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Optimal Binary Training Sequence Design for
Multiple-Antenna Systems Over Dispersive

Fading Channels

Shan-An Yang and Jingshown Wu

Abstract—Accurate and efficient channel estimation is important in mul-
tiple-antenna communication systems in order to effectively reduce the mu-
tual interference among different transmitting antennas. For a nondisper-
sive channel that is modeled by a single tap for each transmitting and re-
ceiving antenna pair, the well-known Hadamard sequences can be applied
to estimate the channel coefficients. However, for a dispersive channel that
has multipath problem and is modeled by multiple taps, the optimal se-
quences must have both good autocorrelations and cross correlations. The
existence of binary sequences with such good property is an open problem.
In this paper, we devise an algorithm to find these sequence sets. These
codes can be applied in multiple-antenna systems.

Index Terms—Channel estimation, fading, MIMO, training sequence.

I. INTRODUCTION

Efficient channel estimation is important for multiple-antenna sys-
tems especially when the number of antennas increases. To avoid the
degradation of estimation accuracy due to interference, an intuitive way
is to transmit training sequences for each transmitting antenna in turn
[1]. For a system withM antennas, this scheme requiresM times band-
width compared with a single antenna transmitter system. However,
orthogonal training sequences can be simultaneously applied for each
transmitter antenna to estimate the channel efficiently [2], [3]. For a
single tap coefficient discrete channel model, it is well known that or-
thogonal sequences are the optimal training sequences that minimize
the estimation errors if the additive noises are identical independent
Gaussian random processes. In this case, a Hadamard matrix can be ap-
plied. However, in the case of multipath channel, the channel for each
pair of transmitting and receiving antennas should be modeled by sev-
eral taps. It can be proven that the training sequences should have both
good autocorrelation and cross correlation. Existence of such training
sequence sets is still an open problem. In this paper, we discuss the
existence of such optimal binary training sequence sets and propose a
search algorithm.
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Fig. 1. The burst data structure forM -antenna transmission.

II. PROBLEM DESCRIPTION

The multiple-antenna system under consideration hasM transmit-
ting antennas andN receiving antennas. The burst data structure for
each transmitting antenna is shown in Fig. 1, wherex�(1 : L); � =
1;2 . . .M; denotes the training sequence to be transmitted from the
�th antenna.L is the length of each training sequence. The training
sequences are embedded in each burst. Data bursts from different an-
tennas will have different training sequences that are designed together
so that the coexistence of the training sequences does not affect the
channel estimation accuracy. Provided that the burst is short and the
channel is quasi-static within a burst, the output of discrete equivalent
channel can be expressed as

y�(k) =

M

�=1

V

i=0

h��(i)x�(k � i) + n�(k) (1)

whereV is the order of channel memory andh��(i) denotes the re-
sponse of the�th receiving antenna of the receiver to a discrete unit
sample applied in the�th transmitting antenna.n�(k) is assumed to be
identical independently distributed Gaussian random noise. With good
synchronization, small value ofV is enough to well approximate the
channel.

With simple manipulations, we can prove that the training sequence
set is optimal if the training sequence in each antenna is not only or-
thogonal to its shifts withinV taps but also orthogonal to the training
sequences in other antennas and their shifts withinV taps (see Ap-
pendix). In other words, the optimal training sequences should satisfy
the following equation:

L�V

k=1

x�(k)x�(k + s) = 0

where�; � = 1 �M

s =
0 � V; when� 6= �

1 � V; when� = �.
(2)

III. PROPERTIES AND ASEARCH ALGORITHM OF THE OPTIMAL

TRAINING SEQUENCES FORBPSK

In this section, we will discuss existence of the optimal training se-
quence selected from the binary phase-shift keying (BPSK) constella-
tion. In other words, we will discuss the binaryf1;�1g-sequence sets
satisfying (2). First, we prove thatx�(k) = x�(k + P ) for k � V .
For convenience, we denoteP = (L�V ). Considers = 1 and� = �
in (2); we have

P

k=1

x�(k)x�(k+ 1) = 0: (3)

Let y(k) = x�(k)x�(k + 1). Thus,y(k) = �1 impliesx�(k) =
�x�(k + 1). Since P

k=1 y(k) = 0, half of y(k); k = 1 � P; are
�1. SinceP=2 is an even number (see Property 1 in Table I), we have
x�(P + 1) = (�1)P=2x�(1) = x�(1): As a consequence, finding
optimal sequencesx�(1 : L) is equivalent to obtainx�(1 : P ), which
satisfies the following equation:

p

k=1

x�(k)x�(k + smodP ) = 0

where�; � = 1 �M

s =
0 � V; when� 6= �

1 � V; when� = �.
(4)

Hereafter, we will call a sequence set that satisfies (4) as a(P; V;M)
code. Some properties of this code are listed in Table I. ForM � 2
andV � 1, we require thatx1(1 : P ); x1(2 : P + 1); x2(1 : P );
andx2(2 : P + 1) are mutually orthogonal. This leads to result that
P must be a multiple of four. (This is the same reason that the order
of a Hadamard matrix is multiples of four.) Thus, we have Property 1.
Property 2 states that multiplying�1 to any sequence in a(P; V;M)
code can result another(P; V;M) code. Properties 3, 4, and 5 are quite
trivial and can be easily verified. Property 3 implies that we can find all
the(P; V;M � 1) codes and then find all the(P; V;M) codes based
on all the(P; V;M �1) codes. Property 4 says that if we reverse every
sequence simultaneously, the result is still a(P; V;M) code. Property
5 implies that if we shift every sequence by the same amount, the result
is still a (P; V;M) code. Property 6 gives an upper bound ofM when
the valuesP andV are given.

Based on the above properties, we can restrict the first entry of each
seqeunce to�1 (or 1) and restrict the sequences permutation in a
(P; V;M) code to the order in the(P; V; 1) code table without loss of
generality. We describe the search algorithm as follows.

Step 4) Find all of the(P; V; 1) codes for the given values ofP and
V . Construct the(P; V; 1) code table; each code in the code
table is presented by an unique number. As in Fig. 2, for
example,(P; V; 1) #2 represents the second(P; V; 1) code
in the(P; V; 1) code table.

Step 5) Find all the(P; V; 2) codes from all the pairs of(P; V; 1) by
checking the orthogonality conditions. At the same time, we
construct an index table in order to reduce the complexity
for M = 3.

Step 6) Letm = 3.
Step 7) Construct the(P; V;m) code table and index table by ap-

plying the(P; V;m � 1) code table and index table. Note
that a(P; V;m) code is composed of two(P; V;m � 1)
codes, where the lastm�2(P; V; 1) codes of a(P; V;m�
1) code is identical to the firstm� 2(P; V; 1) codes of the
other(P; V;m�1) code. As a result, we only have to check
the orthogonality of the first(P; V; 1) code in the former
(P; V;m� 1) code and the last(P; V; 1) code in the latter
(P; V;m � 1) code to determine whether these two codes
constitute a(P; V;m) code whenm � 3.

Step 8) Ifm > M or the newly constructed code table is empty,
then the process is finished. Otherwise, increasem by one
and go back to Step 4).

In Fig. 2, we illustrate how the code table and index table are con-
structed. As illustated in the first three columns, code(P; V; 2) #1 is
composed of code(P; V; 1) #1 and #3. We build the code table for
M = 2 by testing all possible pairs of(P; V; 1) and list them in the
third column. At the same time, an index table is constructed with its
contents pointing to the starting positions of the corresponding codes
in the code table. In order to find the(P; V; 3) codes, we start from the
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TABLE I
SOME PROPERTIES OF A(P; V;M) CODE

Fig. 2. The construction of the code table and the index table.

first element in the code table forM = 2. Since the second element of
(P; V; 2) #1 is (P; V; 1) #3, we refer to the third and fourth elements
in the index table which are denoted byk3 andk4. So, we search from
k3th through(k4� 1)th codes in the code table to see if any code can
pair with (P; V; 2) #1 to constitute a(P; V; 3) code. We only have to
check the orthogonality between the first(P; V; 1) code in(P; V; 2) #1
and the last(P; V; 1) code in the other(P; V; 2) codes betweenk3th
through(k4� 1)th. After finding all the(P; V; 2) codes which can be

paired with(P; V; 2) #1, we continue with(P; V; 2) #2 and then #3
until reaching the last element of the code table.

A. Computational Complexity Analysis

For(P; V;M) codes, restricton on the first entry of the sequence has
a reduction factor of2M times. In addition, restriction on the permuta-
tion reduces the computation complexity byM factorial times. It can
be proven that the total number of(P; V = 1;M = 1) sequences
is nCn=2. For greater values ofM , the computational complexity de-
pends on the total number of codes that exist and is hard to analyze.
Thus, we take(P; V ) = (16; 1) as an example and give the numerical
results in Table II. Columns (A) and (B) demonstrate the total number
of codes found by the algorithm and the total number of codes without
any restriction, respectively. Column (C) shows the reduction factor
defined as a ratio between Column (B) and Column (A). Column (D)
gives the probability of finding such(P; V;M) code by random guess.
It is observed that the values in Column (A) increase at first, reaches
its maximum value atM = 3, and decreases thereafter. On the con-
trary, the values in Column (B) increase all the way untilM = 8. To
determine that two sequences satisfy (4), we have to test orthogonality
(2V + 1) times. Each time it requires an operation of bit-wiseXOR

between twoP -bits words and an operation to count the total number
of ones in aP -bit word. In Columns (E) and (F), we show the total
numbers of orthogonality tests required in each round for the proposed
algorithm and for a method by directly searching all combinations of
f�1; 1g in each bit. This implies that our algorithm provides a feasible
approach for a personal computer to determine existence or nonexis-
tence of(P; V;M) codes for a small value ofP . Although the pro-
posed algorithm will become computationally impractical for a large
value ofP , it suffices for the purpose of designing training sequences
in multiple-antenna systems since they are often short.

B. An Alternative Way of Construction

If we do not intend to find the maximum value ofM , we
can construct such codes by applying shifts of a binary al-
most perfect sequence (BAPS) [4], [5]. TakeM = 2 as an
example; we can choosex1(k) = ak andx2(k) = ak+p=4, where
k = 1 � p; V � p=4 � 1, andak is a BAPS. For example, the
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TABLE II
COMPARISONBETWEEN THEALGORITHM AND THE DIRECT EXHAUSIVE

SEARCH WITHOUT ANY RESTRCTION

TABLE III
THE MAXIMUM VALUES OFM GIVEN (P; V )

sequence f�1;�1; 1;�1;�1;�1;�1;�1; 1; 1;�1; 1;�1; 1; 1; 1g
is a BAPS withp = 16. Thus,

x1 = f�1;�1; 1;�1;�1;�1;�1;�1; 1; 1;�1; 1;�1; 1; 1; 1g

and

x2 = f�1;�1;�1;�1; 1; 1;�1; 1;�1; 1; 1; 1� 1;�1; 1;�1g

satisfy the conditions of the optimal training sequences for
(P = 16; V = 3;M = 2). However, we see in Table III that
the maximal number of achievableV is 4, not3. Therefore, although
applying BAPS helps to construct such code, it does not achieve the
maximum value ofM or V .

IV. SEARCH RESULT AND NUMERICAL SIMULATION

In Table III, we list the maximal numbers of achievableM givenP
andV . In the table,N means that no such(P; V;M) code exists. One
can observe that theM value for some(P; V ) combinations achieve
the upper bound given by Property 6, while others do not. For example,
whenP = 16 andV = 1, the maximum achievableM is 8, which is
just the upper bound given by Property 6. However, when(P; V ) =
(12; 1), the maximal achievableM is only 5, not 6.

In Table IV, we list at least one example for all existing codes
with P � 16. Although we have proved the optimal property of the
proposed training seqeunces under the assumption of quasi-coherent
channel, we are also interested in their performance in an environment
with Doppler frequency shift. We perform numerical simulation to
compare three different training sequence sets. The sequences under
test are listed in Table V. The first one is the optimal sequence set
with (P; V;M) = (8; 1; 4) as proposed. The second sequence set

TABLE IV
EXAMPLES OF THE(P; V;M) CODES

TABLE V
THE CODESUNDER TEST IN THE NUMERICAL SIMULATION

is constructed with a well-known pseudorandom binary sequence
(PRBS) with different shifts in different transmitter antennas. Since
we want to keep the cross correlation low between shifts, the maximal
number of transmitting antennas is three with a PRBS of length
seven. The transmitted power is increased to compensate the shorter
length for a fair comparison. The third one is an arbitrarily chosen
sequence set. The channel tap coefficients are assumed to be indepen-
dent complex Gaussian random variable with uniformly distributed
phaseand Rayleigh distributed amplitude. The transmitted power from
each transmitting antenna is assumed to be the same. Here, we use
the well-known Jakes’ model to perform the simulation. The results
are shown in Fig. 3. We see that when the Doppler frequency shift
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Fig. 3. Performance comparison of three sequence sets with Doppler frequency shift.

is not severe, the advantage of the proposed sequence set remains
unchanged.

V. CONCLUSION

In this paper, we study the design of optimal trianing sequence sets
for multiple-antenna communication systems in a dispersive fading en-
vironment. The conditions of the optimal training sequences for the
multiple-antenna systems are proposed and proven. We also propose
an algorithm to search the optimal training sequences and analyze the
complexity of the algorithm. Existence of such codes is shown by an
exhaustive search for code length less than or equal to 16. Examples of
the search result are listed in a table. Numerical tests are performed to
test their performance in a nonideal environment. We believe that these
sequences can be used for channel estimation in multiple-antenna com-
munication systems.

APPENDIX

PROOF OF THECONDITION FOROPTIMAL TRAINING SEQUENCES

The firstV sampled values are discarded to avoid the interference
from symbols prior to the first training symbol. Thus, we can rewrite
(1) in matrix form as

y� = XH� +N� (A.1)

wherey� = [y�(V + 1) y�(V + 2) � � � y�(L)]
T (see the equation

at the bottom of the page). IfXHX is invertible, the least squares es-
timation for the channel matrixH� is given by

Ĥ� = (XH
X)�1(XH

y�): (A.2)

The above estimation is unbiased. Thus, the estimation error and vari-
ance are given by

e� = Ĥ� �H� (A.3)

and

E[ke�k
2] = E tr e�e

H
�

= tr (XH
X)�1XH

E N�N
H
� X(XH

X)�1 : (A.4)

In the case of independent white discrete Gaussian noises, we have

E N�N
H
� = �

2
nIL�V : (A.5)

Therefore, (A.4) is simplified as

E ke�k
2 = �

2
n tr[(XH

X)�1] = �
2
n

(MV+M)

k=1

1

�k
(A.6)

X =

x1(1 : V + 1) x2(1 : V + 1) � � � xM (1 : V + 1)

x1(2 : V + 2) x2(2 : V + 2) � � � xM (2 : V + 2)

...
...

...
...

x1(L� V : L) x2(L� V : L) � � � xM (L� V : L)

H� = [h1� h2� � � � hM�]
T
; N� = [n�(V + 1) n�(V + 2) � � � n�(L)]

T

x�(i : j)=̂[x�(i) x�(i+ 1) � � � x�(j)]; h�� = [h��(V ) h��(V � 1) � � �h��(0)]

i = 1 � L� V; j = i+ V; � = 1;2; . . . ;M and � = 1;2; . . . ; N:
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where�k denotes the eigenvalues ofXH
X. By applying Cauchy in-

equality, we have

(MV+M)

k=1

1

�k

(MV+M)

k=1

�k �M
2(V + 1)2: (A.7)

Thus, minimization of (A.7) requires that�k is constant for allk =
1 � (MV +M). This implies thatXH

X is a diagonal matrix with
all the diagonal entries equal to a constant.
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