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Abstract

Designing realistic multi-agent systems is a complex process, which involves specifying not only the
functionality of individual agents, but also the authority relationships and lines of communication
existing among them. In other words, designing a multi-agent system refers to designing an agent
organisation. Existing methodologies follow a wide variety of approaches to designing agent
organisations, but they do not provide adequate support for the decisions involved in moving from
analysis to design. Instead, they require designers to make ad hoc design decisions while working at
a low level of abstraction.

We have developed RAMASD (Role Algebraic Multi-Agent System Design), a method for semi-
automatic design of agent organisations based on the concept of role models as first-class design
constructs. Role models represent agent behaviour, and the design of the agent system is done by
systematically allocating roles to agents. The core of this method is a formal model of basic relations
between roles, which we call role algebra. The semantics of this role-relationships model are formally
defined using a two-sorted algebra.

In this paper, we review existing agent system design methodologies to highlight areas where further
work is required, describe how our method can address some of the outstanding issues and demonstrate
its application to a case study involving telephone repair service teams.

1 Introduction

Intelligent agents have a generally accepted property of autonomy, yet we commonly perceive them as
operating together with other agents within a system, which we refer to as a multi-agent system or an
agent organisation (Gasser, 2001). Agent organisations have properties, norms and authority
relationship structures which transcend individual agents and help them coordinate their actions,
regardless of whether the agents are collaborating to achieve a common goal, or acting as competitors,
for example when bidding at auctions. The set of properties, norms and structures form the
organisational setting, which contains lines of communication, lines of authority, rules and patterns of
interaction and descriptions of expected behaviour. The agent organisation provides the coordination
framework within which individual agents operate (Ferber & Gutknecht, 1998; So & Durfee, 1998;
Wooldridge et al., 2000).
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Creating an agent organisation is a complex process, and the correct choices at each stage of this
process cannot be easily prescribed due to the sheer number of factors which influence such choices
in a non-trivial and dynamic manner. This also means that a standard optimal organisation for all
circumstances cannot be created (Scott, 1992; So & Durfee, 1998). As a result, most methodologies
for engineering multi-agent systems have left the rules for designing agent organisations vague and
informal, relying on the creativity and the intuition of the human designer. This, however, can be a
serious drawback when designing large and complex real-world agent systems because the scale of the
problem creates numerous possibilities for inconsistent decisions, especially when designers work in
teams (Grundy, 2000).

One way to counteract the complexity involved in designing agent organisations is to allow agent-
system designers to work at a high abstraction level (Kendall, 1999a; Omicini, 2000) by considering
both functional and organisational abstractions as first-class design constructs. This also opens up the
possibility of reusing domain analysis knowledge during design. Indeed, given appropriate formally
defined semantics of these constructs, it becomes feasible to support designers by automatically
generating solutions which conform to the constraints and organisational relationships defined during
analysis.

These ideas are in the core of RAMASD (Role Algebraic Multi-Agent System Design), our method
for high-level design of agent organisations, described in this paper. We focus on the concept of role
as “prototypical type of behaviour” (Gasser, 2001), which members of the organisation commit to,
expect from others and instantiate by their actions within the organisation. Roles and their interactions
in a particular context form role models. Our method uses roles and role models as basic building
blocks when designing agent organisations, and formalises a basic set of role relations which concern
the composition of roles and their allocation to agents. This enables the creation of a tool which can
support the designer of agent organisations in the following manner: (a) the designer specifies (or
reuses) a set of role models applicable to the problem at hand, where each model contains formalised
rules and constraints regarding the ways roles can be assigned to agents; and (b) the tool automatically
designs an agent organisation by allocating roles to agents in a manner consistent with these rules. The
designer then can accept this design or he can modify the role specification and request an alternative
design solution to be produced. To test the method, we have created such a tool – an experimental
version of the Zeus agent building toolkit. The original toolkit is described in Nwana et al. (1999).

This paper presents our method in the context of existing methodologies for engineering agent
organisations. The review of current methodologies is presented in the next section. Section 3 then
contains an overview of role modelling, which underpins our semi-automatic method for agent
organisation design. In Section 4 we present the role algebra, a formal model of role relations which
is the main enabler of our approach. We define its semantics using a two-sorted algebra. The overall
method of semi-automatic design of agent organisations is then presented in Section 5. The use of the
role algebra to design an agent organisation is illustrated in Section 6 by an example based on a case
study of telephone repair service teams. In Section 7 we present discussiong on the limitations of
RAMASD. Finally, directions for future work are presented in Section 8.

2 Methodologies for engineering multi-agent systems

Early research prototypes of agent-based systems were built in an ad hoc manner. However, the need
to engineer agent systems solving real-world problems has given rise to a number of systematic
methodologies for agent system analysis and design such as MESSAGE (Evans, 2000), Gaia
(Wooldridge et al., 2000) and SODA (Omicini, 2000). These methodologies range from simple
strategies to comprehensive methodologies (Iglesias et al., 1999; Shen & Norrie, 1999; Parunak, 2000;
Jennings & Wooldridge, 2001), and they support different software engineering life-cycle stages such
as requirements analysis, design, code generation and testing. We are interested in the stage of
designing agent organisations. The manner in which different methodologies support this stage can be
used to classify them in several broad groups. This classification will be used to structure our
discussion of the strengths and weaknesses of each one.
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2.1 Classification of agent-based system engineering methodologies

Extending the classification introduced by Wooldridge (in Wooldridge & Ciancarini, 2000), we
propose a classification scheme for agent-based system engineering methodologies, which is
summarised in Figure 1. The main levels of classification are:

Level 1: the mode of application The methodologies where agent organisation is designed once
before the deployment of the agent-based system are classified as static; those where design
decisions are taken after the deployment at run time are classified as dynamic.

Level 2: the degree of formality present in each methodology This divides methodologies into
formal, informal and ad hoc, based on the techniques used to specify the behaviour of each agent.
The ad hoc methodologies do not contain systematic techniques for analysis and design. Formal
methodologies use formal techniques for specification and verification of agent behaviour. Informal
methodologies use structured and systematic techniques, which do not use formal logic and rigorous
criteria for taking design decisions but are instead based on heuristic rules and guidelines.

Level 3: the relationship with conventional methodologies The agent methodologies are seen as
related to several types of conventional software engineering methodology, from which they mostly
originate.

The types of methodology at level 3 are as follows:

• methodologies aligned with object-oriented software engineering (OOSE) methodologies, for
example Agent/UML (Bauer et al., 2000), Gaia (Wooldridge et al., 2000) and MESSAGE/UML
(Caire et al., 2001);

• extensions to knowledge engineering methodologies, for example SODA (Omicini, 2000), MAS-
CommonKADS (Iglesias et al., 1998);

• methodologies based on information systems methodologies, e.g. TROPOS (Bresciani et al.,
2001a);

• methodologies highly coupled with specific agent-based system building toolkits, e.g. Zeus (Nwana
et al., 1999).

Notably, some OOSE-aligned methodologies focus on adapting existing software engineering
standards and notations to agent-based systems engineering, for example Agent/UML (Bauer et al.,
2000), whilst others combine agent theories with existing software engineering methodologies, for
example Gaia (Wooldridge et al., 2000).

Figure 1 Classification of agent-based system engineering methodologies
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Having classified existing methodologies for engineering agent organisations, we will now discuss
a representative methodology for each of the main groups to identify how they support design
activities.

2.2 Dynamic methodologies

Dynamic methodologies focus on continuous redesign of the agent organisation after the deployment
of the system (at run time), thus allowing adaptation to dynamic changes in requirements and
environment. In such systems, agents change their organisational relations and behaviour as a response
to environmental stimuli or requirements changes. This is called self-organisation (Ishida et al., 1992;
Gerber, 1998; Malvile & Bourdon, 1998; So & Durfee, 1998). Self-organisation relies on constant
application of re-organisation primitives to optimise the behaviour of the system, for example the
Organisation Self-Design (OSD) framework (Ishida et al., 1992) uses the primitives of composition
and decomposition. Decomposition involves division of an agent into two and can be performed to
respond to overwhelming environmental demands. Composition merges two agents into one and can
be useful when communication overheads between the two agents are too high. The initial organisation
starts with one agent containing all domain and organisational knowledge. Other approaches to self-
organisation reassign roles and responsibilities to different organisational nodes (Pattison et al.,
1987).

A representative example of this class is KARMA/TEAMCORE (Tambe et al., 2000a), based on
dynamic rapid prototyping of agent organisations. It claims to reduce development effort by enabling
automatic procurement and integration of existing agents into agent organisations based on a set of
application requirements. In this way, even inexperienced users would be able to build large
agent organisations for real-world applications. Using automatic procurement and integration, agent
organisations can be constantly updated to reflect changes in requirements and the environment.

KARMA/TEAMCORE consists of two subsystems, KARMA and TEAMCORE. KARMA
(Knowledgeable Agent Resources Manager Assistant) assists designers in the creation, specification
and monitoring of an agent organisation. Each organisation is structured as a hierarchy of teams. Each
team is allocated goals decomposed into sub-goals using plans. A team program specifies the
organisation hierarchy, the plan hierarchy and the capabilities of agents that could execute those plans.
The organisation hierarchy consists of roles, which are assigned to plans. All specifications are written
in the STEAM specification language (Tambe, 1997). This is called team-oriented programming. It
aims to abstract away details of coordination, so that designers do not have to write large numbers of
coordination plans.

Once the organisation is specified, KARMA searches for agents that match the requirements of the
organisation and can play the roles of the specified organisation. It compiles a list of suitable agents
together with their properties. From this list, the designer then manually selects the desired agents to
include in the organisation. Finally, KARMA monitors the agent organisation to diagnose failures and
to evaluate agent performance to be used in forthcoming reorganisations.

The second subsystem, TEAMCORE, focuses on reliable execution of tasks. Robust teamwork
among agents is seen as the means for reliability, where agents cover for each other’s execution failures
and share key information. Interoperability between agents is ensured by a wrapper.

Overall, KARMA/TEAMCORE supports designers of agent organisations in a comprehensive
manner. It allows them to work at a high abstraction level using organisational concepts such as roles
and teams as first-class design constructs. It also provides automatic support for design heuristics using
its specification language STEAM.

One major weaknesses of KARMA/TEAMCORE is that it assumes all necessary agents exist in the
cyberspace. In this sense it is an approach for procuring individual agents, not for building them.

The second major weakness is common to all dynamic methodologies. Dynamic reorganisation
consumes a lot of run-time system resources as the agents in the agent-based system need to
communicate frequently in order to carry out reorganisation acts (Gerber, 1998; So & Durfee, 1998;
Tambe et al., 2000a). Also, the time taken by reorganisation signals to propagate through the system
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may cause the system to behave in a non-predictable manner, or the system performance may
deteriorate (Lee et al., 1998).

2.3 Ad hoc methodologies

Static methodologies avoid the problems associated with reorganising since the agent organisation is
designed once at design time. They range in formality and structure from ad hoc to fully formal
methodologies, and we will first discuss the ad hoc methodologies.

The philosophy underlying ad hoc methodologies is that design decisions should be simple and
clear, motivated by agent system properties as autonomy and flexibility. Design in ad hoc
methodologies is therefore based on generic guidelines aligned with properties of the agent metaphor.
An example guideline is that each user should be paired with a software agent that will be able to act
on the user’s behalf. An agent is the most suitable software component here, since it can learn and
adapt to its user.

RAPPID (Responsible Agents for Product-Process Integrated Design) (Parunak et al., 1999) is a
good example of ad hoc methodologies. It targets the domain of collaborative product design (Parunak
et al., 1997). In RAPPID, an agent is allocated to each user (designers, manufacturing engineers,
marketing and support staff) and to each component of the design itself. Agents trade with one another
to optimise design constraints, requirements and manufacturing alternatives.

RAPPID does not support the design of agent organisation in an explicit manner. It only provides
a generic approach and guidelines about how the agents and the agent-based system should be built.
Decisions about the exact system functionality are left to the designer, who makes them in an ad hoc
manner.

This methodology, whilst undoubtedly easy to use for small systems, is clearly not applicable to
systems of realistic complexity. Indeed, in complex systems it would be difficult for the designer to act
in a consistent manner where the guidelines may not be completely applicable or under conflicting
requirements, and this may lead to design errors. This lack of support for designers of agent
organisations is common for ad hoc methodologies.

2.4 Formal methodologies

Formal methodologies for agent systems engineering were created to counteract the lack of rigour in
ad hoc methodologies (Brazier et al., 1997) and to thus help the application of agent systems in
industry. They are used in three primary ways (Wooldridge & Ciancarini, 2000): for the specification,
systematic implementation and verification of agent-based systems. Designing agent behaviour and
organisation can be seen as belonging to the specification activities.

Specifying an agent system requires a theory describing an individual agent in terms of its structure
and internal behaviour. Such a theory is called an Agent Theory (Wooldridge & Jennings, 1995), and
is commonly based on some temporal modal logic framework such as the Cohen-Levesque theory of
intention (Cohen & Levesque, 1990) and Rao-Georgeff belief-desire-intention model (Rao & Georgeff,
1995). The Cohen-Levesque model is based on two agent attributes: beliefs and goals. Other attributes,
for example the notion of intention, are built from those. In contrast, the Rao-Georgeff model takes
intentions as primitives, in addition to beliefs and goals.

A specification uses this framework to describe the desirable behaviour of a system in a non-
ambiguous manner, and this is the starting point of every formal agent-based system design method,
(e.g. Brazier et al., 1997; Hilaire et al., 2000).

Formal approaches to agent-based system design are often based on unrealistic assumptions, for
example the possible worlds assumption (Wooldridge & Ciancarini, 2000), which impede the efficient
mapping of specifications to appropriate implementations. DESIRE (Brazier et al., 1997; Brazier et al.,
2001) is a formal methodology that does not suffer from this weakness. It can be used for conceptual
specification, behavioural simulation and prototype generation of agent-based systems.
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DESIRE uses two types of model: the intra-agent model describes the expertise related to domain
tasks, whilst the inter-agent model describes the expertise to perform and guide coordination,
cooperation and social interaction among agents. The whole system and each individual agent are
modelled as sets of interacting hierarchically structured components that represent task-solving units.
A task hierarchy is constructed by recursively decomposing the overall task for the system.

The agent organisation in DESIRE is defined by composing primitive component models that are
directly related to agent tasks. Reuse is also supported by using existing generic agent models to design
a new, more specific agent model, and to specialise tasks (Brazier et al., 1995). During design,
components in a generic model are refined by (1) more detailed analysis of the tasks of which such
components are comprised and/or (2) inclusion of specific domain knowledge.

Knowledge in DESIRE is represented at three levels: conceptual, detailed and operational, where
the operational level is automatically generated from the detailed level. This is possible because of the
formal specification language of DESIRE, which also enables a set of automatic tools for verifying and
simulating the agent-based system including a graphical editor, a specification compiler that generates
Prolog code and various debugging and monitoring tools. DESIRE has been used by a number of
companies and research institutes (such as the chemical industry, the financial sector, the software
industry, institutes for environmental studies) to develop operational systems for a number of complex
tasks (including systems for diagnosis, design, routing, scheduling and planning).

The design process, however, cannot be automated because the agent components should be known
before agent behaviour is specified. Furthermore, rules to support design can be modelled using the
DESIRE specification language, but there is no support for this at the methodology level, and this
needs to be done manually by the designer.

Different levels of abstraction are possible, but only in the task and component dimension; there is
no explicit modelling of organisational constructs, collective behaviour and non-functional aspects.

In conclusion, formal methodologies allow automatic support for various activities in the life cycle
of agent-based systems, for example validating specifications and simulating behaviour. Some design
and implementation activities can also be automated within both static and dynamic methodologies, as
in KARMA/TEAMCORE (Tambe et al., 2000a) and Concurrent METATEM (Fisher & Wooldridge,
1997). The general approach of formal methodologies, where detailed agent specifications are
automatically synthesised, is theoretically appealing, but it is limited in two important aspects
(Jennings & Wooldridge, 2001): First, as the expressive power of the agent specification language
grows, as for example in a language based on first-order calculus, the synthesis problem becomes
intractable (Wooldridge & Ciancarini, 2000) since no algorithm guarantees a solution. Even at the
lower levels of expressive power of propositional logic, the complexity of theorem-proving can be
exponential and hence not practical for real design of agent organisations. Second, the application of
formal notations based on mathematical theories is often found to be a difficult task by the average
software engineer (Wooldridge & Ciancarini, 2000).

These two drawbacks are in the core of argument that at least some steps in methodologies for agent-
based systems engineering should be left informal. This argument is supported by many agent
researchers, for example Petrie (2000) and Jennings (Jennings & Wooldridge, 2001).

2.5 Informal methodologies

Informal methodologies for engineering agent systems express knowledge about the domain and the
system using a number of models. For example, an interaction model can describe interactions that
take place between agents and an organisational model can describe the organisational structure of
the actors in the business organisation. A common characteristic in informal methodologies is
that the design of agent-based systems cannot be automated to any extent and is carried out manually
by the designers based on informal guidelines and their experience.

The majority of informal methodologies can be traced back to methodologies from object-oriented
software engineering, knowledge engineering and information systems.
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2.5.1 Methodologies based on object-oriented software engineering
As mentioned earlier, these methodologies either start from the agent metaphor and try to adopt aspects
from traditional object-oriented methodologies, e.g. Gaia (Wooldridge et al., 2000), or specialise and
extend object-oriented concepts so that they are applicable to agent-based system design, e.g. Agent/
UML (Bauer et al., 2000) and MASE (Wood & DeLoach, 2000).

Gaia is a methodology which supports the design of both individual agents and the agent
organisation as a whole. It includes a number of analysis and design models. The construction of
analysis models starts by identifying agent roles in the system, and proceeds to modelling interactions
between these roles. A role in Gaia consists of four attributes: responsibilities, permissions, activities
and protocols, which together describe roles as generalised patterns of individual behaviour and
authority. Gaia has formal operators and templates for representing roles and their attributes; it also has
schemas that can be used for the representation of interactions.

Once all the roles and their interactions are captured, the design process can start. Designers first
map roles into agent types, and then create the right number of agent instances of each type. Then they
determine the services needed to fulfil a role in one or several agents, and the final step is to create the
acquaintance model for the representation of communication between the agents.

Gaia’s strength is the simple yet comprehensible set of models, which makes its application quite
straightforward. It is also not committed to any particular type agent architecture such as BDI or
similar. Its applicability, however, is limited by its focus on cooperative agents acting towards a
common goal within systems of no more than about 100 agents. It also produces high-level designs,
which have to then be refined into implementations using traditional software engineering
methodologies. Also, the way in which organisational settings are modelled is limited to the concept
of roles. The lack of formal theoretical basis means that the design process cannot be automated and
possibilities for tool support are limited.

2.5.2 Methodologies based on information systems engineering
Methodologies based on information systems engineering (Elammari & Lalonde, 1999; Wagner, 2000;
Bresciani et al., 2001a) target organisational systems in areas such as e-business (Bartelt &
Lamersdorf, 2000) and e-services (Durante et al., 2000), where semantics of transactions can only be
captured if the specific actors behind events and actions are explicitly represented in the information
system, in addition to passive business objects (Wagner, 2000). An ontological distinction is thus made
between active entities (agents) and passive entities (objects). Dynamically evolving parts of the
system are modelled using agents and agent relationships, and agent-based conceptual models are then
transformed into traditional software engineering models and designs, for example in the AOR method
(Wagner, 2000).

An important perceived advantage of information systems-based methodologies is the correspon-
dence between models of the system itself and its organisational environment (Castro et al., 2000). In
Tropos (Castro et al., 2000; Giunchiglia et al., 2002), for example, the software system is represented
as one or more actors, which participate in a strategic dependency model, along with other actors from
the system’s operational environment.

Tropos is a comprehensive methodology, which covers the whole software life cycle including two
design stages: system-wide architectural design and detailed design for each individual agent. Tropos
is integrated with the agent-building toolkit JACK (Maisano, 2002) in terms of architecture and
implementation concepts, and therefore Tropos models can be implemented in a rather straightforward
manner.

The support for designing agent organisations is nevertheless quite poor, for example Tropos does
not allow designers to work with organisational settings and collective behaviour as design constructs.
It also does not provide support for design rules and for reusing design knowledge.

2.5.3 Methodologies based on knowledge engineering
Knowledge engineering methodologies are often considered very appropriate for agent-based systems
because of agents’ knowledge-intensive nature and cognitive behaviour (Iglesias et al., 1999). This
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allows reuse of existing knowledge engineering tools and ontology libraries. Conventional knowledge
engineering methodologies, however, take a centralised view and do not address the distributed or
social aspects of the agents, nor their reflective and goal-oriented attitudes. To alleviate these problems,
a number of agent-based system engineering methodologies such as CoMoMAS (Glaser, 1997) and
MAS-CommonKADS (Iglesias et al., 1998) extend knowledge engineering methodologies such as
CommonKADS (Schreiber et al., 2000). The focus of all such methodologies is the building of a
number of separate models, but they do not address the links between these models and the
implementation of the agent-based system.

Societies in Open and Distributed Agent spaces (SODA) (Omicini, 2000) is a good representative
of this class of methodology. The emphasis of SODA is on providing agent-based system engineers
with specific, ad hoc modelling abstractions and tools, which focus on inter-agent aspects such as
societies and agent spaces (an agent space is the environment where agents live and interact). Both
societies and agent spaces are first-class system components, and are modelled using specific
abstractions so that they can be taken into account at every stage of the engineering process.

In particular, SODA exploits coordination models, languages and infrastructures to address social
issues, by showing how to choose a coordination model, how to exploit it to design social laws, how
to embed them into a coordination medium and how to build a suitable social infrastructure based on
coordination services. Coordination models are used to decide which part of social behaviour should
be embedded in the individual agent’s behaviour, and which should be realised using appropriate social
structures

SODA involves three analysis models (role, resource and interaction models) and three design
models (agent, society and environment models):

• The role model contains roles which have tasks assigned to them. Tasks can be individual or social,
and are expressed in terms of the responsibilities they involve, the competences they require and the
resources they depend upon. Roles belong to social groups which carry out social tasks.

• The resource model includes the abstract resources that need to be used by the agent-based
application. Each resource represents an actor in the agent environment and provides a number of
services to the agent application, for example recording data, querying a sensor or verifying an agent
identity.

• The interaction model includes definitions of interaction protocols (for roles and resources) and of
interaction rules (for social groups). Interaction rules determine behaviour that all members in a
social group should exhibit. A social group would also have a set of social roles, its own social task
and specific permissions to access system resources.

• The agent model is the first of design models. It contains agent components, which are defined as
groups of application and social roles.

• The society model describes agent societies, which consist of a set of social groups and their roles,
tasks and permissions. The main issue in the society model is how to design interaction rules so as
to make societies to accomplish their social tasks.

• In the environment model, resources from the resource model are mapped to infrastructure classes.
The model also includes a topological description of the distribution of infrastructure classes. Other
topological abstractions can also be used, for example places, domains and gateways (as defined by
the TuCSoN model for the coordination of Internet agents (Cremonini et al., 1999)).

SODA targets open (e.g. Internet-based) agent-based systems (Omicini, 2000) and its underlying
philosophy is that insights from the area of coordination models can be used in order to make
traditional agent-based system engineering approaches, such as Gaia (Wooldridge et al., 2000), more
suitable for developing Internet-based applications (Zambonelli et al., 2001a).

2.5.4 Tool-based methodologies
A large number of agent development toolkits are currently available, the majority of which are in the
public domain (Reticular Systems Inc., 2002). Standardisation efforts have made significant progress
in terms of unified agent architectures (Dale & Mamdani, 2001; McCabe et al., 2002), but there are
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still many differences and incompatibilities between tools, for example regarding agent cognitive
models and implementation languages.

Every agent development toolkit is tailored to a specific agent theory and a set of implementation
assumptions. For example, Zeus (Nwana et al., 1999) uses BDI agents, which know facts, carry out
tasks and are driven by goals, while Voyager (Objectspace Inc., 1997) supports only reactive agents.
Another example is that in Jade (Bellifemine et al., 1999) a full agent life cycle including creation and
removal can be specified while in the current version of Zeus there is no such provision and agents are
assumed to execute infinitely.

The Zeus agent development methodology consists of analysis, design and realisation activities, as
well as run-time support facilities that enable the developer to debug and analyse their
implementations. The recommended approach to analysis is role modelling (Collins & Ndumu, 1999).
The design then involves linking roles to agents by matching role responsibilities (or tasks) to agent
characteristics. This creates a conceptual-level design, which is converted to working agents during the
realisation stage.

The Zeus agent development methodology is closely related to the Zeus agent development toolkit
(Nwana et al., 1999). The toolkit provides an extensive set of editors for different aspects of the
system, such as organisational relations, coordination and negotiation models. Once detailed agent-
based system designs are constructed, they can be transformed to Java source code within the Agent
Generator tool.

The Zeus toolkit and the related development methodology are freely available, and provide a
comfortable and flexible framework for the development of agent-based systems. They are, however,
limited to the BDI agent architecture. The design process is informal and cannot therefore be
automated, nor can designers work at different levels of abstraction.

2.5.5 Summary of informal methodologies
Informal methodologies require the designer to address most of the system complexity based on
creativity and intuition alone. This can be a serious problem in engineering large, real-world agent-
based systems. Furthermore, informal methodologies lack a semantic framework and notation that
would allow any verification of the design decisions. This may result in error-prone designs and it does
not allow any automation of the design process. This contrasts with the view supported by many
authors in agent-based system design (Tambe et al., 2000a; Sparkman et al., 2001) and software design
in general (Lowry & McCartney, 1991), that to reduce development effort the design process must be
automated to a certain extent.

2.6 Issues in supporting the design of realistic agent organisations

The review of existing agent-based system engineering methodologies has revealed weaknesses in the
support they provide for the design of agent organisations. They do not provide formal support for
design decisions and do not allow designers to work with organisational settings and collective
behaviour as first-class design constructs. A method to effectively support designers should provide the
features discussed below.

2.6.1 Systematic support for constructing large agent system design models from the analysis
models
The main drawback of existing methodologies such as Tropos is that after a certain point the design
decisions are left solely to the creativity and the intuition of the designer. Even when a methodology
includes some guidance as to how to transform the analysis models to design models, the steps
involved are not specified in a sufficient level of detail, and their interpretation is left to the designers.

This lack of detail also prevents the building of a software tool, which can provide automated
support for design. To enable effective support for designers, we therefore need to provide a formally
specified method for transforming analysis models into design models. This view is similar to that
described in Sparkman et al. (2001) where agent architectures are automatically derived from analysis
specifications.
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2.6.2 Considering non-functional requirements at design time
Existing dynamic methodologies use run-time reorganisation to reflect non-functional requirements
such as speed and memory limitations. To improve the system stability and to avoid performance losses
associated with this type of run-time reorganisation, we should aim to optimise, as much as possible,
the agent organisation against its non-functional requirements at design time.

Considering non-functional requirements before actually deploying a multi-agent system is
therefore necessary for effective support of designing agent organisations of realistic complexity. This
is confirmed by some methodologies which attempt to model and study the performance of a system
before its actual deployment (Scott, 1992; Parunak et al., 1998).

2.6.3 Organisational settings as reuseable first-class design constructs
A powerful approach to reduce complexity in agent organisation design is to increase the level of
abstraction by considering organisational settings as first-class design constructs. We can then reduce
complexity further by reusing organisational settings from different applications or domains. This
vision concurs with the ideas of Zambonelli and Jennings (Zambonelli et al., 2000).

Turning such a vision into a reality requires a suitably formal model of organisational settings and
a rigorous technique for combining both organisational and application design decisions in a
systematic manner.

3 Roles and role models

We consider the concepts of role, role relationship and role model as fundamental enablers of our
method for designing agent organisations, which addresses the issues described above. This is achieved
by extending an existing definition of role to allow for modelling of non-functional requirements, and
by introducing a systematic technique for transforming role models into agent organisation designs,
thus enabling a semi-automated design process.

3.1 Roles as behavioural abstraction in organisations

Roles are basic building blocks for a number of modelling approaches. For example, roles are used in
organisational theory (Scott, 1992) to represent positions and responsibilities in human organisations.
Roles are also used in conventional software engineering (Andersen, 1997). Furthermore, roles are
considered particularly suitable for modelling the behaviour of software agents due to their ability to
represent generalised behaviour in organisational context (Kendall, 1999a). Roles in multi-agent
systems are defined in a manner similar to organisational roles referring to a position and a set of
responsibilities in an organisation (Ferber & Gutknecht, 1998). Some additional characteristics are also
included in agent roles, such as capabilities to conduct planning, coordination and negotiation
(Kendall, 1999a).

Some multi-agent system engineering methodologies use roles as basic behavioural abstractions.
These methodologies acknowledge the need to identify and characterise relations between roles
(Andersen, 1997; Kendall, 1999a), but only a very few of them consider the consequences of role
relations on the design of multi-agent systems (e.g. Kendall, 1999a). This is partly due to lack of
formal foundations of role relationships.

In our method, we recognise this deficiency and propose formal algebraic definitions for a set of role
relations that affect agent organisation design. To identify the set of role relations, we have used the
role theory (Biddle, 1979). Role theory studies human organisations, and sees people as appointed to
roles within an organisation, where a role is a representation of behaviour. This behaviour is
characterised by authorities describing things that can be done and responsibilities describing things
that must be done. For example, directors, help-desk staff, developers and test engineers are all
associated with job descriptions specifying their responsibilities in the organisation. Organisational
goals, policies and procedures further determine their rights and duties within the departments, projects
or groups of which they are members.
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Role theory emphasises relations that may exist between roles. For example, an examiner cannot be
a student at the same time and therefore appointing these roles to a person at the same time results to
inconsistency. Role relations can be complex. For example, a university staff member who is also a
private consultant may have conflicting interests. In this case, appointing these roles to the same person
is possible but it would require appropriate mechanisms to resolve the conflicting behaviour.

Apart from role theory, the fundamental position of role as a prototypical behavioural type at the
centre of each organisation is also accepted by theoreticians in the field of distributed artificial
intelligence (Gasser, 2001).

3.2 Role characteristics

Following Kendall (1999a), a role is defined as a position in an agent-based system associated with a
set of characteristics. Along the lines of role theory (Biddle & Thomas, 1979) roles describe some
particular expected behaviour within some social context. This expectation can be linked to an agent
within the social system, and we then say that the agent owns the role. When the agent realises the
behaviour represented by a role, then we say that the agent plays that role. In agent-based systems roles
represent a pragmatic view of agent behaviours, for example an agent-based system is considered to
include a specific number of roles at a given time, each one consuming system resources and
contributing to the overall behaviour of the system.

In our method each role is associated with five types of characteristic (Table 1): role model, goals/
responsibilities, tasks, capabilities/privileges and performance variables.

Role models represent collections of roles and their interactions, and are described in detail below.
Roles have various responsibilities and goals which they aim to achieve. This follows the consensus

in role-based modelling of social systems (e.g. Biddle & Thomas, 1979 and Kendall, 1999a) that the
behaviour of social entities is affected by the goals the entity tries to achieve and by the duties the
entity has within the social system. Since roles represent behaviours in certain contexts, they are
associated with specific duties that need to be carried out and with goals that need to be achieved in
those contexts.

Role behaviour is externalised by carrying out certain tasks. Tasks correspond to actions that social
entities take towards fulfilling their duties and achieving their goals. In carrying out tasks, roles
normally need to interact with other roles, which are their collaborators. Interaction normally takes
place by direct exchange of messages according to interaction protocols. It must be noted that not all
roles interact with each other in a role model. In the extreme case, we can have a role model consisting
of only one role interacting only with passive resources and the environment. For example, this is the
case when we have an agent simply handling the temperature valve of a central-heating unit. Such an
agent will be playing only one role, which will be monitoring the environment for changes in the
temperature, and its only task will be to operate the valve accordingly.

Capabilities or privileges refer to properties that enable or facilitate a role to achieve its goals and
fulfil its responsibilities. Examples of capabilities or privileges include learning, inferencing and
communicating. This view is similar to that of role theory where role functions – particular aspects of
role behaviour – have characteristic effects on the social system in connection with the goals of roles.

Each role characteristic includes a set of attributes. Attributes represent different aspects of a
characteristic property of role behaviour and can take both numeric and non-numeric values. For
example, a characteristic of a role could be its capability to negotiate. The negotiation characteristic
can have many attributes including the name of negotiation strategy that is followed and maximum and
minimum bid values.

In order for roles to pragmatically represent behaviour in an application domain, they need to model
issues relevant to non-functional aspects in that domain. Therefore the above role definition is extended
to include performance variables. Performance variables are parameters whose value defines the run-
time behaviour represented by a role. For example, if the behaviour a role represents requires using
some resource like memory, the resource capacity can be modelled by a performance variable.
Performance variables can also be defined at an agent level. In that case, their value is a function of
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the values of the respective performance variables of all roles the agent is capable of playing. This
allows us to apply design heuristics by imposing constraints on the values of the agent performance
variables that must be observed when allocating roles to agents. This is illustrated in the example given
in Section 6.

3.3 Role models

A collection of roles and their interactions constitutes a role model. A role model represents the
behaviour required to carry out some process1 in the system. An agent application normally consists
of more than one activity and hence it will involve more than one role model. Role models that occur
frequently in some application domain are called role interaction patterns.

In a role model, roles can be specialised in a manner similar to inheritance in object orientation
(Andersen, 1997; Kendall, 1999a; Biddle & Thomas, 1979). Specialised roles represent additional
behaviour on top of the original role behaviour in a manner similar to inheritance in object-oriented
systems.

Role models can be used to represent reoccurring complex behaviour based on multiple points of
interaction. Therefore they are considered to be first-class design constructs, that is, entities that can
be instantiated and given identity. This property is fundamental regarding addressing the open issues
raised in Section 2.6. This is because role models can be used to describe both functional and non-
functional aspects of the application behaviour as well as organisational settings. An agent system
designer should be able to reuse role interaction patterns and specify new role models as required.
Therefore the problem of designing an agent organisation refers to selecting and instantiating suitable
application and organisational role models.

4 Role algebra: a formal model of role relations

Designing an agent organisation in our method refers to allocating roles to agents. Allocating a number
of roles to an agent is semantically equivalent to merging a number of roles into a single composite
role played by the agent, and we call this activity role composition. In role composition, we have to
take into account that roles may semantically constrain each other, for example two roles may
constrain each other in such a way that a single agent cannot play both roles at the same time.
Furthermore, the way that role characteristics and their attributes are merged may be bound to various
constraints. For example, the resource capacity required by the composite role resulting from the
merging of two roles may be less than the sum of the capacities required by the two individual roles.
To enable automatic software support for the process of role composition, we need to formally specify
the set of role relations on which such constraints are based. Such a formal model, termed role algebra,
is defined in this section.

4.1 Semantics of the role algebra

To describe the semantics of role relations we represent an agent organisation by a two-sorted algebra
(Figure 2). The algebra includes two sorts, A representing agents and R representing roles, and two
auxiliary relations, Has and Plays, representing role allocation.

In modelling agent behaviour using roles, we consider two possible modes of role allocation: At
mode one, the behaviour specified by a role is allocated to an agent. The agent is aware of the details
of the particular behaviour but it does not necessarily actively demonstrate it. For example, in a
presidential election all candidates generally know how to act like presidents and hence they are aware
of the presidential role. We can represent this as a relation Has: A→R, which maps agents to roles. For
each a�A, let a.has be the set of roles that the agent a maps to in the relation Has. In other words,
a.has denotes the relational image of the singleton {a}� A in the relation Has.

1 Process in this context will represent the whole causal sequence of events and actions caused by one triggering
event, and will correspond to the UML concept of “use case”.
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At mode two, the behaviour represented by a role is not only known to but also actively
demonstrated by an agent. In the presidential election example given above only the elected candidate
will actually act like president. We denote this using another relation Plays: A→R, which maps agents
to roles again. For each a�A, let a.plays denote the set of roles that the agent a maps to in the relation
Plays. In other words, a.plays denotes the relational image of the singleton {a}� A to the relation
Plays.

We have to note that a.plays� a.has. In other words, an agent can have allocated roles and not
actively demonstrate the behaviour represented by these roles. An example of this will be given in
Section 6.

4.2 Role relations

Based on role theory (Biddle, 1979) and on case studies of human activity systems (e.g. Stark et al.,
2001), we have identified six binary relations as fundamental for role composition. For any r1, r2�R
(R is a set of roles), the binary relationships discussed below may hold.

4.2.1 Equals
The relation Equals� R � R denoted by ‘eq’ refers to role equality. By r1 eq r2 we would mean that r1

and r2 describe exactly the same behaviour. For example, the terms Advisor and Supervisor can be used
to refer to people supervising Ph.D. students. When two roles are equal, an agent playing the one role
also plays the other at the same time, and the agent owning one role also owns the other. In the two-
sorted algebra,

�a : A, (r1, r2) : R � R · (r1 eq r2 ⇔ ((r1�a.has⇔ r2�a.has)∧ (r1�a.plays⇔ r2�a.plays)))

Thus defined, the relation Equals� R � R is an equivalence relation since it is reflexive, symmetric and
transitive:

(a) �r : R (r eq r)
(b) �(r1, r2) : R � R (r1 eq r2 ⇒ r2 eq r1)
(c) �(r1, r2, r3) : R � R � R ((r1 eq r2)∧ (r2 eq r3)⇒ (r1 eq r3))

4.2.2 Excludes
The relation Excludes� R � R will be denoted by ‘not’. By r1 not r2 we mean that r1 and r2 cannot be
assigned to the same agent simultaneously:

�a : A, (r1, r2) : R � R · (r1 not r2 ⇔¬(r1�a.has∧ r2�a.has))

Figure 2 Semantics of role relations

RAMASD: a semi-automatic method for designing agent organisations 343



For example, in a conference-reviewing agent system, an agent should not be playing the roles of
Paper_Author and Paper_Reviewer at the same time. Furthermore, a role cannot exclude itself – if it
would then no agent would ever play it. Therefore the relation Excludes� R � R is anti-reflexive and
symmetric:

(a) �r : R(¬(r not r))
(b) �(r1, r2) : R � R (r1 not r2 ⇒ r2 not r1)

4.2.3 Contains
The relation Contains� R � R will be denoted by ‘in’. By r1 in r2 we mean that r2 is a sub-case/
specialisation of r1. Therefore the behaviour represented by r2 completely includes the behaviour
represented by r1. We can say, for example, Employee in Manager, and then the role representing
Manager behaviour completely contains the behaviour of the Employee role. If r1 in r2 and we compose
r1 and r2, the resulting role contains the characteristics of r2 only. In terms of the two-sorted algebra,
contained roles must be assigned and played by the same agent as their containers:

�a : A, (r1, r2) : R � R · (r1 in r2 ⇔ ((r2�a.has⇒ r1�a.has)∧ (r2�a.plays⇒ r1�a.plays)))

Therefore the relation Contains� R � R is reflexive and transitive:

(a) �r : R (r in r)
(b) �(r1, r2, r3) : R � R � R ((r1 in r2)∧ (r2 in r3)⇒ (r1 in r3))

4.2.4 Requires
The relation Requires� R � R, denoted with ‘and’, can be used to describe that when an agent is
assigned a particular role, then it must also be assigned some other specific role as well. In terms of
the two-sorted algebra, required roles must be played by the same agent as the roles that require
them:

�a : A, (r1, r2) : R � R · (r1 and r2 ⇔ (r1�a.plays⇒ r2�a.plays))

This is particularly applicable in cases where agents need to conform to general rules or play
organisational roles. For example, in a university application context, in order for one to be a Library_
Borrower one must be a University_Member as well. Although the behaviour of a Library_Borrower
could be modelled as part of the behaviour of a University_Member, this would not be convenient since
this behaviour could not be reused in other application domains where being a Library_Borrower is
possible for everyone. Furthermore, each role requires itself. Intuitively, the roles that some role r
requires are also required by all other roles that require r. Therefore, the relation Requires� R � R is
reflexive and transitive:

(a) �r : R (r and r)
(b) �(r1, r2, r3) : R � R � R ((r1 and r2)∧ (r2 and r3)⇒ (r1 and r3))

4.2.5 Addswith
The relation Addswith� R � R is denoted with ‘add’. It can be used to express that the behaviours two
roles represent do not interfere in any way. In the two-sorted algebra, there is no constraint in having
or playing roles that add together:

�a : A, (r1, r2) : R � R · (r1 add r2 ⇔ (r1�a.has⇒ ((r2�a.has∨ r2�/ a.has)∧ (r2�a.plays∨ r2�/ a.plays))))

For example, the Student and the Football_Player roles describe non-excluding and non-overlapping
behaviours. Hence these roles can be assigned to the same agent without any problems. The relation
Addswith� R � R is reflexive and symmetric:

(a) �r : R (r add r)
(b) �(r1, r2) : R � R ((r1 add r2)⇒ (r2 add r1))
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4.2.6 Mergeswith
The relation Mergeswith� R � R is denoted with ‘merge’. It can be used to express that the behaviours
of two roles overlap to some extent or that different behaviour occurs when two roles are put together.
For example, a Student can also be a Staff_Member. This refers to cases when Ph.D. students start
teaching before they complete their Ph.D. or they register for another degree (e.g. an MBA) after their
graduation. Although members of staff, these persons cannot access certain information (e.g. future
exam papers) due to their student status. Also, their salaries are different. In cases like this, although
the two roles can be assigned to the same agent, the characteristics of the composed role are not exactly
the characteristics of the two individual roles put together. In terms of the two-sorted algebra, when
two roles merge, only the unique role that results from their merge is played by an agent:

�a : A, (r1, r2) : R � R · (r1 merge r2 ⇔1 r3 : R · ((r1�a.has∧ r2�a.has)

⇒ (r1�/ a.plays∧ r2�/ a.plays∧ r3�a.has)))

For example, let us assume that roles r2 and r3 merge, resulting to role r4. Based on the above semantic
definition, if an agent has r2 and r3 then it must also have r4 and it must not play r2 and r3 (the agent
may or may not play r4 depending on the relations of r4 with the other roles the agent has). The example
of a Mergeswith relation between roles r2, r3 and r4, where r4 is played by the agent, is depicted in
Figure 2.

The relation Mergeswith� R � R is symmetric:

(a) �(r1, r2) : R � R ((r1 merge r2)⇒ (r2 merge r1))

Relations between more than two roles can be defined in a manner similar to the binary relations,
perhaps using the more convenient predicate notation. For example, when the three roles r1, r2 and r3

merge to r4, this can be noted by merge(r1, r2, r3, r4). In this paper, we will not provide any formal
definitions for relations among roles with arity greater than two.

5 A synthesis-based agent organisation design method

5.1 The synthesis design process

Role relations, as defined in the above algebra, restrict the way that roles can be allocated to agents.
The agent organisation design problem is thus transformed to a constraint satisfaction problem that
must be solved for roles to be allocated to agents. The problem can be constrained further by including
constraints based on general design heuristics. These constraints are expressed in the performance
variables of the agents. For example, the system designer should be able to define the maximum
number of roles that an agent could play, or an upper limit to the resource capacity that an agent would
require. Furthermore, role allocation heuristics could also be specified. For example, roles requiring
access to similar resources could be assigned to the same agent.

A generic approach for this type of constraint-based design problem is synthesis. The term
‘synthesis’ in engineering disciplines refers to a process in which a problem specification is
transformed to a solution by decomposing the initial problem into loosely coupled sub-problems that
are independently solved and integrated into an overall solution while various constraints within and
among sub-solutions are observed (Samuel & Weir, 1999; Antonsson & Cagan, 2001).

The synthesis problem solving process involves searching solution alternatives in the corresponding
solution domain and selecting appropriate solutions based on explicit quality criteria. In agent-based
system design, the problem is the application requirements and the possible solutions are agent-based
systems that can fulfil them. Therefore synthesis can be used in the agent-based system design as
well.

Generally, a synthesis-based design process includes the following phases (Karageorgos, 2002):
problem requirements specification, synthesis problem formulation, synthesis problem refinement,
division of the main problem to sub-problems as appropriate and synthesis problem solution. The
generic synthesis-based design process is depicted in Figure 3.
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The overall synthesis problem solution often requires iteration and recursion. Iteration refers to
repeating phases of the synthesis process in order to improve the synthesis solution results. Iterations
start from the synthesis problem definition phase where the problem is redefined seeking a better
solution. This may involve neglecting or changing the application requirements. Recursion refers to
repeating the sub-problem partitioning and search phases of a synthesis process for a lower abstraction
level. This involves decomposing the overall problem into (perhaps different) sub-problems again and
relaxing or increasing the problem specification constraints.

Generally, to obtain satisfactory solutions in a synthesis problem, a number of recursions and
iterations is required.

5.2 RAMASD: a semi-automatic method for designing role-based agent organisations

Considering the generic synthesis-based design process model, a systematic process for designing
agent organisations can be introduced. This process involves both manual and automatic steps where
manual steps are carried out by the human designer and automatic steps by some software tool. The
manual and automatic steps of the semi-automatic method for role-based agent organisation design are
the following (see also Figure 4):

1. Specify application requirements The agent-based system design is initiated with the require-
ments analysis phase in which the basic goal is to understand the stakeholder requirements. The
well-known requirements analysis techniques such as textual requirements specifications, use-cases
(Jacobson et al., 1994), and even formal requirements specification languages (Greenspan et al.,
1994) can be used. In all cases, however, requirements should be specified in such a way to assist
role identification, which follows in the next stage.

2. Identify roles and role models There are many ways to carry out role-based analysis. The most
common approach is to start from use-cases and for each use-case identify roles and their
interactions (Andersen, 1997). Many role interaction patterns can be used directly from existing

Figure 3 A generic synthesis-based design process
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role-pattern libraries like the one documented at BT (Kendall, 1999a). Selection or definition of
appropriate role models is a manual step that must be carried out by humans.

3. Specify relevant role characteristics and compositional constraints This is an automatic step since
role characteristics and inter-role relations are expected to be stored in some role-model library.
After the designer selects existing role models, role characteristics and role compositional
constraints are automatically retrieved.

4. Refine role models The agent system designer is expected to manually specify role characteristics
and role relations for any new role models he or she defines. These new role models should be
stored in the role-model library. At this step, additional characteristics of existing role models, for
example performance variables, should also be specified. Furthermore, at this step various domain-
specific and general design heuristics are specified as constraints on the performance variables of
roles and agents.

5. Assign roles to agents Performing the search among various alternatives and allocating roles to
agents can be done automatically. However, at this point the process may continue to a next
recursion or iteration cycle depending on the results obtained. Iteration and recursion possibilities
make the design of the agent organisation an interactive process where routine tasks are automated
and humans carry out tasks requiring experience and creative decisions.

5.3 Compatibility with agent systems engineering methodologies

An important advantage of our agent organisation design method, which we call RAMASD, is that it
can be used in conjunction with existing multi-agent system engineering methodologies. The degree
of compatibility between RAMASD and existing methodologies for engineering agent organisations
depends on whether they use the role concept for modelling the agent behaviour.

High compatibility exists when the methodologies include the role concept as is the case with the
majority of informal approaches, for example MESSAGE/UML, SODA, Gaia and Zeus. As mentioned
in Section 2.6, the main weakness of such approaches is that they do not provide any formal
underpinnings to drive the design of the agent organisation.

RAMASD can be used after the analysis stage to drive the design of the agent components. This
requires formulating the role allocation problem in RAMASD, including the definition of constraints
on roles and role characteristics and the possible introduction of additional role models to represent
organisational and non-functional aspects. After role allocation, the remaining phases of each existing

Figure 4 Semi-automatic method for agent organisation design
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methodology can be followed, for example in SODA the topological model could be created and
considered after designing the agent components using RAMASD.

Currently, RAMASD is not fully compatible with all possible specifications that can be done in
methodologies including the notion of role. For example, the methodology described in Zambonelli et
al. (2001b) involves specifying complex organisational rules in temporal logic and this is not
compatible with RAMASD in its present form. The RAMASD philosophy of trying to reduce the
design complexity that designers have to handle by automating the role allocation process based on
inter-role constraints can still be applied in all cases.

The compatibility of RAMASD is low in methodologies where the role concept is not included, for
example DESIRE. In such cases, RAMASD can still be useful but an additional role-modelling phase
is required. For example, in DESIRE the tasks the agent organisation needs to carry out identified in
the analysis phase should be analysed according to some task analysis method such as Chandrasekaran
et al. (1992) and grouped to roles following general heuristics.2 Subsequently, additional roles to
represent organisational and non-functional aspects should be introduced as required and role
allocation could take place. Finally, the tasks associated with each agent component could be
determined from the roles allocated to it and the rest of the DESIRE methodology (task and component
specification, code generation) could be applied normally.

6 Example: supporting mobile work teams

For this example a case study concerning telephone repair service teams is considered. The aim is to
build an agent system that would assist field engineers to carry out their work. Among the issues
involved in such a system are those of travel management, teamwork coordination and knowledge
management (Thompson & Odgers, 2000; Stark et al., 2001).

Travel management is about support to mobile workers for moving from one repair task location to
another. It involves finding the position of each worker, obtaining relevant travel information, planning
the route to the next repair task location and allocating travel resources as required. Teamwork
coordination is about allocating and coordinating the execution of repair tasks in a decentralised
manner taking into account the personal preferences and working practices of the mobile workers.
Work knowledge management concerns storage and dissemination of work-related expertise.

6.1 Role identification

In order to model the above system in terms of roles, the first thing to do is to identify the roles
involved in the case study. According to Kendall and Zhao (1998) a way to identify roles in an
application domain is to start by identifying use-cases, associating each use-case with a goal, creating
a goal hierarchy from the use-case hierarchy and coalescing semantically relevant goals to roles. For
the purpose of the telephone repair service teams example, the following use-cases are considered (see
Figure 5):

• Teamwork coordination In this activity the customer places a request for a telephone repair. This
request is placed in a pool of repair request tasks and it is eventually allocated to some mobile field
engineer who will be responsible for its execution.

• Travel management This involves providing up-to-date travel information to the field engineer,
including his current exact location, an optimal plan of the route to the next telephone repair task,
as well as traffic information and managerial policy regarding travelling.

• Work knowledge management This activity deals with maintaining and storing expertise for
complex telephone repair tasks.

2 For example, such an approach has been followed in Kendall (1999b).
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Each use-case has a number of high-level goals depicted in Figure 5. The behaviour leading to
achieving these goals can be modelled by appropriate roles. Hence the following roles can be identified
(see Figure 6):

1. Employee This role describes generic behaviour of the members of the customer service teams.
An example of this type of behaviour is accessing common team resources including work practice
announcements and business news.

2. Coordinator The Coordinator role describes the behaviour required to coordinate the work of a
field engineer. This includes bidding for and obtaining repair work tasks from a work pool,
negotiating with other workers and the team manager as required and scheduling and rescheduling
work task execution.

3. Manager The Manager role models the behaviour of the team manager. This includes
confirming task allocation, monitoring work and ensuring that business rules are followed.

4. Mentor The Mentor role provides assistance to field engineers for non-technical issues.
5. WorkPool The WorkPool role maintains a pool of telephone repair requests. Customers interact

with this role to place requests and engineers interact with this role to select tasks to undertake.
6. Customer The Customer role models the behaviour of a customer. It involves placing telephone

repair requests, receiving relevant information and arranging appointments with field engineers.
7. Brulebase This role maintains a database of business rules. It interacts with Manager, providing

information about the current work policy of the business.
8. TravelManager The TravelManager role provides travel information to the field engineer

including current location, traffic information and optimal route to next telephone repair task.
9. TravelInfoBase This role stores travel information from various travel resources, i.e. GPS and

traffic databases.

Figure 5 Use case goals for the telephone repair service teams case study
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10. KnowledgeFinder This role searches for experts and obtains assistance regarding complex work
tasks.

11. KnowledgeBase The KnowledgeBase role maintains and manages a database of expertise about
telephone repair tasks.

6.2 Specifying design constraints

In Figure 7, compositional constraints for the roles described in Section 6.1 are specified in RCL (Role
Constraint Language).

Figure 6 Role models for the telephone repair service teams case study

Figure 7 Compositional constraints for the telephone repair service teams case study
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RCL is a simple declarative constraint language that was introduced to represent design constraints
on agent and role characteristics. The use of RCL in Figure 7 is self-explanatory and therefore in this
paper no further description of RCL will be given. RCL is described in detail in Karageorgos (2002).

Roles in RCL are specified in a manner similar to programming languages. In the telephone repair
service teams example, roles that directly manipulate databases require access to some storage space.
This is modelled by the performance variable memory. The memory requirements of each role are
different. For example, TravelInfoBase and KnowledgeBase require twice as much memory as
WorkPool and Brulebase.

Part of the definition of the characteristics of the Manager role is shown in more detail in Figure 6.
The collaborators of the Manager role are the Coordinator and Brulebase roles and its interaction
protocol is the Contract Net. The Employee role is contained in both Manager and Coordinator roles.
Furthermore, a Manager cannot coexist with Mentor or Coordinator and for security purposes a
Customer cannot coexist with Employee, TravelInfoBase or KnowledgeBase. In order for an agent to
be Mentor it must also be an Employee.

When an agent plays all three Coordinator, TravelManager and KnowledgeFinder roles, overheads
in synchronising results from the three different activities (travel management, teamwork coordination
and knowledge management) may occur. This is modelled as a merge of the Coordinator,
TravelManager and KnowledgeFinder resulting in the WorkerAssistant role. The WorkerAssistant role
requires some memory to store intermediate synchronisation results, as specified in Figure 7. This is
an illustration of the Has and Plays relations used to represent the semantics of role relations described
in Section 4.1: The agent that is aware of the Coordinator, TravelManager and KnowledgeFinder roles
does not actually exercise those behaviours. Instead it is also aware and it actively demonstrates the
behaviour of the WorkerAssistant role with the only difference in this simple example that the
WorkerAssistant role requires additional memory.

An example of a non-functional requirement is to limit the memory each agent could occupy. In this
case study, agents supporting field engineers should be able to operate in PDAs with limited amounts
of memory. This is modelled as a general design constraint on the performance variable memory
(Figure 7).

We have encoded the basic role relationships and the example application using DAML-OIL to
illustrate how role models can be shared using Semantic Web standards. The DAML-OIL classes,
properties and relationships for the case study are shown in Figure 8. Limitations of DAML-OIL do
not allow us to encode the full definitions of role relationships, but the current degree of specification
is sufficient for publishing and sharing of role models to be reused in different agent system designs.

The current version of RAMASD has been implemented as an extension to the Zeus agent building
toolkit (Nwana et al., 1999) developed at BT labs. Currently, the RAMASD extensions to the Zeus
version include 4 components: The new Agent Generator component (Figure 9) provides an interface
for editing roles and role models and storing and retrieving them from a role-model library. The Agent
Generator also links the user with the other pre-existing components of the Zeus agent building toolkit.
The Role Constraints Editor provides an interface for specifying constraints among roles and role
characteristics and the Role Allocator component allows the user to initiate the role allocation process
(Figure 10) and select the search algorithm that will be used to search for a design solution.
Furthermore, there is a Code Generation component which produces Java source code for the designed
agent-based system.

6.3 Allocating roles to agent types

The constraints on roles and agent and role characteristics define a constraint satisfaction problem,
which must be solved to allocate roles to agent types. Search problems are hard to address optimally
and therefore sub-optimal solutions are widely adopted.

A simple heuristic that can be used for role allocation is to try to minimise the number of agent types
produced. Therefore as many roles are allocated to an agent type as possible before moving to the next.
Merging roles are processed first and the algorithm moves to the remaining roles only when all roles
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Figure 8 DAML-OIL representation of role relations in the telephone repair service teams case study

Figure 9 The extended Zeus Agent Generator implementing the RAMASD method
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that are involved in a Mergeswith constraint have been allocated to an agent type. All roles are allocated
to an agent type at least once.

Applying this heuristic produces an agent organisation satisfying the design constraints described in
Section 6.2, which includes five agent types. The agent types produced are depicted in Figure 11.

7 Limitations of RAMASD – discussion

RAMASD is a method primarily aiming at reducing the complexity that agent-based system designers
have to handle. Towards this aim, it considers a formal model of role relations concerning role

Figure 10 The role constraints editor and the role allocator component of the extended Zeus agent building
tool
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composition when roles are assigned to agents and it uses this model to drive the role allocation
process.

The benefit of using two relations, namely Has and Plays, to represent the semantics of the role
relationships is twofold: first it assists in allocation of the specified roles to agent types and second it
makes it possible to allow modification of agent behaviour (role allocation) at run time. For example,
if an agent were to receive a new role dynamically, any constraints between the new role and the roles
already owned by an agent would be considered even if the agent does not actively play all these roles.
This will allow a decision to be made if the new role can be added to the set of roles played by the
agent. In this case, having two set of roles associated with the agent allows modelling of a richer set
of behavioural constraints. However, dynamic role allocation is outside the scope of this paper.

Furthermore, as research on RAMASD is still ongoing the version of RAMASD reported in this
paper has certain limitations:

• Organisational rule specification The current version of RAMASD is restricted as concerns the
types of organisational rule that can be specified. As mentioned in Zambonelli et al. (2001b),
organisational rules can be quite complex, involving temporal and dynamic relationships among
roles and role characteristics in an agent organisation. The current RAMASD modelling framework
allows for modelling only simple types of organisational rule and instead emphasises reducing the
complexity of the agent-based system design task by providing automatic allocation of roles to
agents.

• Modelling non-functional aspects Currently, only simple quantitative models of non-functional
aspects are considered in RAMASD, for example it has been assumed that the relation between the
agent performance variables and the performance variables of the agent roles is linear. In the case
study this is reflected by assuming that the memory needed by an agent is equal to the sum of the
memories needed by the roles the agent plays. This is not generally the case, however, as some non-
functional parameters change dynamically over time. Therefore it is expected that sophisticated
models of non-functional aspects need to be considered in later versions of RAMASD.

Figure 11 Agent types for the telephone repair service teams case study
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• Scalability of RAMASD RAMASD has so far been applied in case studies involving a relatively
small number of roles (up to 20 roles) and a small number of inter-role constraints (up to 30 role
constraints). In those numbers the RAMASD search algorithm as well as standard search algorithms
managed to provide design solutions at reasonable time. However, RAMASD has yet to be tested in
the design of agent organisations involving large numbers of roles and role constraints. It is
envisaged that suitable (most probably heuristic) search algorithms will be required to handle large
numbers of roles and design constraints and this is currently the subject of ongoing work.

8 Conclusions and further work

Current methodologies for engineering multi-agent systems do not adequately support the
transformation of analysis knowledge to design decisions that take place when designing agent
organisations, requiring the designers to manually address the complexity of the design problem. This
makes designing large, real-world multi-agent systems a tiresome and error-prone exercise.

To address these concerns, we propose RAMASD: a method for designing agent organisations
which reduces design complexity by semi-automating the design process. RAMASD achieves semi-
automation based on: (a) an extended definition of the role concept which allows modelling of
non-functional aspects as constraints on special role characteristics called performance variables and
(b) a formal model of role relationships concerning ways that roles can be assigned and played by
agents. This formal relationship model is called role algebra, and it is used to drive a synthesis design
process which allocates roles to agents whilst observing any design constraints specified on inter-role
relationships and performance variables. RAMASD enables reusing organisational design knowledge
by allowing designers to specify and retrieve relevant role models and to manipulate them using the
role algebra. Furthermore, RAMASD can be used in conjunction with a number of existing multi-agent
system design methodologies which make use of the role concept.

Some issues, however, are not yet addressed by RAMASD, and have been established as directions
for future work. One such issue is the influence of context when designing agent organisation, since
agents can play different roles in different contexts. A longer-term research task would be to investigate
the impact of dynamically allocating and de-allocating roles to agents at run time by using our role
algebra and to explore sophisticated models of non-functional aspects. On a more applied level, we
would like to design a mechanism where libraries of role models can be published on the Semantic
Web and shared using standard ontology description languages such as DAML-OIL.
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