
Discovering Complex Matchings across Web Query
Interfaces: A Correlation Mining Approach∗

Bin He, Kevin Chen-Chuan Chang, Jiawei Han
Computer Science Department

University of Illinois at Urbana-Champaign
binhe@uiuc.edu, {kcchang, hanj}@cs.uiuc.edu

ABSTRACT
To enable information integration, schema matching is a critical
step for discovering semantic correspondences of attributes across
heterogeneous sources. While complex matchings are common,
because of their far more complex search space, most existing tech-
niques focus on simple 1:1 matchings. To tackle this challenge,
this paper takes a conceptually novel approach by viewing schema
matching ascorrelation mining, for our task of matching Web query
interfaces to integrate the myriad databases on the Internet. On
this “deep Web,” query interfaces generally formcomplex match-
ingsbetween attribute groups (e.g.,{author} corresponds to{first
name, last name} in the Books domain). We observe that the co-
occurrences patterns across query interfaces often reveal such com-
plex semantic relationships:grouping attributes(e.g.,{first name,
last name}) tend to be co-present in query interfaces and thus pos-
itively correlated. In contrast,synonym attributesare negatively
correlated because they rarely co-occur. This insight enables us
to discover complex matchings by a correlation mining approach.
In particular, we develop theDCM framework, which consists of
data preparation, dual miningof positive and negative correlations,
and finallymatching selection. Unlike previous correlation mining
algorithms, which mainly focus on finding strong positive correla-
tions, our algorithm cares both positive and negative correlations,
especially the subtlety of negative correlations, due to its special
importance in schema matching. This leads to the introduction of a
new correlation measure,H-measure, distinct from those proposed
in previous work. We evaluate our approach extensively and the
results show good accuracy for discovering complex matchings.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases; H.2.8
[Database Management]: Database Applications—Data Mining

General Terms
Algorithms, Measurement
∗This material is based upon work partially supported by NSF
Grants IIS-0133199 and IIS-0313260. Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the author(s) and do not necessarily reflect the views of the
funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

Keywords
data integration, deep Web, schema matching, correlation mining,
correlation measure

1. INTRODUCTION
In recent years, we have witnessed the rapid growth of databases

on the Web, or the so-called “deep Web.” A July 2000 survey [3]
estimated that 96,000 “search cites” and 550 billion content pages
in this deep Web. Our recent study [6] in December 2002 estimated
between 127,000 to 330,000 deep Web sources. With the virtually
unlimited amount of information sources, the deep Web is clearly
an important frontier for data integration.

Schema matching is fundamental for supporting query media-
tion across deep Web sources. On the deep Web, numerous online
databases provide dynamicquery-based data access through their
query interfaces, instead of static URL links. Each query interface
accepts queries over itsquery schemas(e.g.,author, title, subject,
... for amazon.com). Schema matching (i.e., discovering semantic
correspondences of attributes) across Web interfaces is essential for
mediating queries across deep Web sources.

In particular, matching Web interfaces in the same domain (e.g.,
Books, Airfares), the focus of this paper, is an important prob-
lem with broad applications. In particular, we often need to search
over alternative sources in the same domain such as purchasing a
book (or flight ticket) across many online book (or airline) sources.
Given a set of Web interfaces in the same domain, this paper solves
the problem of discovering matchings among those interfaces. We
notice that our input, a set of Web pages with interfaces in the same
domain, can be either manually [7] or automatically [13, 12] col-
lected and classified.

On the “deep Web,” query schemas generally formcomplex match-
ingsbetween attribute groups. In contrast to simple 1:1 matching,
complex matching matches a set ofm attributes to another set of
n attributes, which is thus also calledm:n matching. We observe
that, in query interfaces, complex matchings do exist and are actu-
ally quite frequent. For instance, in Books domain,author is a syn-
onym of the grouping oflast name andfirst name, i.e.,{author}
= {first name, last name}; in Airfares domain,{passengers} =
{adults, seniors, children, infants}. Hence, discovering complex
matchings is critical to integrate the deep Web.

Although 1:1 matching has got great attention [18, 9, 15, 10],
m:n matching has not been extensively studied, mainly due to the
much more complex search space of exploring all possible com-
binations of attributes (as Section 7 will discuss). To tackle this
challenge, we investigate theco-occurrencepatterns of attributes
across sources, to match schemasholistically. Unlike most schema
matching work which matchestwoschemas at a time, we matchall
the schemas at the same time. This holistic matching provides the
co-occurrence information of attributes across schemas and thus

148

Research Track Paper

(a) amazon.com (b) www.randomhouse.com

(d) 1bookstreet.com(c) bn.com

Figure 1: Examples of “Fragment” Web Interfaces.

enables efficient mining-based solutions. For instance, we may ob-
serve that last name and first name often co-occur in schemas,
while they together rarely co-occur with author, as Figure 1 illus-
trates. More generally, we observe that grouping attributes(i.e., at-
tributes in one group of a matching e.g., {last name, first name})
tend to be co-present and thus positively correlated across sources.
In contrast, synonym attributes(i.e., attribute groups in a matching)
are negatively correlated because they rarely co-occur in schemas.

These dual observations motivate us to develop a correlation
mining abstraction of the schema matching problem. Specifically,
given Web pages containing query interfaces, this paper develops a
streamlined DCM framework for mining complex matchings, con-
sisting of automatic data preparationand correlation mining, as
Figure 2 shows. Since the query schemas in Web interfaces are
not readily minable in HTML format, as preprocessing, the data
preparation step prepares “schema transactions” for mining (Sec-
tion 5). Then the correlation mining step, the main focus of this
paper, discovers complex matchings with dual mining of positive
and negative correlations (Section 3). We name the whole match-
ing process as DCM, since the core of the algorithm is the dual
correlation mining part.

Unlike previous correlation mining algorithms, which mainly
focus on finding strong positive correlations, our algorithm cares
both positive and negative correlations. Hence, we need to develop
measures for both positive correlations and negative ones. Our
schema matching task is particularly interested in negative corre-
lations, since on one hand, they reflect the synonym relationships
among attributes, on the other hand, they have not been extensively
explored and applied before.

To ensure the quality of the mining result (i.e., the complex match-
ings), the chosen measures should satisfy some quality require-
ments, based on our observation of query schemas (Section 4). In
particular, from the extremely non-uniform distribution of schema
attributes, we identify that: 1) Both the positive and negative corre-
lation measures should be robust for the sparseness problem(i.e.,
the sparseness of schema data may “exaggerate” the effect of co-
absence), which has also been noticed as the “null invariance” prop-
erty by recent correlation mining work [20, 16, 14]. 2) The negative
correlation measure should be robust for the rare attribute problem
(i.e., the rare attributes may not be convincing to judge their neg-
ative correlations). Since none of the existing measures [20, 4] is
robust for both the sparseness problem and the rare attribute prob-
lem, we develop a new measure, H-measure, robust against both
problems in measuring negative correlations.

To evaluate the matching performance and H-measure, we test
the DCM framework on the datasets in the UIUC Web integration
repository [7]. First, we test DCM on the TEL-8 dataset, which
contains raw Web pages over 447 deep Web sources in 8 popu-
lar domains, and the result shows good target accuracy. Second,
we compare the DCM framework with the MGS framework [10],
which also matches Web interfaces with the same insight of explor-
ing a holistic approach, on its BAMM dataset. The result shows that
DCM is empirically close to MGS in discovering simple matchings
and further DCM can find complex matchings, which is not sup-

Form Extraction

Data Preparation

Syntactic Merging

n-ary
complex matchings

{A} = {B} = {C,D,E}
{F, G} = {H, I}

Type Recognition

Group Discovery

Matching Selection

Matching Discovery

Correlation Mining

*** ***

QI pages

Figure 2: From matching to mining: the DCM framework.

ported by MGS. Third, we compare H-measure with other mea-
sures on the TEL-8 dataset and the result shows H-measure out-
performs the others in most cases.

There are several applications of our work: First, while pursu-
ing holistic matching, our result can naturally address the pairwise
matching problem. For instance, given the matching {author} =
{last name, first name} found by our approach, we can match
{author} in some schema SA to {last name, first name} in an-
other schema SB . Second, our work is a critical step to construct
a global Web interface for each domain. Specifically, among the
synonyms in a matching, we can pick the most popular one as the
representative in the global interface and use that matching to build
the mappings from the global interface to local ones.

In our development, we also observed several interesting issues.
Can we mine interesting patterns over cross-domain Web inter-
faces? How to systematically decide the threshold values for min-
ing? How can our approach benefit from exploring other informa-
tion on the Web? We discuss these open issues in Section 8.

In summary, the contributions of this paper are:
• We build a conceptually novel connection between the schema

matching problem and the correlation mining approach. On one
hand, we consider schema matching as a new application of
correlation mining; on the other hand, we propose correlation
mining as a new approachfor schema matching.

• We develop correlation measures that are robust for not only
positive correlations, but also negative correlations. In particu-
lar, we identify the problems of existing measures on evaluating
negative correlations, due to its special importance in schema
matching, and further introduce a new correlation measure, H-
measure, distinct from those proposed in previous work.

The rest of the paper is organized as follows: Section 2 presents
our motivating observations of integrating the deep Web. Section 3
develops the mining and selection algorithms. Section 4 proposes
a new correlation measure, H-measure. Section 5 presents the data
preparation step. Section 6 reports our experiments. Section 7 re-
views related work and and Section 8 discusses several further op-
portunities and open issues, and then concludes this paper.

2. MOTIVATION: FROM MATCHING TO
MINING

As Section 1 briefly introduced, our key insight is on connecting
matching to mining, which this section further motivates with a
concrete example. Consider a typical scenario: suppose user Amy,
who wants to book two flight tickets from city A to city B, one
for her and the other for her 5-year old child. To get the best deal,
she needs to query on various airfare sources by filling the Web
query interfaces. For instance, in united.com, she fills the query
interface with from as city A, to as city B and passengers as 2.
For the same query in flyairnorth.com, she fills with depart as city
A, destination as city B, adults as 1, seniors as 0, children as 1
and infants as 0.

This scenario reveals some critical characteristics of the Web in-
terfaces in the same domain. First, some attributes may group to-
gether to form a “ larger” concept. For instance, the grouping of
adults, seniors, children and infants denotes the number of pas-
sengers. We consider such attributes that can be grouped as group-

149

Research Track Paper

ing attributesor having grouping relationship, denoted by putting
them within braces (e.g., {adults, seniors, children, infants}).

Second, different sources may use different attributes for the
same concept. For instance, from and depart denote the city to
leave from, and to and destination the city to go to. We consider
such semantically equivalent attributes (or attribute groups) as syn-
onym attributesor having synonym relationship, denoted by “=”
(e.g., {from} = {depart}, {to} = {destination}).

Grouping attributes and synonym attributes together form com-
plex matchings. In complex matching, a set of m attributes is
matched to another set of n attributes, which is thus also called
m:n matching, (in contrast to the simple 1:1 matching). For in-
stance, {adults, seniors, children, infants} = {passengers} is a
4:1 matching in the above scenario.

To tackle the complex matching problem, we exploit the co-
occurrence patterns to match schemas holistically and thus pursue
a mining approach. Unlike most schema matching work which
matches two schemas at a time, we match all the schemas at the
same time. This holistic view provides the co-occurrence informa-
tion of attributes across many schemas, which reveals the semantics
of complex matchings. (Such co-occurrence information cannot be
observed when schemas are matched only in pairs.) For instance,
we may observe that adults, seniors, children and infants often
co-occur with each other in schemas, while they together do not co-
occur with passengers. This insight enables us to discover com-
plex matchings with a correlation mining approach. In particular,
in our application, we need to handle not only positive correlations,
a traditional focus, but also negative ones, which have rarely been
extensively explored or applied.

By matching many schemas together, this holistic matching nat-
urally discovers a more general type of complex matching – a match-
ing may span across more than two attribute groups. Still consider
the Amy scenario, if she tries a third airline source, priceline.com,
she needs to fill the interface with departure city as city A, ar-
rival city as city B, number of tickets as 2. We thus have the
matching {adults, seniors, children, infants} = {passengers}
= {number of tickets}, which is a 4:1:1 matching. Similarly, we
have two 1:1:1 matchings {from} = {departure city} = {depart}
and {to} = {arrival city} = {destination}. We name this type
of matching n-ary complex matching, which can be viewed as an
aggregation of several binary m:n matchings.

In particular, we develop a new approach, the DCM framework,
to mine n-ary complex matchings. Figure 2 illustrates this min-
ing process: 1) As preprocessing, data preparation (Section 5) pre-
pares “schema transactions” for mining by extracting and cleaning
the attribute entitiesin Web interfaces. 2) As the main focus of
this paper, the correlation mining step (Section 3) discovers n-ary
complex matchings by first finding potential attribute groups using
positive correlations and then potential complex matchings using
negative correlations. Last, matching selection chooses the most
confident and consistent matchings from the mining result. 3) Also,
since pursuing a mining approach, we need to choose appropriate
correlation measures. We discuss this topic in Section 4.

3. COMPLEX MATCHING AS CORRELA-
TION MINING

We view a schema as a transaction, a conventional abstraction in
association and correlation mining. In data mining, a transaction is
a set of items; correspondingly, in schema matching, we consider
a schema as a set of attribute entities. An attribute entity contains
attribute name, type and domain (i.e., instance values). Before min-
ing, the data preparation step (Section 5) finds syntactically similar
entities among schemas. After that, each attribute entity is assigned
a unique attribute identifier. While the mining is over the attribute

entities, for simplicity of illustration, we use the attribute name of
each entity, after cleaning, as the attribute identifier. For instance,
the schema in Figure 1(c) is thus, as a transaction of two attribute
entities, written as {title, author}.

Formally, we consider the schema matching problem as: Given
the input as a set of schemasSI = {S1, ..., Su} in the same do-
main, where each schemaSi is a transaction of attribute identi-
fiers, find all the matchingsM = {M1, ...,Mv}. EachMj is an
n-ary complex matchingGj1 = Gj2 = ... = Gjw , where each
Gjk is an attribute group andGjk ⊆

Su
t=1 Si. Semantically, each

Mj should represent the synonym relationship of attribute groups
Gj1 ,..., Gjw and each Gjk should represent the grouping relation-
ship of attributes inGjk .

Motivated by our observations on the schema data (Section 2),
we develop a correlation mining algorithm, with respect to the above
abstraction (Figure 2). First, group discovery: We mine positively
correlated attributesto form potential attribute groups. A poten-
tial group may not be eventually useful for matching; only the ones
having synonym relationship (i.e., negative correlation) with other
groups can survive. For instance, if all sources use last name,
first name, and not author, then the potential group {last name,
first name} is not useful because there is no matching (to author)
needed. Second, matching discovery: Given the potential groups
(including singleton ones), we mine negatively correlated attribute
groups to form potential n-ary complex matchings. A potential
matching may not be considered as correct due to the existence of
conflicts among matchings. Third, matching selection: To solve the
conflicts, we develop a selection strategy to select the most confi-
dent and consistent matchings from the mining result. Section 3.1
discusses the group and matching discovery and Section 3.2 the
matching selection.

After group discovery, we need to add the discovered groups
into the input schemas SI to mine negative correlations among
groups. (A single attribute is viewed as a group with only one
attribute.) Specifically, an attribute group is added into a schema
if that schema contains any attribute in the group. For instance, if
we discover that last name and first name have grouping relation-
ship, we consider {last name, first name} as an attribute group,
denoted by Glf for simplicity, and add it to any schema contain-
ing either last name or first name, or both. The intuition is that
although a schema may not contain the entire group, it still par-
tially covers the concept that the group denotes and thus should be
counted in matching discovery for that concept. Note that we do
not remove singleton groups {last name} and {first name} when
adding Glf , because Glf is only a potential group and may not
survive in matching discovery.

3.1 Complex Matching Discovery
While group discovery works on individual attributes and match-

ing discovery on attribute groups, they can share the same mining
process. We use the term – items– to represent both attributes and
groups in the following discussion of mining algorithm.

Correlation mining, at the heart, requires a measure to gauge cor-
relation of a set of n items; our observation indicates pairwise cor-
relations among these n items. Specifically, for n groups form-
ing synonyms, any two groups should be negatively correlated,
since they both are synonyms by themselves (e.g., in the match-
ing {destination} = {to} = {arrival city}, negative correlations
exist between any two groups). We have similar observation on the
attributes with grouping relationships. Motivated by such observa-
tions, we design the measure as:

Cmin({A1, ..., An},m) = minm(Ai, Aj),∀i �= j, (1)

where m is some correlation measure for two items (e.g., the mea-
sures surveyed in [20]). That is, we define Cmin as the minimal

150

Research Track Paper

Algorithm: N-ARYSCHEMAMATCHING:
Input: InputSchemas SI = {S1, ..., Su},

Measures mp,mn, Thresholds Tp, Tn

Output: Potential n-ary complex matchings
begin:
1 /* group discovery */
2 G ← APRIORICORRMINING(SI,mp, Tp)
3 /* adding groups into SI */
4 for each Si ∈ SI
5 for each Gk ∈ G
6 if Si ∩Gk �= ∅ then Si ← Si ∪ {Gk}
7 /* matching discovery */
8 M← APRIORICORRMINING(SI,mn, Tn)
9 returnM
end

Algorithm: APRIORICORRMINING:
Input: InputSchemas SI = {S1, ..., Su},

Measures m, Thresholds T
Output: Correlated items
begin:
1 X ← ∅
2 V ← Su

t=1 Si, Si ∈ SI
3 for all Ap, Aq ∈ V, p �= q
4 if m(Ap, Aq) ≥ T then X ← X ∪ {{Ap, Aq}}
5 l ← 2
6 /* Xl: correlated items with length = l */
7 Xl ← X
8 whileXl �= ∅
9 construct Xl+1 from Xl using apriori feature
10 X ← X ∪Xl+1

11 Xl ← Xl+1

12 return X
end

Figure 3: Algorithm N-ARYSCHEMAMATCHING.

value of the pairwise evaluation, thus requiring all pairs to meet
this minimal “strength.”
Cmin has several advantages: First, it satisfies the “apriori” fea-

ture and thus enables the design of an efficient algorithm. In cor-
relation mining, the measure for qualification purpose should have
a desirable “apriori” property (i.e., downward closure), to develop
an efficient algorithm. (In contrast, a measure for ranking purpose
should not have this “apriori” feature, as Section 3.2 will discuss.)
Cmin satisfies the “apriori” feature since given any item set A and
its subset A∗, we have Cmin(A, m) ≤ Cmin(A∗, m) because the
minimum of a larger set (e.g., min({1,3,5})) cannot be higher than
its subset (e.g., min({3,5})). Second, Cmin can incorporate any
measurem for two items and thus can accommodate different tasks
(e.g., mining positive and negative correlations) and be customized
to achieve good mining quality.

Leveraging the “apriori” feature ofCmin, we develop Algorithm
APRIORICORRMINING (Figure 3) for discovering complex match-
ings, in the spirit of the classic Apriori algorithm for association
mining [1]. That is, we find all the correlated items with length
l + 1 based on the ones with length l.

WithCmin, we can directly define positively correlated attributes
in group discovery and negatively correlated attribute groups in
matching discovery. A set of attributes {A1, ..., An} is positively
correlated attributes, denoted by PC, if Cmin({A1, ..., An}, mp)
≥ Tp, where mp is a measure for positive correlation and Tp is
a given threshold. Similarly, a set of attribute groups {G1, ...,
Gm} is negatively correlated attribute groups, denoted by NC, if
Cmin({G1, ..., Gm}, mn) ≥ Tn, where mn is a measure for neg-
ative correlation and Tn is another given threshold.

Algorithm: MATCHINGSELECTION:
Input: Potential complex matchingsM = {M1, ...,Mv},

Measure mn

Output: Selected complex matchings
begin:
1 R ← ∅ /* selected n-ary complex matchings */
2 whileM �= ∅
3 /* select the matching ranked the highest */
4 Mt ← GETMATCHINGRANKFIRST(M,mn)
5 R ← R∪ {Mt}
6 for each Mj ∈M
7 /* remove the conflicting part */
8 Mj ←Mj −Mt

9 /* delete Mj if it contains no matching */
10 if |Mj | < 2 thenM←M− {Mj}
11 returnR
end

Algorithm: GETMATCHINGRANKFIRST:
Input: Potential complex matchingsM = {M1, ...,Mv},

Measure mn

Output: The matching with the highest ranking
begin:
1 Mt ←M1

2 for each Mj ∈M, 2 ≤ j ≤ v
3 if s(Mj ,mn) > s(Mt,mn) then
4 Mt ←Mj

5 if s(Mj ,mn) = s(Mt,mn) and Mj �Mt then
6 Mt ←Mj

7 return Mt

end

Figure 4: Algorithm MATCHINGSELECTION.

Algorithm N-ARYSCHEMAMATCHING shows the pseudo code
of the complex matching discovery (Figure 3). Line 2 (group dis-
covery) calls APRIORICORRMINING to mine PC. Lines 3-6 add
the discovered groups into SI . Line 8 (matching discovery) calls
APRIORICORRMINING to mine NC. Similar to [1], the time com-
plexity of N-ARYSCHEMAMATCHING is exponential with respect
to the number of attributes. But in practice, the execution is quite
fast since correlations exist among semantically related attributes,
which is far less than arbitrary combination of all attributes.

3.2 Complex Matching Selection
Correlation mining can discover true semantic matchings and,

as expected, also false ones due to the existence of coincidental
correlations. For instance, in Books domain, the mining result may
have both {author} = {first name, last name}, denoted by M1

and {subject} = {first name, last name}, denoted by M2. We
can see M1 is correct, while M2 is not. The reason for having
the false matching M2 is that in the schema data, it happens that
subject does not often co-occur with first name and last name.

The existence of false matchings may cause matching conflicts.
For instance, M1 and M2 conflict in that if one of them is cor-
rect, the other one will not. Otherwise, we get a wrong match-
ing {author} = {subject} by the transitivity of synonym relation-
ship. Since our mining algorithm does not discover {author} =
{subject},M1 and M2 cannot be both correct.

Leveraging the conflicts, we select the most confident and con-
sistent matchings to remove the false ones. Intuitively, between
conflicting matchings, we want to select the more negatively cor-
related one because it indicates higher confidence to be real syn-
onyms. For example, our experiment shows that, as M2 is coinci-
dental, it is indeed that mn(M1) > mn(M2), and thus we select
M1 and remove M2. Note that, with larger data size, semantically

151

Research Track Paper

Ap ¬Ap

Aq f11 f10 f1+
¬Aq f01 f00 f0+

f+1 f+0 f++

Figure 5: Contingency table for test of correlation.

correct matching is more possible to be the winner. The reason is
that, with larger size of sampling, the correct matchings are still
negatively correlated while the false ones will remain coincidental
and not as strong.

Before presenting the selection algorithm, we need to develop a
strategy for ranking the discovered matchings. That is, for any n-
ary complex matching Mj : Gj1 = Gj2 = ... = Gjw , we have a
score function s(Mj ,mn) to evaluate Mj under measure mn.

While Section 3.1 discussed a measure for “qualifying” candi-
dates, we now need to develop another “ ranking” measure as the
score function. Since ranking and qualification are different prob-
lems and thus require different properties, we cannot apply the
measure Cmin (Equation 1) for ranking. Specifically, the goal of
qualification is to ensure the correlations passing some threshold. It
is desirable for the measure to support downward closure to enable
an “apriori” algorithm. In contrast, the goal of ranking is to com-
pare the strength of correlations. The downward closure enforces,
by definition, that a larger item set is always less correlated than its
subsets, which is inappropriate for ranking correlations of different
sizes. Hence, we develop another measure Cmax, the maximalmn

value among pairs of groups in a matching, as the score function s.
Formally,

Cmax(Mj ,mn) = maxmn(Gjr , Gjt),∀Gjr , Gjt , jr �= jt. (2)

It is possible to get ties if only considering the Cmax value; we
thus develop a natural strategy for tie breaking. We take a “ top-
k” approach so that s in fact is a set of sorted scores. Specifically,
given matchingsMj andMk, ifCmax(Mj ,mn) =Cmax(Mk,mn),
we further compare their second highestmn values to break the tie.
If the second highest values are also equal, we compare the third
highest ones and so on, until breaking the tie.

If two matchings are still tie after the “ top-k” comparison, we
choose the one with richer semantic information. We consider
matching Mj semantically subsumesmatching Mk, denoted by
Mj � Mk, if all the semantic relationships in Mk are covered
in Mj . For instance, {arrival city} = {destination} = {to} �
{arrival city} = {destination} because the synonym relationship
in the second matching is subsumed in the first one. Also, {author}
= {first name, last name} � {author} = {first name} because
the synonym relationship in the second matching is part of the first.

Combining the score function and the semantic subsumption, we
rank matchings with following rules: 1) If s(Mj ,mn)>s(Mk,mn),
Mj is ranked higher than Mk. 2) If s(Mj ,mn) = s(Mk,mn)
and Mj � Mk, Mj is ranked higher than Mk. 3) Otherwise, we
rank Mj and Mk arbitrarily. Algorithm GETMATCHINGRANK-
FIRST (Figure 4) illustrates the pseudo code of choosing the highest
ranked matching with this strategy.

Algorithm MATCHINGSELECTION shows the selection algorithm.
We apply a greedy selection strategy by choosing the highest ranked
matching,Mt, in each iteration. After choosingMt, we remove the
inconsistent parts in remaining matchings (lines 6 - 10). The final
output is the selected n-ary complex matchings without conflict.
Note that we need to do the ranking in each iteration instead of
sorting all the matchings in the beginning because after removing
the conflicting parts, the ranking may change. The time complex-
ity of Algorithm MATCHINGSELECTION is O(v2), where v is the
number of matchings inM.

Example 1: Assume running N-ARYSCHEMAMATCHING in Books

0

10

20

30

40

50

60

10 20 30 40 50

N
um

be
r

of
 O

bs
er

va
tio

ns

Attributes in Books Domain

Figure 6: Attribute frequencies in Books domain.

domain finds matchings M as (matchings are followed by their
scores):
M1: {author} = {last name, first name}, 0.95
M2: {author} = {last name}, 0.95
M3: {subject} = {category}, 0.92
M4: {author} = {first name}, 0.90
M5: {subject} = {last name, first name} , 0.88
M6: {subject} = {last name}, 0.88 and
M7: {subject} = {first name}, 0.86.
In the first iteration, M1 is ranked the highest and thus selected.

In particular, although s(M1,mn) = s(M2,mn), M1 is ranked
higher since M1 � M2. Now we remove the conflicting parts of
the other matchings. For instance, M2 conflicts with M1 on au-
thor. After removing author, M2 only contains one attribute and
is not a matching any more. So we removeM2 fromM. Similarly,
M4 and M5 are also removed. The remaining matchings are M3,
M6 and M7. In the second iteration, M3 is ranked the highest and
thus also selected. M6 and M7 are removed because they conflict
with M3. Now M is empty and the algorithm stops. The final
output is thus M1 and M3.

4. CORRELATION MEASURE
In this section, we discuss the positive measuremp and the nega-

tive measure mn, used as the component of Cmin (Equation 1) for
positive and negative correlation mining respectively in Algorithm
N-ARYSCHEMAMATCHING (Section 3).

As discussed in [20], a correlation measure by definition is a test-
ing on the contingency table. Specifically, given a set of schemas
and two specified attributes Ap and Aq, there are four possible
combinations of Ap and Aq in one schema Si: Ap, Aq are co-
present in Si, only Ap presents in Si, only Aq presents in Si, and
Ap, Aq are co-absent in Si. The contingency table[5] of Ap and
Aq contains the number of occurrences of each situation, as Fig-
ure 5 shows. In particular, f11 corresponds to the number of co-
presence ofAp andAq; f10, f01 and f00 are denoted similarly. f+1

is the sum of f11 and f01; f+0, f0+ and f1+ are denoted similarly.
f++ is the sum of f11, f10, f01 and f00.

The design of a correlation measure is often empirical. To our
knowledge, there is no good correlation measure universally agreed
upon [20]. For our matching task, in principle anymeasure can be
applied. However, since the semantic correctness of the mining re-
sult is of special importance for the schema matching task, we care
more the ability of the measures on differentiating various corre-
lation situations, especially the subtlety of negative correlations,
which has not been extensively studied before.

We first identify the quality requirements of measures, which
are imperative for schema matching, based on the characteristics
of Web query interfaces. Specifically, we observe that, in Web in-
terfaces, attribute frequencies are extremely non-uniform, similar
to the use of English words, showing some Zipf-like distribution.
For instance, Figure 6 shows the attribute frequencies in Books do-
main: First, the non-frequent attributes results in the sparseness of
the schema data (e.g., there are over 50 attributes in Books domain,
but each schema only has 5 in average). Second, many attributes are

152

Research Track Paper

Ap ¬Ap

Aq 5 5 10
¬Aq 5 85 90

10 90 100

Ap ¬Ap

Aq 1 49 50
¬Aq 1 1 2

2 50 52

Ap ¬Ap

Aq 81 9 90
¬Aq 9 1 10

90 10 100
(a1) Example of sparseness problem (b1) Example of rare attribute problem (c1) Example of frequent attribute problem

with measure Lift: with measure Jaccard: with measure Jaccard:
Less positive correlation Ap as rare attribute Ap and Aq are independent

but a higher Lift = 17. and Jaccard= 0.02. but a higher Jaccard= 0.82.
Ap ¬Ap

Aq 55 20 75
¬Aq 20 5 25

75 25 100

Ap ¬Ap

Aq 1 25 26
¬Aq 25 1 26

26 26 52

Ap ¬Ap

Aq 8 1 9
¬Aq 1 90 91

9 91 100
(a2) Example of sparseness problem (b2) Example of rare attribute problem (c2) Example of frequent attribute problem

with measure Lift: with measure Jaccard: with measure Jaccard:
More positive correlation no rare attribute Ap and Aq are positively correlated
but a lower Lift = 0.69. and Jaccard= 0.02. but a lower Jaccard= 0.8.

Figure 7: Examples of the three problems.

rarely used, occurring only once in the schemas. Third, there exist
some highly frequent attributes, occurring in almost every schema.

These three observations indicate that, as the quality require-
ments, the chosen measures should be robust against the follow-
ing problems: sparseness problemfor both positive and negative
correlations, rare attribute problemfor negative correlations, and
frequent attribute problemfor positive correlations. In this section,
we discuss each of them in details.

The Sparseness Problem

In schema matching, it is more interesting to measure whether
attributes are often co-present (i.e., f11) or cross-present (i.e., f10
and f01) than whether they are co-absent (i.e., f00). Many correla-
tion measures, such as χ2 and Lift, include the count of co-absence
in their formulas. This may not be good for our matching task, be-
cause the sparseness of schema data may “exaggerate” the effect of
co-absence. This problem has also been noticed by recent correla-
tion mining work such as [20, 16, 14]. In [20], the authors use the
null invarianceproperty to evaluate whether a measure is sensitive
to co-absence. The measures for our matching task should satisfy
this null invariance property.
Example 2: Figure 7(a) illustrates the sparseness problem with an
example. In this example, we choose a common measure: the Lift
(i.e, Lift = f00f11

f10f01
). (Other measures considering f00 have simi-

lar behavior.) The value of Lift is between 0 to +∞. Lift = 1
means independent attributes, Lift > 1 positive correlation and
Lift < 1 negative correlation. Figure 7(a) shows that Lift may
give a higher value to less positively correlated attributes. In the
scenario of schema matching, the table in Figure 7(a2) should be
more positively correlated than the one in Figure 7(a1) because in
Figure 7(a2), the co-presence (f11) is more frequently observed
than the cross-presence (either f10 or f01), while in Figure 7(a1),
the co-presence has the same number of observations as the cross-
presence. However, Lift cannot reflect such preference. In partic-
ular, Figure 7(a1) gets a much higher Lift and Figure 7(a2) is even
evaluated as not positively correlated. Similar example can also be
found for negative correlation with Lift. The reason Lift gives an
inappropriate answer is that f00 incorrectly affects the result.

We explored the 21 measures in [20] and the χ2 measure in [4].
Most of these measures (including χ2 and Lift) suffer the sparse-
ness problem. That is, they consider both co-presence and co-
absence in the evaluation and thus do not satisfy the null invariance
property. The only three measures supporting the null invariance
property are Confidence, Jaccardand Cosine.

The Rare Attribute Problem for Negative Correlation

Although Confidence, Jaccardand Cosinesatisfy the null invari-
ance property, they are not robust for the rare attribute problem,

when considering negative correlations. Specifically, the rare at-
tribute problem can be stated as when either Ap or Aq is rarely
observed, the measure should not consider Ap and Aq as highly
negatively correlated because the number of observations is not
convincing to make such judgement. For instance, consider the Jac-
card (i.e., Jaccard= f11

f11+f10+f01
) measure, it will stay unchanged

when both f11 and f10 + f01 are fixed. Therefore, to some de-
gree, Jaccardcannot differentiate the subtlety of correlations (e.g.,
f10 = 49, f01 = 1 and f10 = 25, f01 = 25), as Example 3 illus-
trates. Other measures such as Confidenceand Cosinehave similar
problem. This problem is not critical for positive correlation, since
attributes with strong positive correlations cannot be rare.

Example 3: Figure 7(b) illustrates the rare attribute problem. In
this example, we choose a common measure: the Jaccard. The
value of Jaccardis between 0 to 1. Jaccardclose to 0 means neg-
ative correlation and Jaccardclose to 1 positive correlation. Fig-
ure 7(b) shows that Jaccardmay not be able to distinguish the situa-
tions of rare attribute. In particular, Jaccard considers the situations
in Figure 7(b1) and Figure 7(b2) as the same. But Figure 7(b2) is
more negatively correlated than Figure 7(b1) because Ap in Fig-
ure 7(b1) is more like a rare event than true negative correlation.

To differentiate the subtlety of negative correlations, we develop
a new measure, H-measure (Equation 3), as the negative correla-
tion mn. The value of H is in the range from 0 to 1. An H value
close to 0 denotes a high degree of positive correlation; anH value
close to 1 denotes a high degree of negative correlation.

mn(Ap, Aq) = H(Ap, Aq) =
f01f10
f+1f1+

. (3)

H-measure satisfied the quality requirements: On one hand, sim-
ilar to Jaccard, Cosineand Confidence, H-measure satisfies the
null invariance property and thus avoids the sparseness problem by
ignoring f00. On the other hand, by multiplying individual effect
of f01 (i.e., f01

f+1
) and f10 (i.e., f10

f1+
),H-measure is more capable of

reflecting subtle variation of negative correlations.

The Frequent Attribute Problem for Positive Correlation

For positive correlations, we find that Confidence, Jaccard, Co-
sineand H-measure are not quite different in discovering attribute
groups. However, all of them suffer the frequent attribute prob-
lem. This problem seems to be essential for these measures: Al-
though they avoid the sparseness problem by ignoring f00, as the
cost, they lose the ability to differentiate highly frequent attributes
from really correlated ones. Specifically, highly frequent attributes
may co-occur in most schemas just because they are so frequently
used, not because they have grouping relationship (e.g., In Books
domain, isbn and title are often co-present because they are both

153

Research Track Paper

very frequently used). This phenomenon may generate uninterest-
ing groups (i.e., false positives) in group discovery.

Example 4: Figure 7(c) illustrates the frequent attribute problem
with an example, where we still use Jaccardas the measure. Fig-
ure 7(c) shows that Jaccardmay give a higher value to independent
attributes. In Figure 7(c1), Ap and Aq are independent and both
of them have the probabilities 0.9 to be observed; while, in Fig-
ure 7(c2), Ap and Aq are really positively correlated. However,
Jaccardconsiders Figure 7(c1) as more positively correlated than
Figure 7(c2). In our matching task, a measure should not give a
high value for frequently observed but independent attributes.

The characteristic of false groupings is that the f11 value is very
high (since both attributes are frequent). Based on this characteris-
tic, we add another measure f11

f++
inmp to filter out false groupings.

Specifically, we define the positive correlation measure mp as:

mp(Ap, Aq) =

�
1−H(Ap, Aq),

f11
f++

< Td

0, otherwise,
(4)

where Td is a threshold to filter out false groupings. To be consis-
tent with mn, we also use the H-measure in mp.

5. DATA PREPARATION
The query schemas in Web interfaces are not readily minable

in HTML format; as preprocessing, data preparation is essential
to prepare “schema transactions” for mining. As shown in Fig-
ure 2, data preparation consists of: 1) form extraction– extracting
attribute entities from query interfaces in Web pages, 2) type recog-
nition – recognizing the types of the attribute entities from domain
values, and 3) syntactic merging– syntactically merging these at-
tribute entities.

Form extraction reads a Web page with query forms and extracts
the attribute entities containing attribute names and domains. For
instance, the attribute about title in Figure 1(c) is extracted as 〈name
= “ title of book” , domain = any〉, where “domain = any” means any
value is possible. This task is itself a challenging and independent
problem. We solved this problem by a parsing approach with the
hypothesis of the existence of hidden syntax [21]. Note that there
is no data cleaning in this step and thus the attribute names and
domains are raw data.

After extracting the forms, we perform some standard normal-
ization on the extracted names and domains. We first stem attribute
names and domain values using the standard Porter stemming al-
gorithm [17]. Next, we normalize irregular nouns and verbs (e.g.,
“children” to “child,” “ colour” to “color”). Last, we remove com-
mon stop words by a manually built stop word list, which contains
words common in English, in Web search (e.g., “ search” , “page”),
and in the respective domain of interest (e.g., “book” , “movie”).

We then perform type recognition to identify attribute types. As
Section 5.1 discusses, type information helps to identify homonyms
(i.e., two attributes may have the same name but different types)
and constrain syntactic merging and correlation-based matching
(i.e., only attributes with compatible types can be merged or matched).
Since the type information is not declared in Web interfaces, we de-
velop a type recognizerto recognize types from domain values.

Finally, we merge attribute entities by measuring the syntactic
similarity of attribute names and domain values (e.g., we merge
“ title of book” to “ title” by name similarity). It is a common data
cleaning technique to merge syntactically similar entities by ex-
ploring linguistic similarities. Section 5.2 discusses our merging
strategy.

5.1 Type Recognition
While attribute names can distinguish different attribute entities,

the names alone sometimes lead to the problem of homonyms (i.e.,

any

string integer

float

month day time

date

datetime

Figure 8: The compatibility of types.

the same name with different meanings) – we address this problem
by distinguishing entities by both names and types. For instance,
the attribute name departing in the Airfares domain may have two
meanings: a datetime type as departing date, or a string type as
departing city. With type recognition, we can recognize that there
are two different types of departing: departing (datetime) and
departing (string), which indicate two attribute entities.

In general, type information, as a constraint, can help the sub-
sequent steps of syntactic merging and correlation-based match-
ing. In particular, if the types of two attributes are not compatible,
we consider they denote different attribute entities and thus neither
merge them nor match them.

Since type information is not explicitly declared in Web inter-
faces, we develop a type recognizerto recognize types from domain
values of attribute entities. For example, a list of integer values de-
notes an integer type. In the current implementation, type recogni-
tion supports the following types: any, string, integer, float, month,
day, date, time and datetime. (An attribute with only an input box is
given an any type since the input box can accept data with different
types such as string or integer.) Two types are compatibleif one can
subsume another (i.e., the is-a relationship). For instance, date and
datetime are compatible since date subsumes datetime. Figure 8
lists the compatibility of all the types in our implementation.

5.2 Syntactic Merging
We clean the schemas by merging syntactically similar attribute

entities, a common data cleaning technique to identify unique enti-
ties [8]. Specifically, we develop name-based mergingand domain-
based mergingby measuring the syntactic similarity of attribute
names and domains respectively. Syntactic merging increases the
observations of attribute entities, which can improve the effect of
correlation evaluation.

Name-based Merging: We merge two attribute entities if they
are similar in names. We observe that the majority of deep Web
sources are consistent on some concise “core” attribute names (e.g.,
“ title”) and others are variation of the core ones (e.g., “ title of
book”). Therefore, we consider attribute Ap is name-similarto
attribute Aq if Ap’s name ⊇ Aq ’s name (i.e., Ap is a variation of
Aq) and Aq is more frequently used than Ap (i.e.,Aq is the major-
ity). This frequency-based strategy helps avoid false positives. For
instance, in Books domain, last name is not merged to name be-
cause last name is more popular than name and thus we consider
them as different entities.

Domain-based Merging: We then merge two attribute entities
if they are similar in domain values. In particular, we only consider
attributes with string types, since it is unclear how useful it is to
measure the domain similarity of other types. For instance, in Air-
fares domain, the integer values of passengers and connections
are quite similar, although they denote different meanings.

We view domain values as a bag of words (i.e., counting the
word frequencies). We name such a bag aggregate values, denoted
as VA for attribute A. Given a word w, we denote VA(w) as the
frequency of w in VA. The domain similarity of attributes Ap and
Aq is thus the similarity of VAp and VAq . In principle, any reason-
able similarity function is applicable here. In particular, we choose

sim(Ap, Aq) =
∀w∈VAp∩VAq ,VAp (w)+VAq (w)

∀w∈VAp∪VAq ,VAp (w)+VAq (w)
.

154

Research Track Paper

The above three steps, form extraction, type recognition and syn-
tactic merging, clean the schema data as transactions to be mined.
More detailed discussion about these data cleaning steps can be
found at the extended report [11].

6. EXPERIMENTS
We choose two datasets, TEL-8 dataset and BAMM dataset, of

the UIUC Web integration repository [7] as the testbed of the DCM
framework. The TEL-8 dataset contains raw Web pages over 447
deep Web sources in 8 popular domains. Each domain has about
20-70 sources. The BAMM dataset contains manually extracted
attribute names over 211 sources in 4 domains (with around 50
sources per domain), which was first used by [10].

In the experiment, we assume a perfect form extractor to extract
all the interfaces in the TEL-8 dataset into query capabilities by
manually doing the form extraction step. The reason we do not
apply the work in [21] is that we want to isolate the mining process
to study and thus fairly evaluate the matching performance. After
extracting the raw data, we do the data cleaning according to the
process explained in Section 5. Then, we run the correlation mining
algorithm on the prepared data in each domain. Also, in the results,
we use attribute name and type together as the attribute identifier
for an attribute entity since we incorporate type recognition in data
preparation to identify homonyms (Section 5).

To evaluate the matching performance and the H-measure, we
extensively test the DCM framework on the two datasets. First,
we test our approach on the TEL-8 dataset and the result shows
good target accuracy. Second, we compare the DCM framework
with the MGS framework [10], which also matches Web inter-
faces by a statistical approach, on its BAMM dataset. The result
shows that DCM is empirically close to MGS in discovering simple
matchings and further DCM can find complex matchings, which is
not supported by MGS. Third, we compare the H-measure with
other measures on the TEL-8 dataset and the result shows that H-
measure outperforms the others in most cases.

6.1 Metrics
We compare experimentally discovered matchings, denoted by
Mh, with correct matchings written by human experts, denoted by
Mc. In particular, we adopt the target accuracy, a metric initially
developed in [10], by customizing the target questionsto the com-
plex matching scenario. The idea of the target accuracy is to mea-
sure how accurately that the discovered matchings answer the target
questions. Specifically, for our complex matching task, we consider
the target question as, given any attribute, to find its synonyms (i.e.,
word with exactly the same meaning as another word, e.g., subject
is a synonym of category in Books domain), hyponyms (i.e., word
of more specific meaning, e.g., last name is a hyponym of author)
and hypernyms (i.e., word with a broader meaning, e.g, author is a
hypernym of last name).

It is quite complicated to use different measures for different
semantic relationships, we therefore report an aggregate measure
for simplicity and, at the same time, still reflecting semantic dif-
ferences. For our discussion here, we name synonym, hyponym
and hypernym together as closenym– meaning that they all denote
some degrees of closeness in semantic meanings. Our target ques-
tion now is to ask the set of closenyms of a given attribute.

Example 5: For instance, for matching {A} = {B, C}, the closenym
sets of attributes A, B, C are {B, C}, {A}, {A} respectively. In par-
ticular, the closenym sets of B does not have C since B and C only
have grouping relationship. In contrast, for matching {A} = {B} =
{C}, the closenym sets of attributes A, B, C are {B, C}, {A, C},
{A, C} respectively. We can see that the difference of matchings
can be reflected in the corresponding closenym sets.

Except this difference in target question, we use the same met-
ric of target accuracy as [10]. Specifically, we assume a “random
querier” to ask for closenym set of each attribute according to the
its frequency. The answer to each question is closenym set of the
queried attribute in discovered matchings. We define Cls(Aj |M)
as the closenym set of attribute Aj . GivenMc andMh, the preci-
sion and recall of the closenym sets of attribute Aj are:

PAj (Mh,Mc) =
|Cls(Aj |Mc)∩Cls(Aj |Mh)|

|Cls(Aj |Mh)| and

RAj (Mh,Mc) =
|Cls(Aj |Mc)∩Cls(Aj |Mh)|

|Cls(Aj |Mc)| .

Since more frequently used attributes have higher probabilities
to be asked in this “ random querier,” we compute the weighted av-
erage of all the PAj ’s and RAj ’s as the target precisionand target

recall. The weight is assigned as
OjP
Ok

, where Oj is the frequency
of attribute Aj in the dataset (i.e., its number of occurrences in dif-
ferent schemas). Therefore, target precisionand target recall of
Mh with respect toMc are:

PT (Mh,Mc) =
P

Aj

OjP
Ok
PAj (Mh,Mc)

RT (Mh,Mc) =
P

Aj

OjP
Ok
RAj (Mh,Mc).

6.2 Experimental Results
To illustrate the effectiveness of the mining approach, we only

list and count the “semantically difficult” matchings discovered
by the correlation mining algorithm, not the simple matchings by
the syntactic merging in the data preparation (e.g., {title of book}
to {title}). Our experiment shows that many frequently observed
matchings are in fact “semantically difficult” and thus cannot be
found by syntactic merging.

Result on the TEL-8 Dataset: In this experiment, we run our al-
gorithm (withH-measure as the correlation measure) on the TEL-8
dataset. We set the thresholds Tp to 0.85 and Td to 0.6 for positive
correlation mining and Tn to 0.75 for negative correlation mining.
We empirically get these numbers by testing the algorithm with var-
ious thresholds and choose the best one. As Section 8 will discuss,
more systematic study can be investigated in choosing appropriate
threshold values.

Figure 9 illustrates the detailed results of n-ary complex match-
ings discovered in Books domain. The step of group discovery
found 5 likely groups (G1 to G5 in Figure 9). In particular, mp

gives a high value (actually the highest value) for the group of last
name (any) and first name (any). The matching discovery found 6
likely complex matching (M1 to M6 in Figure 9). We can see that
M1 and M3 are fully correct matchings, while others are partially
correct or incorrect. Last, the matching selection will choose M1

and M3 (i.e., the correct ones) as the final output.
Figure 10 shows the results on Airfares and Movies. (The results

of other domains can be found at the extended report [11]). The
third column denotes the correctness of the matching. In partic-
ular, Y means a fully correct matching, P a partially correct one
and N an incorrect one. Our mining algorithm does find inter-
esting matchings in almost every domain. For instance, in Air-
fares domain, we find 5 fully correct matchings, e.g., {destination
(string)} = {to (string)} = {arrival city (string)}. Also, {passenger
(integer)} = {adult (integer), child (integer), infant (integer)} is
partially correct because it misses senior (integer).

Since, as a statistical method, our approach replies on “sufficient
observations” of attribute occurrences, it is likely to perform more
favorably for frequent attributes (i.e., the head-ranked attributes in
Figure 6). To quantify this “observation” factor, we report the target
accuracy with respect to the attribute frequencies. In particular, we
consider the attributes above a frequency thresholdT (i.e., the num-
ber of occurrences of the attribute over the total number of schemas

155

Research Track Paper

Step Value of Result Cmin Cmax

group G G1 = {last name (unknown), first name (any)} 0.94
discovery G2 = {title (any), keyword (any)} 0.93

G3 = {last name (any), title (any)} 0.91
G4 = {first name (any), catalog (any)} 0.90
G5 = {first name (any), keyword (any)} 0.87

matching M M1: {author (any)} = {last name (any), first name (any)} 0.87 0.87
discovery M2: {author (any)} = {last name (any)} 0.87 0.87

M3: {subject (string)} = {category (string)} 0.83 0.83
M4: {author (any)} = {last name (any), catalog (any)} 0.82 0.82
M5: {author (any)} = {first name (any)} 0.82 0.82
M6: {category (string)} = {publisher (string)} 0.76 0.76

matching R R1: {author (any)} = {last name (any), first name (any)} 0.87
selection R2: {subject (string)} = {category (string)} 0.83

Figure 9: Running Algorithms N-ARYSCHEMAMATCHING and MATCHINGSELECTION on Books domain.

Domain Final Output After Matching Selection Correct?
Airfares {destination (string)} = {to (string)} = {arrival city (string)} Y

{departure date (datetime)} = {depart (datetime)} Y
{passenger (integer)} = {adult (integer), child (integer), infant (integer)} P
{from (string), to (string)} = {departure city (string), arrival city (string)} Y
{from (string)} = {depart (string)} Y
{return date (datetime)} = {return (datetime)} Y

Movies {artist (any)} = {actor (any)} = {star (any)} Y
{genre (string)} = {category (string)} Y
{cast & crew (any)} = {actor (any), director (any)} Y

Figure 10: Experimental results for Airfares and Movies.

Domain PT RT PT RT

(20%) (20%) (10%) (10%)
Books 1 1 1 1
Airfares 1 1 1 0.71
Movies 1 1 1 1
MusicRecords 1 1 0.76 1
Hotels 0.86 1 0.86 0.87
CarRentals 0.72 1 0.72 0.60
Jobs 1 0.86 0.78 0.87
Automobiles 1 1 0.93 1

Figure 11: Target accuracy of 8 domains.

is above T) in both discovered matchings and correct matchings to
measure the target accuracy. Specifically, we run the algorithms on
all the attributes and then report the target accuracy in terms of the
frequency-divided attributes. In the experiment, we choose T as
20% and 10%.

Consider the Airfares domain, if we only consider the attributes
above 20% frequency in the matching result, only 12 attributes
are above that threshold. The discovered matchings in Figure 10
become {destination (string)} = {to (string)}, {departure date
(datetime)} = {depart (datetime)}, and {return date (datetime) =
return (datetime)}. (The other attributes are removed since they
are all below 20% frequency.) These three matchings are exactly
the correct matchings the human expert can recognize among the
12 attributes and thus we get 1.0 in both target precision and recall.

Next, we apply the 10% frequency threshold and get 22 attributes.
The discovered matchings in Figure 10 are unchanged since all the
attributes (in the matchings) are now passing the threshold. Com-
pared with the correct matchings among the 22 attributes, we do
miss some matchings such as {cabin (string)} = {class (string)}
and {departure (datetime) = departure date (datetime)}. Also,
some matchings are partially correct such as {passenger (inte-
ger)} = {adult (integer), child (integer), infant (integer)}. Hence,
we get 1.0 in target precision and 0.71 in target recall.

Figure 11 lists the target accuracies of the 8 domains under thresh-
olds 20% and 10%. From the result, we can see that our approach
does perform better for frequent attributes.

Result on the BAMM Dataset: We test the DCM framework on
the BAMM dataset used in [10]; the result shows that DCM is em-

Domain PT (H) RT (H) PT (ζ) RT (ζ)
(10%) (10%) (10%) (10%)

Books 1 1 0.80 1
Airfares 1 0.71 0.79 0.61
Movies 1 1 0.93 1
MusicRecords 0.76 1 0.76 1
Hotels 0.86 0.87 0.44 0.95
CarRentals 0.72 0.60 0.68 0.62
Jobs 0.78 0.87 0.64 0.87
Automobiles 0.93 1 0.78 1
Figure 12: Comparison of H-measure and Jaccard.

pirically close to the MGS framework in [10] on discovering sim-
ple 1:1 matchings and further we can find complex matchings that
MGS cannot. Since the BAMM dataset only contains manually ex-
tracted attribute names, we skip the data preparation step in this ex-
periment. The result shows that we can discover almost all the sim-
ple 1:1 matchings found by MGS. In particular, we find {subject}
= {category} in Books, {style} = {type} = {category} in Auto-
mobiles, {actor} = {artist} and {genre}= {category} in Movies,
and {album} = {title} and {band} = {artist} in MusicRecords.
Further, DCM can find the complex matchings {author} = {last
name, first name} in Books, while MGS can only find either
{author} = {last name} or {author} = {first name}.
Evaluating the H-Measure: We compare the H-measure with
other measures and the result shows thatH-measure gets better tar-
get accuracy. As an example, we choose Jaccard(ζ) as the measure
we compare to. With Jaccard, we define the mp and mn as

mp(Ap, Aq) =

�
ζ(Ap, Aq),

f11
f++

< Td

0, otherwise,

and
mn(Ap, Aq) = 1− ζ(Ap, Aq).

We set the Tp and Tn for this Jaccard-based mp and mn as
0.5 and 0.9 respectively. We compare the target accuracy of H-
measure and Jaccardin the situation of 10% frequency threshold.
The result (Figure 12) shows thatH-measure is better in both target
precision and target recall in most cases. Similar comparisons show
that H-measure is also better than other measures such as Cosine
and Confidence.

156

Research Track Paper

7. RELATED WORK
Schema matching is important for schema integration [2, 19] and

thus has got great attention. However, existing schema matching
works mostly focus on simple 1:1 matching [18, 9, 15] between
two schemas. Complex matching has not been extensively studied,
mainly due to the much more complex search space of exploring all
possible combinations of attributes. Consider two schemas with u
and v attributes respectively, while there are only u×v potential 1:1
matchings, the number of possible m:n matchings is exponential.
Also, it is still unclear that how to compare the similarity between
two groups of attributes. In contrast, this paper proposes to dis-
cover complex matchings by holistically matching all the schemas
together. Specifically, we explore the co-occurrencesinformation
across schemas and develop a correlation miningapproach.

Unlike previous correlation mining algorithms, which mainly fo-
cus on finding strong positive correlations [1, 20, 16, 14, 4], our
algorithm cares both positive and negative correlations. In particu-
lar, as a new application for correlation mining, the correctness of
schema matching mainly depends on the subtlety of negative cor-
relations. We thus study the rare attribute problem and develop the
H-measure, which empirically outperforms existing ones on eval-
uating negative correlations.

Our previous schema matching work, the MGS framework [10],
also matches Web interfaces by exploiting holistic information. Al-
though built upon the same insight, DCM is different from MGS
in: 1) abstraction: DCM abstracts schema matching as correlation
mining, while MGS as hidden model discovery by applying sta-
tistical hypothesis testing. The difference in abstraction leads to
fundamentally different approaches. 2) expressiveness: DCM finds
m:n matchings, while MGS currently finds 1:1 matchings and it is
unclear that how it can be extended to support m:n matchings.

8. CONCLUDING DISCUSSION
In our development of the mining-based matching approach, we

also observed several further opportunities and open issues that
warrant more investigation. First, it is interesting to know whether
our observation and approach can cross the domain boundary. Specif-
ically, given a set of Web interfaces across different domains, we
hope to know whether there still are interesting patterns that reveal
some semantic relationships among attributes, as we have observed
for sources in one domain.

Second, more systematic study can be investigated for choosing
appropriate correlation measures and threshold values. In this pa-
per, we choose the H-measure based on the observations of the
data and the threshold values according to the empirical experi-
ments. We expect a more formal and systematic study to help the
design of measures and the evaluation of threshold values.

Third, to validate and refine the matching results, we may send
some trial probings through Web interfaces. For instance, given two
online movie sources, one using actor and the other using star, we
can send some sample queries on these two sources with same val-
ues on actor and star. If they often return overlapping results, we
consider the matching {actor} = {star} is correct. However, this
probing brings new challenges to solve. In particular, for complex
matchings (e.g.,{author} = {last name, first name}), schema
composition has to be done before probing, which is itself a dif-
ficult problem. Also, it is unclear that how to automatically collect
sample queries for each domain. Last, with current techniques, it is
difficult to accurately compare the query results in Web pages.

In summary, this paper explores co-occurrence patterns among
attribute to tackle the complex matching problem. This exploration
is well suited for the integration of large-scale heterogenous data
sources, such as the deep Web. Specifically, we abstract complex
matching as correlation mining and develop the DCM framework.

Further, we propose a new correlation measure, H-measure, for
mining negative correlations. Our experiments validate the effec-
tiveness of both the mining approach and theH-measure.

9. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association

rules between sets of items in large databases. In SIGMOD
Conference, 1993.

[2] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis
of methodologies for database schema integration. ACM Computing
Surveys, 18(4):323–364, 1986.

[3] M. K. Bergman. The deep web: Surfacing hidden value. Technical
report, BrightPlanet LLC, Dec. 2000.

[4] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets:
generalizing association rules to correlations. In SIGMOD
Conference, 1997.

[5] H. D. Brunk. An Introduction to Mathematical Statistics. New York,
Blaisdell Pub. Co., 1965.

[6] K. C.-C. Chang, B. He, C. Li, and Z. Zhang. Structured databases on
the web: Observations and implications. Technical Report
UIUCDCS-R-2003-2321, Department of Computer Science, UIUC,
Feb. 2003.

[7] K. C.-C. Chang, B. He, C. Li, and Z. Zhang. The UIUC web
integration repository. Computer Science Department, University of
Illinois at Urbana-Champaign.
http://metaquerier.cs.uiuc.edu/repository, 2003.

[8] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and
efficient fuzzy match for online data cleaning. In SIGMOD
Conference, 2003.

[9] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of
disparate data sources: A machine-learning approach. In SIGMOD
Conference, 2001.

[10] B. He and K. C.-C. Chang. Statistical schema matching across web
query interfaces. In SIGMOD Conference, 2003.

[11] B. He, K. C.-C. Chang, and J. Han. Automatic complex schema
matching across web query interfaces: A correlation mining
approach. Technical Report UIUCDCS-R-2003-2388, Dept. of
Computer Science, UIUC, July 2003.

[12] B. He, T. Tao, and K. C.-C. Chang. Clustering structured web
sources: A schema-based, model-differentiation approach. In
EDBT’04 ClustWeb Workshop, 2004.

[13] P. G. Ipeirotis, L. Gravano, and M. Sahami. Probe, count, and
classify: Categorizing hidden web databases. In SIGMOD
Conference, 2001.

[14] Y.-K. Lee, W.-Y. Kim, Y. D. Cai, and J. Han. Comine: Efficient
mining of correlated patterns. In Proc. 2003 Int. Conf. Data Mining,
Nov. 2003.

[15] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema
matching with cupid. In Proceedings of the 27th VLDB Conference,
pages 49–58, 2001.

[16] E. Omiecinski. Alternative interest measures for mining associations.
IEEE Trans. Knowledge and Data Engineering, 15:57–69, 2003.

[17] M. Porter. The porter stemming algorithm. Accessible at
http://www.tartarus.org/˜martin/PorterStemmer.

[18] E. Rahm and P. A. Bernstein. A survey of approaches to automatic
schema matching. VLDB Journal, 10(4):334–350, 2001.

[19] L. Seligman, A. Rosenthal, P. Lehner, and A. Smith. Data
integration: Where does the time go? Bulletin of the Tech.
Committee on Data Engr., 25(3), 2002.

[20] P. Tan, V. Kumar, and J. Srivastava. Selecting the right
interestingness measure for association patterns. In ACM SIGKDD
Conference, July 2002.

[21] Z. Zhang, B. He, and K. C.-C. Chang. Understanding web query
interfaces: Best effort parsing with hidden syntax. In SIGMOD
Conference, 2004.

157

Research Track Paper

