architectural Design Approach Using 3D Solid Modeling
CAD Systems”, Fourth International Conference on Computing
in Civil and Building Engineering, Tokyo, Japan.

Edward F. Smith (Summer 1992)“Virtual Buildings: Knowledge
Based CAD Models for Design, Analysis, Evaluation and
Construction”, Computer Solutions, pp30-32.

A. Scott Howe, Hirata Yasutoshi (1993) “Architecture, Urban
Planning Example 1: Design Using 3D CAD”, IBM CATIA:
State of the Art 3D CAD / CAM, Technical Papers '92 / '93,
Tokyo, Japan pp6-9, 36-40.

A. Scott Howe (May 1996) “Internet-based Architectural
Visualization”, presented at the ACSA European Conference,
Copenhagen, Denmark.

Roozbeh Kangari, and Daniel W. Halpin (1983) “Potential Robotics
Utilization in Construction” , NSF research report under grant
no. CEE-8319498, National Science Foundation, Washington,
D.C.

Leonhard E. Bernhold, Dulcy M. Abraham, and Davis B. Reinhart
(April 1990) “FMS Approach to Construction Automation” in
Journal of Aerospace Engineering, Volume 3, No.2, pp.108-
121.

Miroslaw J. Skibniewski, and Stephen C. Wooldridge (1992)
“Robotic materials handling for automated building construction
technology” in: Automation in Construction volume 1,
Amsterdam, Elsevier, pp.251-266.

Akinaga Makoto (7 June 1993) “Four Firms Start Construction in the
Search for a New Architectural Manufacturing Paradigm” in:
Nikkei Architecture, pp.160-165. Article in Japanese.

Colin Bridgewater (1993) “Principles of Design for Automation
applied to construction tasks” in: Automation in Construction
volume 2, Amsterdam, Elsevier, pp.57-64.

A. Scott Howe (June 1997) “Designing for Automated
Construction”, presented at the 14" International Symposium of
Automation and Robotics in Construction (ISARC14),
Pittsburgh, Pennsylvania.

H. Michael Newman (1994) Direct Digital Control of Building
Systems: Theory and Practice, John Wiley & Sons, Inc., New
York, New York.

Denny Radford of Intellon Corp. (November 1996) “Spread-
spectrum data leap through ac power wiring”, IEEE Spectrum,
VolI33 Nol1, pp48-53.

* Kajima Corporation Intelligent Systems Department
EMAIL: ash@ipc.kajima.co.jp
Home Page URL: http:/mww-personal.umich.edu/~ashowe

A. Scott Howe, architect*

: ash@ipc.kajima.co.jp
. http://mww-personal.umich.edu/~ashowe

