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Abstract. Relational database systems are well-suited as a platform
for data-centric XML processing. Data-centric applications process reg-
ularly structured XML documents using precise predicates. However,
these approaches come too short when XML applications also require
document-centric processing, i.e., processing of less rigidly structured
documents using vague predicates in the sense of information retrieval.
The PowerDB-XML project at ETH Zurich aims to address this draw-
back and to cover both these types of XML applications on a single
platform. In this paper, we investigate the requirements of document-
centric XML processing and propose to refine state-of-the-art retrieval
models for unstructured flat document such that they meet the flexibility
of the XML format. To do so, we rely on so-called query-specific statis-
tics computed dynamically at query runtime to reflect the query scope.
Moreover, we show that document-centric XML processing is efficiently
feasible using relational database systems for storage management and
standard SQL. This allows us to combine document-centric processing
with data-centric XML-to-database mappings. Our XML engine named
PowerDB-XML therefore supports the full range of XML applications on
the same integrated platform.

1 Introduction

The eXtended Markup Language XML [30] is highly successful as a format for
data interchange and data representation. The reason for this is the high flex-
ibility of its underlying semistructured data model [1]. The success of XML is
reflected by the interest it has received by database research following its recom-
mendation by the W3C in 1998. However, this previous stream of research has
mainly focused on data-centric XML processing, i.e., processing of XML docu-
ments with well-defined regular structure and queries with precise predicates.
This has led to important results which, for instance, allow to map data-centric
XML processing onto relational database systems. XML and its flexible data
model however cover a much broader range of applications, namely the full range
from data-centric to document-centric processing. Document-centric XML pro-
cessing deals with less rigidly structured documents. In contrast to data-centric
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Fig. 1. Exemplary XML document with textual content represented as shaded boxes

processing, document-centric applications require processing of vague predicates,
i.e., queries expressing information needs in the sense of information retrieval (IR
for short).

Data-centric approaches proposed in previous work on XML processing do
not cover document-centric requirements. In addition, conventional ranked re-
trieval on text documents is not directly applicable to XML documents because
of the flexibility of the XML data model: users want to exploit this flexibility
when posing their queries. Such queries usually rely on path expressions to dy-
namically combine one or several element types to the scope of a query. This is in
contrast to conventional IR where the retrieval granularity is restricted either to
complete documents or to predefined fields such as abstract or title. Dynamically
defined query scopes with XML retrieval however affect retrieval, their ranking
techniques, and in particular local and global IR statistics. Local IR statistics
represent the importance of a word or term in a given text. Term frequencies,
i.e., the number of occurences of a certain term in a given document are local
statistics with the vector space retrieval model, for instance. Global IR statistics
in turn reflect the importance of a word or a term with respect to the document
collection as a whole. Taking again vector space retrieval as an example, doc-
ument frequencies, i.e., the number of documents a given term appears in, are
global statistics. State-of-the-art retrieval models such as vector space retrieval
combine both local and global statistics to compute the ranked result of an IR
query.

The following discussion takes vector space retrieval as a running example
and illustrates shortcomings of conventional IR statistics in the context of XML
retrieval.

Consider the example XML document shown in Fig. 1. The document con-
tains information about books from the domains of medicine and computer sci-
ence. Such a document often is the only document in the collection, i.e., all infor-



mation is stored in a single XML document. This represents a typical situation
with many practical settings. Consequently, conventional vector space document
frequencies equal either 1 or 0: 1 for all terms occurring in the document and
0 otherwise. Hence, the intention of global statistics to discriminate important
and less important terms is lost when using conventional IR statistics for XML
retrieval. A further observation is that conventional term frequencies do not re-
flect different query scopes: term frequencies are computed for the document as
a whole. XML retrieval however often restricts search to certain sub-trees in the
XML document, e.g., the computer science or medicine branch of the example
document shown in Fig. 1. Our bottomline therefore is that conventional IR
statistics need to be refined for flexible retrieval from XML documents.

The objective of our work is twofold: we want to address the aforementioned
issues regarding IR statistics with so-called query-specific IR statistics. They are
computed on-the-fly, i.e., at query processing time, and both local and global
statistics reflect the scope of the query. Our second objective is to make respec-
tive document-centric XML retrieval functionality available on a platform such
as a relational database system that is also well-suited for data-centric XML pro-
cessing. Regarding these objectives, this current paper makes the following con-
tributions: based on previous work [16, 17], we define query-specific IR statistics
for flexible XML retrieval. Moreover, we show how to realize document-centric
XML processing with query-specific statistics on top of relational database sys-
tems in combination with data-centric XML processing. Our overall contribution
is our XML engine called PowerDB-XML. Based on relational database systems
for storage management, it realizes the envisioned platform for joint data-centric
and document-centric XML processing.

The remainder of the paper discusses PowerDB-XML’s approach to joint
data-centric and document-centric XML processing on top of relational database
systems. The following section (Sect. 2) covers related work. In Sect. 3, we dis-
cuss flexible retrieval on XML documents. The section defines query-specific
statistics and explains them in more detail using vector space retrieval and tf idf
ranking as an example. Section 4 in turn describes the system architecture of
PowerDB-XML. Using again vector space retrieval, it explains how to extend
relational data-centric XML mappings in order to store index data for efficient
flexible retrieval from XML documents using query-specific statistics. Section 5
then discusses processing of document-centric requests over the XML collection
stored. Special interest is paid to computing query-specific IR statistics dynam-
ically, i.e., at query runtime, from the underlying IR index data using standard
SQL. Section 6 concludes the paper.

2 Related Work

Data-centric XML processing has received much interest by database research
after XML has been recommended by the W3C in 1998. This has led to important
results such as query languages for data-centric XML processing (XPath [28]
and XQuery [29] among others). Besides query languages, several data-centric



mappings for XML documents to relational databases have been proposed, e.g.,
EDGE and BINARY [7], STORED [5], or LegoDB [3, 2]. In addition, several
approaches have been devised to map XML query languages to relational storage
and SQL [4, 6, 21, 26, 25]. Relational database systems are therefore well-suited
as a platform for data-centric XML processing.

Recent work has extended this previous stream of research to keyword search
on XML documents. Building on relational database technology, it has proposed
efficient implementations of inverted list storage and query processing [8, 19].
While already refining the retrieval granularity to XML elements, this previous
work has still focused on simple Boolean retrieval models. Information retrieval
researchers instead have investigated document-centric XML processing using
state-of-the-art retrieval models such as vector space or probabilistic retrieval
models. An important observation there was that conventional retrieval tech-
niques are not directly applicable to XML retrieval [13, 11]. This in particular
affects IR statistics used in ranked and weighted retrieval which heavily rely on
the retrieval granularities supported. To increase the flexibility of retrieval gran-
ularities for searching XML, Fuhr et al. group XML elements (at the instance
level) to so-called indexing nodes [13]. They constitute the granularity of ranking
with their approach while IR statistics such as idf term weights are derived for
the collection as a whole. The drawback of the approach is that the assignment
of XML elements to indexing nodes is static. Users cannot retrieve dynamically,
i.e., at query time, from arbitrary combinations of element types. Moreover, this
can lead to inconsistent rankings when users restrict the scopes of their queries
to element types that do not directly correspond to indexing nodes and whose IR
statistics and especially term distributions differ from the collection-wide ones.
Our previous work [16] has already investigated similar issues in the context of
flat document text retrieval from different domains: queries may cover one or
several domains in a single query and ranking for such queries depends on the
query scope. Based on this previous work, [17] proposes XML elements as the
granularity of retrieval results and refines IR statistics for tf idf ranking [22] in
this respect. Our approach derives the IR statistics appropriate to the scope of
the queries in the XML documents dynamically at query runtime. This current
paper extends this previous work by an efficient relational implementation which
allows to combine both data-centric and document-centric XML processing on
relational database systems.

3 Flexible XML Retrieval with Query-Specific Statistics

Conventional IR statistics for ranked and weighted retrieval come too short
for XML retrieval with flexible retrieval granularities [13]. This section extends
conventional textual information retrieval models on flat documents to flexible
retrieval on semistructured XML documents. A focus of our discussion is on
vector space retrieval and to refine it with query-specific statistics. Retrieval
with query-specific statistics also serves as the basic component for document-
centric processing with PowerDB-XML.



3.1 Retrieval with the Conventional Vector Space Model

Conventional vector space retrieval assumes flat document texts, i.e., documents
and queries are unstructured text. Like many other retrieval techniques, vector
space retrieval represents text as a ’bag of words’. The words contained in the
text are obtained by IR functionality such as term extraction, stopword elim-
ination, and stemming. The intuition of vector space retrieval is to map both
document and query texts to n-dimensional vectors d and q, respectively. n
stands for the number of distinct terms, i.e., the size of the vocabulary of the
document collection. A text is mapped to such a vector as follows: each position
i (0 < i ≤ n) of v represents the i-th term of the vocabulary and stores the
term frequency, i.e., the number of occurrences of t in the text. A query text
is mapped analogously to q. Given some query vector q and a set of document
vectors C, the document with d ∈ C that has the smallest distance to or smallest
angle with q is deemed most relevant to the query. More precisely, computation
of relevance or retrieval status value (rsv ) is a function of the vectors q and d
in the n-dimensional space. Different functions are conceivable such as the inner
product of vectors or the cosine measure. The remainder of this paper builds
on the popular so-called tf idf ranking function [24]. tf idf ranking constitutes a
special case of vector space retrieval. Compared to other ranking measures used
with vector space retrieval, it has the advantage to approximate the importance
of terms regarding a document collection. This importance is represented by the
so-called inverted document frequency of terms, or idf for short. The idf of a
term t is defined as idf(t) = log N

df (t) , where N stands for the number of docu-
ments in the collection and df (t) is the number of documents that contain the
term (the so-called document frequency of t). Given a document vector d and a
query vector q, the retrieval status value rsv (d, q) is defined as follows:

rsv(d, q) =
∑

t∈terms(q)

tf (t, d) idf (t)2 tf (t, q) (1)

Going over the document collection C and computing rsv(d, q) for each
document-query-pair with d ∈ C yields the ranking, i.e., the result for the query.

In contrast to Boolean retrieval, ranked retrieval models and in particular
vector space retrieval assume that documents are flat, i.e., unstructured infor-
mation. Therefore, a straight-forward extension to cover retrieval from semistruc-
tured data such as XML documents and to refer to the document structure is
not obvious. But, ranked retrieval models are known to yield superior retrieval
results [9, 23]. The following paragraphs investigate this problem in more detail
and present an approach that combines flexible retrieval with result ranking from
vector space retrieval.

3.2 Document and Query Model for Flexible XML Retrieval

In the context of this paper, XML documents are represented as trees. We rely
on the tree structures defined by the W3C XPath Recommendation [28]. This



yields tree representations of XML documents such as the one shown in Fig. 1.
Obviously, all textual content of a document is located in the leaf nodes of the
tree (shaded boxes in the figure). For ease of presentation, we further assume that
the collection comprises only a single XML document – a situation one frequently
encounters also in practical settings. Note that this is not a restriction: it is
always possible to add a virtual root node to compose several XML documents
into a single tree representation such that the subtrees of the virtual root are
the original XML documents. Moreover, we define the collection structure as a
complete and concise summary of the structure of the XML documents in the
document collection such as the DataGuide [15].

Flexible retrieval on XML now aims to identify those subtrees in the XML
document that cover the user’s information need. The granularity of retrieval
in our model are the nodes of the tree representation, i.e., subtrees of the XML
document. The result of a query is a ranked list of such subtrees. Users define
their queries using so-called structure constraints and content constraints.

Structure constraints define the scope, i.e., the granularity, of the query. With
our query model, the granularity of a query is defined by a label path. Taking the
XML document in Fig. 1 for instance, the path /bookstore/medicine/book defines
a query scope. The extension of the query scope comprises all nodes in the XML
document tree that have the same path originating at the root node. The exten-
sion of /bookstore/medicine/book comprises two instances – the first and the sec-
ond medicine book in the document. Users formulate their structure constraints
using path expressions. With the XPath syntax [28] and the XML document
in Fig. 1, the XPath expression //book for instance yields a query granularity
comprising /bookstore/medicine/book and /bookstore/computer-science/book.

Content constraints in turn work on the actual XML elements in the query
scope. We distinguish between so-called vague content constraints and precise
content constraints. A vague content constraint defines a ranking over the XML
element instances in the query scope. A precise content constraint in turn defines
an additional selection predicate over the result of the ranking. In the following,
we exclude precise content constraints from our discussion and focus instead on
vague content constraints for ranked text search.

3.3 Result Ranking with Query-Specific Statistics

In our previous discussion, we have refined the retrieval granularity of XML
retrieval to XML elements. Hence, our query model returns XML elements e in
the query result, and we have to adapt the ranking function accordingly:

rsv(e, q) =
∑

t∈terms(q)

tf (t, e) ief (t)2 tf (t, q) (2)

In contrast to Equation 1, the ranking function now computes a ranking over
XML elements e under a query text q. Moreover, term frequencies tf and inverted
element frequencies ief now work at the granularity of XML elements. The
following paragraphs investigate the effects of these adaptations in more detail
and refine global and local IR statistics to query-specific statistics.



Global IR Statistics. Different parts of a single XML document may have content
from different domains. Figure 1 illustrates this with the different branches of
the bookstore – one for medicine books and one for computer science books. Intu-
itively, the term ’computer’ is more significant for books in the medicine branch
than in the computer science branch. IR statistics should reflect this when users
query different branches of the collection structure. The first – and simplest case
– is when a query goes to a single branch of the collection structure. We denote
this as single-category retrieval. In this case, the query-specific global statistics
are simply computed from the textual content of the collection structure branch
where the query goes to. The following example illustrates this retrieval type.

Example 1 (Single-Category Retrieval). Consider a user searching for relevant
books in the computer science branch of the example document in Fig. 1. Ob-
viously, he restricts his queries to books from this particular category. Thus, it
is not appropriate to process this query with term weights derived from both
the categories medicine and computer science in combination. This is because the
document frequencies in medicine may skew the overall term weights such that
a ranking with term weights for computer science in isolation increases retrieval
quality.

Taking again our running example of vector space retrieval with tf idf rank-
ing, global IR statistics are the (inverted) element frequencies with respect to
the single branch of the collection structure covered by the query. We therefore
define the element frequency ef cat(t) of a term t with respect to a branch cat of
the collection structure as the number of XML element sub-trees that t occurs
in. More formally:

ef cat(t) =
∑

e∈cat

χ(t, e) (3)

with χ(t, e) defined as follows:

χ(t, e) =




1, if
∑

se∈SE(e) tf (t, se) > 0

0, otherwise
(4)

Thus, χ(t, e) is 1 if at least e or one of its sub-elements se contains t.
Now think of another user who wants to process a query on several categories,

i.e., on several non-overlapping branches of the collection structure. We call
such queries multi-category retrieval. In other words, a multi-category query
goes over one or several single-category query scopes. The difficulty with this
type of queries is again that conventional IR statistics are not meaningful in the
XML context, as already argued above. A more promising alternative in turn is
to rely on query-specific statistics reflecting the scope of the query. The following
example illustrates multi-category retrieval.

Example 2 (Multi-Category Retrieval). Recall the XML document from the pre-
vious example (cf. Fig. 1). The document in the figure reflects the different
categories of books such as medicine or computer science with separate element



types for the respective categories. Think of a user who does not care to which
category a book belongs, as long as it covers the information need expressed in
his query. The granularity of his query are all categories. Hence, the query is
an example of multi-category retrieval which requires query-specific statistics.
Taking again the document in Fig. 1, this means statistics must be derived from
both categories medicine and computer science in combination.

With vector space retrieval and tf idf ranking, we define the global query-
specific IR statistics as follows given a query scope mcat : the multi-category
element frequency ef mcat(t) of a term t is the number of sub-trees in the XML
documents t occurs in. Given this definition, the following equation holds be-
tween a multi-category query scope Mq and the single-categories it comprises.

ef mcat(t,Mq) =
∑

cat∈Mq

ef cat(t) (5)

This yields the multi-category inverted document frequency:

ief mcat(t,Mq) = log

∑
cat∈Mq

Ncat∑
cat∈Mq

ef cat(t)
(6)

Local IR Statistics. XML allows to hierarchically structure information within a
document such that each document has a tree structure. Users want to refer to
this structure when searching for relevant information. The intuition behind this
is that an XML element is composed from different parts, i.e., its child elements.
For instance, a chapter element may comprise a title and one or several paragraph
elements. This is an issue since the children elements may contribute to the
content of an XML element by different degrees. Fuhr at al. for instance reflect
the importance of such composition relationships with so-called augmentation
weights that downweigh statistics when propagating terms along composition
relationships [13]. This also affects relevance-ranking for XML retrieval, as the
following example shows.

Example 3 (Nested Retrieval). Consider again the XML document shown in
Fig. 1. Think of a query searching for relevant book elements in the medicine
branch. Such a query has to process content that is hierarchically structured:
the title elements as well as the paragraph elements describe a particular book
element. Intuitively, content that occurs in the title element is deemed more
important than that in the paragraphs of the example chapter, and relevance
ranking for books should reflect this.

Hierarchical document structure in combination with augmentation affects
local IR statistics only. Consequently, term frequencies are augmented, i.e.,
downweighed by a factor aw ∈ [0; 1] when propagating them upwards from a
sub-element se to an ancestor element e in the document hierarchy. This yields
the following definition for term frequencies:



tf (t, e) =
( ∏

l∈path(e,se)

awl

)
tf (t, se) (7)

After having refined the definition of global and local statistics for flexible
XML retrieval, the retrieval status value of an XML element e in the query scope
is given by simply instantiating the tf idf ranking function with the appropriate
global and local statistics for tf and ief . Section 5 will explain how to compute
statistics for combinations of several retrieval types in a query.

4 Storage Management with PowerDB-XML

Current approaches to XML processing have focused either on the data-centric
or the document-centric side. One of the promises of XML however is to reconcile
these – at least in practical settings. Therefore, the objective of the PowerDB-
XML project at ETH Zurich is to support both data-centric and document-
centric XML processing on a single integrated platform.

A straight-forward approach is to rely on relational database systems, to
deploy data-centric database mapping techniques proposed by previous work,
and to extend this setting with the functionality needed for document-centric
processing. Several approaches have been pursued already to combine document-
centric processing with database systems: most commercially available database
systems for instance feature extensions for text processing. This enables retrieval
over textual content stored in database table columns. However, this does not
allow for flexible weighting granularities as discussed in Sect. 3. In particular,
query-specific statistics according to the scope of the query are not feasible since
IR statistics are not exposed by the text extenders. Therefore, text extenders
are not a viable solution.

An alternative approach is to couple a database system for data-centric pro-
cessing with an information retrieval systems for document-centric processing,
as pursued e.g. by [27]. This approach however suffers from the same drawback
as the one previously mentioned: IR statistics are hidden by the information
retrieval system and query-specific statistics are not possible.

The third approach pursued in the PowerDB-XML project is instead to rely
on relational database systems and to realize document-centric functionality
on top of the database system with standard SQL. This approach is based on
the observation from own previous work [20] and the work by Grossman et
al. [18] that information retrieval using relational database systems for storage
management is efficient. The advantage of this approach is that storing IR index
data in the database makes IR statistics available for document-centric XML
processing with query-specific statistics. The following paragraphs discuss how
to combine data-centric and document-centric storage management on relational
database systems and outline the approach taken in PowerDB-XML.

Data-Centric Storage Management. Regarding data-centric database mappings,
PowerDB-XML supports the mapping schemes proposed in previous work as



bookstore

medicine

book

title example
chapter

paragraph

computer science

author

book

title example
chapter

paragraph

author
elem term tf 
4711 genetics 4 
...   

 
 term ef 
genetics 35 
…  

 
 

STAT:

IL:

0.92
1.0

0.5

0.7

0.5 0.5

0.7

1.0

0.5

0.92

elem term tf 
4799 genetics 36 
...   

 
 term ef 
genetics 35 
…  

 
 

STAT:

IL:

elem term tf 
0815 genetics 1 
...   

 
 term ef 
genetics 1 
…  

 
 

STAT:

IL:

elem term tf 
4206 genetics 3 
...   

 
 term ef 
genetics 2 
…  

 
 

STAT:

IL:

Fig. 2. Basic indexing nodes of the XML document in Fig. 1

discussed in Sect. 2. Our current implementation features text-based mappings,
EDGE [7], and STORED [5]. An API allows users to define their own mappings
and to deploy them to PowerDB-XML. An administrator then decides for a
particular combination of mapping schemes that suits the XML applications
running on top of PowerDB-XML.

Document-centric Storage Management. A naive solution to support flexible
retrieval with query-specific statistics would be to keep indexes and statistics
for each combination of element types and element nestings that could possibly
occur in a query. However, the amount of storage that this approach requires
for indexes and statistics is prohibitively large and is therefore not a viable
solution. Hence, we refine the notion of indexing nodes as proposed by Fuhr
et al. [13] to keep indexes and statistics only for basic element types. When it
comes to single-category retrieval, multi-category retrieval or nested retrieval,
the approach proposed here derives the required indexes and statistics from the
underlying basic ones on-the-fly, i.e., at query runtime. This has the advantage
that the amount of storage needed to process IR queries on XML content is
small as compared to the naive approach.

To do so, flexible retrieval on XML documents first requires to identify the
basic element types of an XML collection that contain textual content. These
nodes are denoted as basic indexing nodes. There are several alternatives how to
derive the basic indexing nodes from an XML collection:

– The decision can be taken completely automatically such that each distinct
element type at the leaf level with textual content is treated as a separate
indexing node.



– An alternative is that the user or an administrator decides how to assign
element types to basic indexing nodes.

These approaches can further rely on an ontology that, for instance, suggests
to group element types summary and abstract into the same basic indexing node.
For ease of presentation, let us assume that the basic indexing nodes have already
been determined, and the respective textual XML content already underwent IR
pre-processing, including term extraction and stemming. PowerDB-XML then
annotates the basic indexing nodes with the IR indexes and statistics derived
from their textual content. Figure 2 illustrates this for the Data Guide [14, 15]
of the example document in Figure 1. Element types with underlined names in
the figure stand for basic indexing nodes and have been annotated with inverted
list tables (IL) and statistic tables (STAT ) for vector space retrieval. The IL
tables store element identifiers, term occurrences, and local IR statistics (term
frequencies for vector space retrieval) in the table columns elem, term, and tf,
respectively. The global statistics tables STAT in turn store term identifiers
and global statistics (element frequencies for vector space retrieval) in the table
columns term and ef, respectively. PowerDB-XML keeps an IL and a STAT
table for each leaf node of the collection structure that has textual content
(cf. Fig. 2). The annotations of the edges in the figure represent augmentation
weights.

5 Operators for Flexible XML Retrieval

5.1 Operators for Combined Retrieval Types

Depending on the scope of the IR query, a combination of single-category, multi-
category, and nested retrieval may be necessary to compute the ranking. De-
pending on the retrieval granularity and the nesting, several inverted lists and
statistics tables may be relevant. The following example illustrates this.

Example 4. Consider a nested retrieval request with the query scope //book and
the query text ’XML Information Retrieval’ on an XML collection like the one
shown in Fig. 1. The request requires the functionality of nested retrieval since
the examplechapter-sub-tree and the title sub-element are searched for relevant
information. Moreover, the request also requires multi-category retrieval func-
tionality since both computer science and medicine books may qualify for the
result.

As the example shows, practical settings require a combination of the dif-
ferent retrieval types discussed in Section 3. In order to efficiently implement
query processing for flexible IR on XML documents, this paper proposes op-
erators called Singlecat, Multicat, Nestcat, and Aug which encapsulate
the functionality for integrating IR statistics and inverted lists. The results of a
composition of these operators are integrated statistics and inverted lists for flex-
ible retrieval from XML documents. The following paragraphs give an overview



about the operators and their signatures. Subsequent paragraphs in this section
then discuss their implementation in more detail.

Singlecat returns the IR statistics and inverted list of a given basic indexing
node under a particular query. Singlecat takes a path expression expr defining
a basic indexing node and a set of query terms {term} as input parameters. The
signature of Singlecat is:

SINGLECAT (expr , {term}) → (IL,STAT)

Multicat in turn takes several basic indexing nodes as input and integrates
their statistics to the multi-category ones using Definition 5. Multicat has the
following signature:

MULTICAT ({(IL,STAT)}) → (IL,STAT)

Nestcat computes the integrated IR statistics for sub-trees of XML collec-
tion structures. In contrast to Multicat, Nestcat relies on Definition 3 and 7
to integrate statistics:

NESTCAT ({(IL,STAT )}) → (IL,STAT )

Finally, the operator Aug downweighs term weights using the augmentation
weights annotated to collection structure when propagating basic indexing node
data upwards. The operator takes an inverted list and IR statistics as well as an
augmentation weight aw as input parameters:

AUG((IL,STAT ), aw ) → (IL,STAT )

The following example illustrates the combination of these operators in order to
integrate inverted lists and IR statistics for flexible retrieval processing.

Example 5. Consider again the query ’XML Information Retrieval’ on //book
elements from the previous example in combination with the document collection
underlying Figure 2. The operators Singlecat, Multicat, Nestcat, and Aug
integrate IR statistics and inverted lists as stored in the underlying basic indexing
nodes for the scope according to the query. This yields the operator tree shown
in Figure 3.

5.2 SQL-Implementation of Flexible Retrieval Operators

The following paragraphs explain in more detail how PowerDB-XML implements
the operators for processing single-category retrieval, multi-category retrieval
and nested retrieval using basic indexing nodes and standard SQL.

Single-Category Retrieval Processing. Combining different retrieval types
in an XML request requires to make the basic indexing node information avail-
able for further processing. The Singlecat operator works on the global and
local statistics of a basic indexing node. The following SQL code shows how
PowerDB-XML implements the Singlecat operator on input tables IL and
STAT .



MULTICAT

NESTCAT NESTCAT

AUG(0.92) AUG(1.0)

AUG(0.5)

AUG(0.92) AUG(1.0)

AUG(0.5)
SINGLECAT(
//medicine/book/title,
‘XML Information Retrieval' 

)

SINGLECAT(
//medicine/book/-
examplechapter/paragraph,
‘XML Information Retrieval’

)

SINGLECAT(
//computerscience/book/title,
‘XML Information Retrieval’

)

SINGLECAT(
//computerscience/book/-
examplechapter/paragraph,
‘XML Information Retrieval’

)

Integrated statistics: STAT
Integrated inverted list: IL

Fig. 3. Combination of retrieval types

SELECT i.elem, i.term, i.tf INTO IL′

FROM IL i, query q WHERE i.term = q.term

SELECT s.term, s.ef INTO STAT′

FROM STAT s, query q WHERE s.term = q.term

Multi-Category Retrieval Processing. Using basic indexing nodes directly
for multi-category retrieval is not feasible since statistics are per basic indexing
node. Hence, query processing must dynamically integrate the statistics when
the query encompasses several categories.

Multicat relies on input provided by several – possibly parallel – invoca-
tions of the Singlecat operator. Multicat integrates their local and global
statistics. Note that a simple set union suffices to integrate the postings to the
inverted lists since they only carry local statistics such as term frequencies while
global IR statistics such as element frequencies require integration using Def-
inition 5. The following SQL code shows how PowerDB-XML implements the
Multicat operator on input tables IL1, STAT 1, IL2, and STAT 2.

SELECT i.elem, i.term, i.tf INTO IL′



FROM IL i, query q WHERE i.term = q.term
SELECT i.elem, i.term, i.tf INTO IL′

FROM IL i, query q WHERE i.term = q.term

SELECT s.term, SUM(s.ef) INTO STAT′

FROM (SELECT * FROM STAT1 UNION
SELECT * FROM STAT2) s

GROUP BY s.term

Nested Retrieval Processing. The operator Nestcat implements the func-
tionality for integrating local and global statistics for nested retrieval. In contrast
to Multicat, simple set union for the inverted lists does not suffice with nested
retrieval. Instead, an aggregation of the term frequencies (tf ) in the XML sub-
trees is required (cf. Def. 7). Note that the tf values are assumed to be properly
augmented by previous invocations of the Aug operator. Hence, a simple SQL
SUM suffices to integrate the term frequencies. The following SQL code shows
how PowerDB-XML implements the Nestcat operator on input tables IL1,
STAT 1, IL2, and STAT 2.

SELECT e.elem, i.term, SUM(i.tf) INTO IL′

FROM elements e, IL1 i
WHERE DescendantOrSelf(e.elem, i1.elem)
SELECT e.elem, i.term, SUM(i.tf) INTO IL′

FROM elements e, IL2 i
WHERE DescendantOrSelf(e.elem, i2.elem)

SELECT s.term, COUNT(DISTINCT i.elem) INTO STAT′

FROM IL′

GROUP BY i.term

Note that repeated application of the binary versions of the operators implements
the n-ary ones.

Processing of Augmentation. The operator Aug implements augmentation
weighting for flexible retrieval processing. As the following SQL code shows, it
simply returns a weighted projection of the local statistics of the input table
IL which correspond to term frequencies with vector space retrieval. Global
statistics are not affected by augmentation. Hence, Aug simply propagates them
without any changes to subsequent operator instances.

SELECT elem, term, aw * tf INTO IL′

FROM IL



Computing Retrieval Status Values with Query Specific Statistics.
Previous work has proposed implementations using standard SQL for data access
with Boolean, vector space and probabilistic retrieval models [10, 18]. Based on
this work, the following SQL code for flexible XML retrieval using tf idf ranking
takes integrated query-specific statistics STAT and IL from a composition of the
operators discussed previously as an input.

SELECT elem, SUM(i.tf * ief(s.ef) * ief(s.ef) * q.tf) rsv
FROM IL i, STAT s, query q
WHERE i.term = s. term AND s.term = q.term
GROUP BY elem

The SQL statement yields the ranking, i.e., the XML element identifiers from
the query scope and their retrieval status values.

Preliminary Experimental Results with INEX 2002. INEX – short for
the INitiative for the Evaluation of XML retrieval – is an ongoing effort to
benchmark the retrieval quality of XML retrieval systems [12]. INEX comes
with a document collection of roughly 500 MB of XML documents representing
about 12,000 IEEE Computer Society publications. Marked up in XML, the
document collection comprises about 18.5 million XML elements. 60 different
topics have been developed by the initiative, including relevance assessments.
INEX differentiates between so-called content-only (CO) topics and content-
and-structure (CAS) topics. CO topics specify a query text or a set of keywords
for relevance-oriented search. Hence, each of the 18.5 million XML elements in
the collection is a potential results to a CO topic. CAS topics in addition pose
structural constraints such as path expressions on the result elements.

Using PowerDB-XML as retrieval engine, we have run the INEX 2002 bench-
mark on a single PC node with one 1.8 GHz Pentium processor, 512 MB RAM,
and a 40 GB IDE disk drive. We deploy Microsoft Windows 2000 Server as op-
erating system and Microsoft SQL Server 2000 for storage management. After
having loaded PowerDB-XML with the complete document collection, we have
run all topics and measured their response times. A positive finding from this
series of experiments is that CAS topic processing is interactive, i.e., response
times are in the order of seconds. However, some CO topics yield response times
in the order of minutes (but less than 10 minutes). The reason for this is that
CO topics require to compute a ranking for potentially all 18.5 million XML ele-
ments since constraints on the document structure to cut down the result space
are not available with this topic type. The bottleneck of the topics with high re-
sponse times is the inverted list lookup of terms in combination with processing
element containment relationships. Note that the overhead of computing and
integrating global statistics such as ief values is not significant with both topic
types. We therefore plan to investigate combining query-specific statistics with
more efficient representations of element containment relationships in relational
database systems as discussed, e.g., in [19].



6 Conclusions

So far, database research has focused on data-centric processing of XML doc-
uments. This has left aside a large number of XML applications which re-
quire document-centric XML processing. An explanation for this might be that
document-centric processing and in particular ranked and weighted retrieval
from XML content is still an open research issue in the IR community. Our work
on PowerDB-XML took over the vector-space model and tf idf ranking from flat
document retrieval and refined it to flexible retrieval on XML documents using
query-specific statistics. We see this as an important foundation for document-
centric XML processing and we are currently evaluating its retrieval quality in
the INEX initiative [11].

As our discussion has shown, flexible XML retrieval with query-specific statis-
tics nicely maps to relational storage managers and an efficient implementa-
tion with standard SQL. This allows to combine state-of-the-art data-centric
database mapping schemes with our relational implementation of document-
centric XML processing. We pursue this approach in the PowerDB-XML project
at ETH Zurich. As a result, our XML engine covers the full range from data-
centric to document-centric XML applications on a single integrated platform
using XML for data representation.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web – From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000.

2. P. Bohannon, J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Simon. LegoDB:
Customizing Relational Storage for XML Documents. In Proceedings of 28th Inter-
national Conference on Very Large Data Bases (VLDB2002), August 20-23, 2002,
Hongkong, China, pages 1091–1094. Morgan Kaufmann, 2002.

3. P. Bohannon, J. Freire, P. Roy, and J. Simon. From XML Schema to Relations:
A Cost-based Approach to XML Storage. In Proceedings of the 18th International
Conference on Data Engineering (ICDE2002), February 26 - March 1, 2002, San
Jose, CA, USA. Morgan Kaufmann, 2002.

4. M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N. Subrama-
nian. XPERANTO: Middleware for Publishing Object-Relational Data as XML
Documents. In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, editors, Proceedings of 26th International Con-
ference on Very Large Data Bases (VLDB2000), September 10-14, 2000, Cairo,
Egypt, pages 646–648. Morgan Kaufmann, 2000.

5. A. Deutsch, M. F. Fernandez, and D. Suciu. Storing Semistructured Data with
STORED. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD
1999, Proceedings ACM SIGMOD International Conference on Management of
Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages 431–442. ACM
Press, 1999.

6. M. F. Fernandez, W. C. Tan, and D. Suciu. SilkRoute: Trading between Relations
and XML. WWW9 / Computer Networks, 33(1-6):723–745, 2000.

7. D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDMBS.
IEEE Data Engineering Bulletin, 22(3):27–34, 1999.



8. D. Florescu, D. Kossmann, and I. Manolescu. Integrating Keyword Search into
XML Query Processing. In Proceedings of the International WWW Conference,
Amsterdam, May 2000. Elsevier, 2000.

9. E. Fox and M. Koll. Practical Enhanced Boolean Retrieval: Experiments with the
SMART and SIRE Systems. Information Processing and Management, 24(3):257–
267, 1988.

10. O. Frieder, A. Chowdhury, D. Grossman, and M. McCabe. On the Integration of
Structured Data and Text: A Review of the SIRE Architecture. In Proceedings
of the First DELOS Network of Excellence Workshop on Information Seeking,
Searching and Querying in Digital Libraries, Zurich, Switzerland, 2000, pages 53–
58. ERCIM, 2000.
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