
Can Real-time Software Engineering be Taught to
Java Programmers?

Sally Smith, Shaun W. Lawson, and Alistair Lawson
School of Computing, Napier University,

10 Colinton Road, Edinburgh,
United Kingdom, EH10 5DT.

{s.smith, s.lawson, al.lawson}@napier.ac.uk

Abstract

For several years we have been watching with envy as specialist labs are developed for
multimedia students which, together with software licenses, are now costing upwards of
$5,000 per seat. We would like to be able to offer as rich a learning experience for our
software engineers who study a final year module on real-time software engineering. In
persisting with our students’ main taught programming language of Java we argue that it is
still possible to demonstrate the issues of software development for real-time systems whilst
also offering realistic and rewarding practical work. Although the real-time community is
still largely working in C, we believe we can educate the real-time developers of the future,
and we use, as leverage for this, the ever growing body of reported work in making Java
technology more suitable for time critical and embedded systems development. In this paper
we present our case for a relevant real-time undergraduate laboratory based around Java.

1. Introduction

Taught modules in real-time systems design are considered an established component
of undergraduate degree courses in software engineering [1]. The ability to design,
implement and evaluate time critical applications is a skill package sought after by not
only traditional engineering employers but also, in our recent experience, increasingly
by commercial product providers such as the telecommunications and entertainment
industries. In the past our own software engineering graduates have largely made use of
their real-time skills on large safety-critical installations such as those deployed by the
aerospace industry. By contrast, recent graduates are finding use for their real-time and
embedded skills in creating applications for devices such as PDAs and other in-the-field
data acquisition systems , mobile phones, and point of sale transaction units.

Our current real-time module , CO42018 Real Time Software Engineering (RTSE)†, is
delivered to final year Software Engineering and Software Technology undergraduate
stude nts [3]. The module aims to make use of software engineering and object-oriented
programming knowledge acquired earlier during the degree to allow students to design
and implement concurrent programming applications and to analyse the time based
properties and the general predictability of those applications. Three years ago our
School moved from C++ to Java as the predominant programming language that is
taught to students from level one upwards. We are therefore now attempting to teach
advanced, but low level, undergraduate topics, such as game design, adaptive systems,
embedded applications, and real-time software engineering to students who have little
or no knowledge of C/C++, or of machine or assembly languages.

† See module homepage at http://www.soc.napier.ac.uk/module/op/onemodule/moduleid/CO42018

Our RTSE module is administered by a Software Engineering teaching group within
the School of Computing. Typically the modules delivered by our group run practical
sessions on general purpose desktop machines. In other words, we deliver practical
support material that enables students to design, develop and run applications under the
standard Microsoft Windows XP desktop on moderately specified Pentium PCs. We use
both the Sun Microsystems Java Standard Edition (J2SE) SDK and Borland JBuilder as
our Java development environments. Such an environment is, generally, suitable for
teaching foundational Levels 1 and 2 programming modules but lacks credibility for
delivery of specialist modules. For several years we have been watching with envy as
specialist labs are developed for our rival Multimedia Systems teaching group which,
together with software licenses, are now costing upwards of $5,000 per seat. We would
like to be able to offer a rich learning experience for our software engineers who study
our final year Software Engineering modules including RTSE.

This paper describes our recent efforts in the justification, design and development of
a real-time systems undergraduate teaching laboratory. We describe the options
available to us, our decision to retain Java as the primary programming language
despite its inherent lack of real time functionality, and the benefits offered by our
chosen final solution.

2. Java as a real-time language for undergraduate teaching

The debate over the choice of programming language for teaching undergraduate
computing continues unabated (see [2,3] for instance). Like many university computing
departments we have, for better or worse, chosen Java as our introductory language.
This choice has many perceived pedagogical benefits though poses some problems
when, at later stages during undergraduate study, we encounter some specialist
computing topics. In particular, Java as a language for programming real-time systems
has come under a great deal of scrutiny. A key issue is that standard Java uses garbage
collection (GC) which is inherently non-deterministic. A further problem is low level
system or hardware access. In real-time embedded applications we often need to access
the underlying hardware directly for tasks such as implementing device drivers,
interrupt handling or simply accessing physical memory. The platform independence
that Java offers means that the language cannot directly support calls to access the
underlying hardware or even system memory. The Java Native Interface (JNI) allows
the combination of Java and na tive code (such as compiled C/C++) that can get around
such problems but JNI solutions are typically awkward and non-portable. Other
problems include limited thread management, lack of priority inversion detection and
restricted priority levels.

Despite all of these problems, partial solutions, workarounds and modified JVM
proposals abound all of which attempt to turn the Java language into something more
suitable for programming real time systems. The most well known of these is The Real-
Time Specification for Java (RTSJ) created by the Real-Time for Java Expert Group
(RTJEG) under Sun’s Java Community Process [4]. The RTSJ proposes the creation of
a new Java package, javax.realtime, comprising over fifty new classes and
addressing issues such as more deterministic real-time thread support, timers, memory
management, and physical memory access. Any RTSJ compliant JVM is expected to
support this rather complex functionality and, unsurprisingly, some independent groups
have proposed alternative solutions. Recently Kwon et al [5], for instance, describe a

solution that features a subset of Java and RTSJ, whilst Nilsson et al [6] describe a non
RTSJ solution altogether.

The conclusions an educator can derive from the plethora of claims and counter
claims against the suitability of Java, or modified, enhanced, or restricted versions of
Java, is that, generally as a language for teaching basic time-dependent techniques to
undergraduates on a general purpose operating system (GPOS), it is probably no worse
than other higher level languages such as C and C++. The fact that there is so much
interest shown by real time hardware and software vendors in the future potential of
Java suggests that we are not pursuing a dead-end in using standard Java as a tool to
teach real time development. The most recent edition of Burns and Wellings’ well
regarded undergraduate text on real time systems [7] also features Java code alongside
equivalent implementations in Ada and C. The growing importance of programmable
consumer devices with restricted resource profiles, such as mobile phones, PDAs and
handheld games consoles, many of which support restricted variations of Java runtime
environments, also serves to reinforce the future role for Java in embedded systems
programming. Of course , if we were attempting to teach development of hard real time
applications using genuine Real-Time Operating Systems (RTOS’s) such as VxWorks

or QNX then we would have to re-evaluate this stance and consider the retraining of our
students in a language such as C, or even Ada. Comprehensive retraining in an
alternative language, although recognised as being desirable [3], is often practically
impossible given the already compressed nature of most computing degrees.

3. Possible directions in using Java to teach RTSE

To cover the main issues of real-time software engineering we would wish our
students to gain practice in designing, developing, and evaluating software which
demonstrates: multi-tasking using processes or threads, inter-process communication
and synchronisation, pre-emptive priority scheduling policies, and dealing with
deadlock and priority inversion. All of these aspects, can in fact, be covered using Java
as the programming language. We now outline the different vehicles upon which this
may be demonstrated.

3.1. Prioritising threads on a standard JVM running on a GPOS

A large part of real-time systems design and implementation methodology centres on
concurrent programming. Solutions to anything other than trivial real-time systems
problems are usually by approached by developing multiple processes, or threads, to
service the multiple demands of a system. Our approach until recently has been to teach
practical concurrent program issues using standard Java threads in a laboratory
environment and deal with more theoretical real-time aspects, such as hard real time
scheduling, in a lecture environment with paper-based work-through of examples. This
approach has advantages in that (1) Java has long been recognised [8] as an excelle nt
language for teaching thread-based concurrent programming issues , (2) we can use
existing general purpose OSs to do our practical work, and (3) it is conceptually a clean
solution – we can easily differentiate between concurrent programming issues whilst
not dirtying our hands with hard time-critical code and peculiar pieces of hardware. O ur
Java based lab structure firstly teaches basic concurrency using multiple threads, covers
prioritisation and the non-deterministic properties of the JVM, and then moves on to the
problems of sharing data, and investigates solutions to inter -process communication and

synchronisation (including semaphores). Finally, we also compare the threads
programming experience in Java with that in MS Visual C++. A typical coursework
assignment has required that the students analyse the time -based properties of some
‘black-box’ processes (Java threads) and write applications that schedule such
processes using an approximation of a real time scheduling approach, dealt with
theoretically in the lectures, such as Rate Monotonic Analysis.

Our approach, of course, also has disadvantages: (1) our lectures contradict the theme
of the practical sessions in that it is proven in the classroom that neither standard Java
nor MS Windows XP are deterministic and therefore provide poor support for hard real-
time systems, (2) students are only exposed to one aspect (concurrency) of real time
systems programming and many others (for instance device drivers, interrupt
programming, high resolution timers, sophisticated time-based schedulers) are only
dealt with theoretically, and (3) potential employers maybe sceptical of a student who,
at interview for instance, claims real-time systems knowledge but can only program in
Java on a Windows XP machine. Our RTSE module practical sessions are also currently
delivered in a very large open access teaching facility at Napier (the Jack Kilby
Computer Centre, JKCC). This facility, whilst visual impressive and favoured by
students for casual computer access and project work has nume rous pedagogical
limitations [9]. We argue the case therefore that we can improve our current real-time
teaching provision by moving practical sessions to a specialist laboratory, and inserting
a hardware element into the module whilst still retaining our concurrent Java content. It
has been argued, of course, that a realistic lab experience is essential in backing up
theory covered in lectures and a number of recent descriptions of real-time/embedded
systems teaching labs and teaching philosophies have appeared ([10][11][12]).

3.2. Running the JVM on a processor with an underlying RTOS

Development environments consisting of general-purpose microprocessors running
the JVM on top of an existing RTOS are available (e.g.[13]). The existing real-time
community can migrate to the Java programming language while making using of their
well-proven RTOSs. Using this architecture the JVM runs on a target processor
development system and interfaces to one of a number of possible RTOSs. This is
attractive for developers with legacy systems who can take advantage of the Java
programming language, without sacrificing the real-time benefits of the RTOS and
well-proven RTOS/ target processor combinations. Performance improvements are
achieved through “ahead of time” and “just in time” (JIT) compilation.

A more cost effective solution for new developers might be a special purpose
microcontroller and a Java programmable run time environment (e.g.[14]). Chipsets
may include processing, control, device-level communication and networking
capabilities and the underlying hardware can be manipulated by the software developer
through Java application programming interfaces. The code section of memory contains
a run time environment with a special purpose mini operating system and a native
methods layer.

3.3. The Java Microprocessor Option

Recently launched processors now offer direct JVM bytecode execution, whereby
over 99% of Java bytecodes are micro-programmed in hardware. There is no need for

an extra RTOS layer as on-chip real-time thread managers perform priority-based
preemptive scheduling with thread to thread yield in under 1us. These processors
support the RTSJ and provide deterministic behaviour. Cost effective development kits
exist [15] and can be used in practical work interfacing to a range of devices. Other
special purpose microcontrollers have been developed for the mobile technology and
embedded systems market and generally support the J2ME on special purpose
microcontrollers [16]. These can be packaged with rich development environments
offering, for example, on-circuit debugging and performance analysis.

4. Evaluation of student performance and destinations

The first option, using Java on a general purpose operating system, has been in use
since 1999. Students submit practical work based on thread prioritisation. A statistical
analysis (termed a Dbar) is used to give an indication of how well students perform in
comparison with other modules they study. A positive Dbar figure indicates a module
on which students are generally performing better. In June 2003 the students taking our
RTSE module generated the figures shown in Table 1.

Table 1. – Performance of students taking RTSE module compared against their
performance in other modules that same semester (Spring 2003).

 Real-time Software
Engineering (RTSE)

Safety-Critical
Systems

Languages and
Algorithms

Mean (%) 61.6 49.4 49.4
Standard
deviation

13.9 13.3 14.1

Pass rate 88.5 81.5 83.3
Dbar 11.1 -4.9 -5.6

The figures given in Table 1 suggest that students perform better in our RTSE
module than they do in the other modules that they take in the same semester.
Questionnaire data also indicated that students enjoyed the module and engaged well
with the practical work. But did their work on this module help them find employment
in the sector? And are they any good at it? First destination employment information
gathered by the indicates that over 50% of students who took the RTSE module found
work in the telecommunications, embedded systems and defence sectors. A number of
these students are still in contact with the University and have confirmed that they are
working on real-time or embedded systems. Interestingly none of the students contacted
are working on the same technologies. Some have had additional company-specific
training and some have had to learn new languages and OSs on-the-job. This indicates
that it is not necessarily the specific technological skills which are being sought after by
companies recruiting new graduates, but that range and depth of subject coverage is a
more important factor.

Evidence of student performance and marketability suggests that the module as it
stands is successful. However, we believe that a laboratory environment, which offers a
solution based on the Java microprocessor option (as described in 3.3), will improve
student confidence in developing lower level real-time solutions. This laboratory has
been costed at $700 per seat using the hardware system supplied by Imsys [16] but will
required more technician support than our existing JVM on a GPOS environment. Less
tangible benefits include encouraging peer support through collaborative work (or pair-

programming), which is more difficult to achieve in a large general purpose computing
facility such as the JKCC. We will be able to gain useful feedback from student results
following the delivery of the module in the new facility by comparing statistical metrics
such as our in -house Dbar figures with previous years’ delivery.

5. Conclusions

Students can learn most effectively when their practical work reinforces lecture
delivered theory. For real-time systems modules where students have only previously
learned Java, this is not as impractical as it once was. We have explored the options
available to enhance the learning experience and are developing a real-time systems
laboratory based on our findings. Less than 20% of our students ultimately work for
companies developing hard real-time systems, and it is a typical feature of such
employment that graduates are given in-house training for specialist programming
languages (such as ADA 95), RTOSs and other software technologies and procedures.
A larger percentage of our students find employment in the embedded systems or
telecommunications sector. For these students, our chosen, and developing, learning
environments fulfill employer and student expectations.

6. References
[1] Sobel, A.E.K. (2003) (ed.), Software Engineering Education Knowledge (SEEK): Software Engineering
Volume, Joint IEEE Computer Society/ACM Task Force on the "Model Curricula for Computing, April 2003.
[2] Cecchi, L., Crescenzie, P., and Innocenti, G. (2003) C : C++ = JavaMM : Java. Proceedings of PPPJ2003
International Conference on the Principles and Practice of Programming in Java, June 2003, Kilkenny, Ireland.
[3] de Raadt, M., Watson, R. & Toleman, M. (2003) Language Tug-Of-War: Industry Demand and Academic
Choice. Proceedings of the Fifth Australasian Computing Education Conference (ACE2003), Adelaide, Australia,
20:137-142, Greening, T. and Lister, R. (eds). Conferences in Research and Practice in Information Technology.

[4] Bollella, G., Brosgol, B. Dribble, P. et. al (2000). The RealTime Specification for Java. The Java Series,
Addison-Wesley, Reading, MA, 2000.

[5] Kwon, J., Wellings, A.J., and King, S. (2002). Ravenscar-Java: A High Integrity Profile for Real-Time Java.
Proceedings of the Joint ACM Java Grande - ISCOPE 2002 Conference.

[6] Nilsson, A., Ekman, T., and Nilsson, K. (2002). Real Java for Real Time -- Gain and Pain. Proceedings of
CASES-2002 (ACM), October 8–11, 2002, Grenoble, France.

[7] Burns, A. and Wellings (2001), A., Real-time systems and programm ing languages, Addison-Wesley .
[8] King, K. N. (1997), The Case for Java as a First Language, Proc. of 35th Annual ACM Southeast Conference,
Murfreesboro, Tenn., April 2-4, 1997, pp. 124-131.
[9] Buckner, K. and Davenport, E. (2002). Teaching and learning in the VLCC: actions, reactions and emerging
practice in a very large computing centre. In S. Bagnara, S.Pozzi, A.Rizzo and P.Wright (Eds), 11th European
Conference on Cognitive Ergonomics pp 355-360.

[10] Skavhaug, A., Lunheim T., and Skinnemoen, H. (2003), "EmbLab - A Laboratory for Teaching Embedded
Systems", ERCIM News No. 52, Jan 2003, http://www.ercim.org/publication/Ercim_News/enw52/skavhaug.html
[11] Neilsen, M.L., Lenhert, D.H., Mizuno, M., Singh G., Zhang, N. and Gross, A.B. (2002), "An Interdisciplinary
Curriculum on Real-Time Embedded Systems", Proceedings of the 2002 American Society for Engineering
Education Annual Conference & Exposition.

[12] Dannelly R.S. and Steidley, C. "A Student Laboratory Environment for Real-Time Software Systems
Development", The Journal of Computing in Small Colleges , March 2001.

[13] The PERCTM JVM www.aonix.com (Visited 9/3/2003).
[14] Introducing TINI: Tiny InterNet Interface http://www.ibutton.com/TINI/index.html (Visited 9/3/2003).
[15] Embedded Low Power Java Microprocessors www.aJile.com (Visited 9/3/2003).

[16] The Cjip java microprocessor. http://www.imsys.se (Visited 9/3/2003).

