
A Performance Modeling and Analysis

Environment for Recon�gurable Computers

Je�rey Walrath and Ranga Vemuri
email : ranga.vemuri@uc.edu

University of Cincinnati, ECECS Department, ML #0030,
Cincinnati, OH 45221, USA

Abstract. In many of the various layers of software supporting recon-
�gurable architectures such as compilers, operating systems, synthesis
tools, and so forth, a primary objective is to deliver the performance,
power, cost, and other advantages of recon�gurable architectures to a
target application. Inherent to these tools are various estimation proce-
dures for such performance metrics as throughput time, power, reliabil-
ity, cost, and so on. Analysis of Recon�gurable Computers (ARC) is a
comprehensive analysis and modeling tool we are developing that can be
used to calculate these and other performance metrics.

1 Introduction

Currently, there is signi�cant research and development in recon�gurable archi-
tectures from compilers to automated synthesis tools to various programming
methodologies and abstractions [1, 2]. It is common to �nd in these tools estima-
tion techniques for various performance metrics such as execution time, power
consumption, throughput rate, reliability, etc.

Since this type of estimation is such a common thread, we are developing
a comprehensive performance modeling and analysis environment speci�cally
for the analysis of recon�gurable computers called ARC 1. Figure 1 shows an
application-level view of the ARC system (Analysis of Recon�gurable Comput-
ers). It will allow for, but not be limited to, the analysis of various performance
metrics such as throughput rate, reliability, power consumption, recon�guration
costs, and so forth. And by the nature of its design, it will be possible with ARC
to perform analysis of any computable performance metric that can be speci�ed
in our performance model speci�cation.

ARC is a modular system designed for exibility in doing performance mod-
eling and analysis of various performance metrics on a number of di�erent re-
con�gurable architectures including both hardware and software architectures.
Inputs to the ARC system are an Architecture Speci�cation and a Performance
Model Speci�cation. The architecture speci�cation is a description of the target
architecture. A performance model speci�cation de�nes the performance metrics

1 This work is sponsored in part by the DARPA/ITO Adaptive Computing Systems
Program and monitored by the US Army under contract number DABT63-97-C-
0030.



The
ARC

System
Performance

Specification
Model

Specification

Reconfigurable
Architecture

Visualization Tools

Command
Shell

CAD/CAE
Tool

Application
Model

Fig. 1. View of the ARC system.

to be analyzed and procedures for calculating those metrics. Performance model
speci�cations are given in a performance modeling language based on PDL [3, 4].

Since the architecture and performance model are given as separate inputs,
the ARC system can be easily modi�ed and con�gured to perform di�erent
performance analyses by simply changing the performance model speci�cation.
In addition, a performance model can be written so that it applies to a family of
architectures instead of just a single architecture. For example, a performance
model can be written to calculate the throughput time of designs con�gured
on an FPGA style architecture. One performance model speci�cation could be
written so that it applies to an entire family of FPGAs.

With these two inputs, the ARC system internally creates a exible exe-
cutable performance model for the speci�ed architecture. It is exible because
it can be used for any con�guration of the target architecture. That is, ARC
automatically updates and modi�es the performance model each time a new
con�guration is given. Thus, the ARC system can be used to analyze various
performance metrics over a number of di�erent con�gurations. It maintains and
stores data and various information contained in the model in a results database
that can then be used by other visualization tools and environments such as
Khoros or Gnuplot.

Figure 2 shows a system-level view of ARC and the various components of
the system. In the following sections, we describe the details of the inputs to the
ARC system along with the operation of the various components.

2 Performance Model Speci�cation

A performance model speci�cation de�nes both the performance attributes to be
calculated along with the evaluation rules for calculating values for the various
attributes. From a modeling perspective, a design is viewed as a collection of
modules, carriers, and ports. Thus, all the components of an actual design can
be categorized as one of these three types. Modules are typically such items as
gates, logic blocks, switch boxes, transistors, etc. Carriers are typically wires and



net-lists. Ports are used for connecting modules and carriers to other modules
and carriers. These component types are declared in the model speci�cation.

Composer

Evaluator

Scheduler

Results Database

API

Performance
Model

Specification

Reconfigurable
Architecture
Specification

ARC System

Application

Application

Application

Fig. 2. Components of the ARC system.

Along with the component types are de�nitions for the various attributes and
evaluation rules. Attributes are de�ned as a particular data type such as integer,
real, etc. and attached to the di�erent component types [5, 6]. Evaluations rules
de�ne how to calculate various performance metrics and aspects. These rules
are composed of expressions, functions, and programming statements that may
involve the various attributes of the di�erent design components.

It is important to note here that a performance model speci�cation is de�ned
independent of a speci�c design. Instead, it is de�ned for a family of designs.
That is, the same speci�cation can be applied to any design that contains those
design components declared in the model speci�cation.

Design components, attributes, and evaluation rules are written in a language
based upon the performance modeling language PDL [3, 4]. This modeling lan-
guage is exible enough to allow for the analysis of any computable performance
metric that can be de�ned in this notation.

2.1 Attribute Types

Another important aspect of the model speci�cation is attribute types. Besides
being a particular data type, attributes can also be static or dynamic. Static
attributes are those attributes in the model which can be computed from the
static structure of the design being modeled. They can include such things as
area, maximum delay throughput, supply voltage, and so forth. Dynamic at-
tributes are those attributes that are calculated based on the dynamic behavior
of the design. For example, they can include such things as dynamic power dis-
sipation, size of queues and �fo, etc.

Unlike static attributes, dynamic attributes require streams of values. Some
dynamic attributes are streams of values speci�ed externally via the API while



other dynamic attributes depend upon the values of other dynamic attributes
within the model. Evaluation rules for dynamic attributes can reference both
static and dynamic attributes whereas rules for static attributes can only depend
upon other static attributes.

2.2 Recon�guration Modes

An important feature of the ARC system is the ability to do performance mod-
eling with recon�guration of the target architecture. Each module, carrier, and
port can have associated with it a con�guration mode. This mode de�nes the
various con�gurations particular components can have. When a module, carrier,
or port is declared with a con�guration mode, a builtin attribute called mode is
automatically attached to the component. The data type of the mode attribute
is de�ned in the model speci�cation and can be referenced in any evaluation
rule. Thus, evaluation rules can be formulated that calculate di�erent values for
a speci�c attribute based upon the particular mode of a certain component.

2.3 Recon�guration Triggers

Another builtin attribute is the trigger attribute. This attribute is a boolean
type. It is only created for modules, carriers, or ports that are de�ned with a
con�guration mode. This attribute is slightly di�erent than others because it is
used to govern the evaluation semantics of the ARC system during evaluation.

It is an attribute that governs when a module, carrier, or port will change
its con�guration. When this attribute becomes true, the mode of the particular
design component is changed to the next corresponding mode. The next con�g-
uration mode can be de�ned by an evaluation rule or assigned by the scheduler.
E�ectively, if there is no evaluation rule de�ning the next mode, the applica-
tion will de�ne the next con�guration mode. There are several mechanisms that
can be employed by the application to do this via the application procedural
interface.

3 Recon�gurable Architecture Speci�cation

The architecture speci�cation is a description of the actual components of the
target architecture. Recall that the performance model description has declara-
tions for the various components that will be in the architecture speci�cation.
Thus, the architecture speci�cation will contain instances of each of those com-
ponent types along with any hierarchy and connectivity information that may
be required.

4 Composer

The composer creates an executable performance model using the performance
model speci�cation and architecture speci�cation. The performance model spec-
i�cation without an architecture speci�cation is not executable and can not be



used to perform any kind of calculation. Composing an executable performance
model involves several steps [7].

In the �rst step, each component from the architecture speci�cation is taken
and augmented with the attributes de�ned for that component in the model
speci�cation. After all attributes are attached to the components, the perfor-
mance model, which is merely a collection of the various evaluation rules, is
created.

Once the executable model is created, several analysis steps are performed to
ensure that the model can be evaluated. First a dependency graph representing
the dependencies among the various evaluation rules is created for the entire
performance model. That is, each evaluation rule is analyzed to determine those
attributes upon which it depends and correspondingly represented in the graph.
Then the dependency graph is searched for cycles and topologically sorted to
determine an evaluation sequence for the evaluation rules. With cycles in the
graph, it is not possible to determine such an evaluation order [8]. Thus, the
composer reports such cycles and details which attributes are involved in various
cycles.

5 Evaluator

Input to the evaluator is the sorted dependency graph. Evaluation involves start-
ing with all attributes of order 1 and obtaining values for those attributes. Such
attributes must be assigned a value from some external source via the API. A
user can directly assign values through a command line shell or they can be
assigned by other tools or applications.

Once the attributes of order 1 have been assigned values, the rest of the
attributes are evaluated in the correct order. Results of the evaluation are stored
in a results database. A results database is maintained for all attributes that
are ever evaluated, even between various recon�gurations. It is possible that
in di�erent con�gurations there may several attributes which do not exist in
other con�gurations. The database maintains a history of all attributes and
their corresponding evaluation results for each of the various con�gurations.

6 Scheduler

The main function of the scheduler is to handle the recon�gurations of the per-
formance model. The scheduler is responsible for controlling and responding to
the di�erent trigger attributes within the design components.

When triggered to do so, the scheduler is responsible for assigning the new
con�guration modes of the various design components and ensuring that the
dependency graph is updated with any changes caused by moving to a new
con�guration. Thus, it is tightly coupled with the composer and evaluator to
perform the necessary operations and updates for recon�guration.



7 Triggers and Applications

One possible controlling input to the ARC system that makes it exible for a
variety of target architectures is an application behavior. ARC views an applica-
tion as a series of states, where each state represents a particular con�guration
of the application. The application behavior can be de�ned in C or C++. The
application can control the ARC system by using the triggers and con�guration
modes. From within the application behavior, at various transitions from state
to state, an application can use the triggers and con�guration modes to change
the performance model as required.

Con�gurations modes can be used at various levels of abstraction depending
upon the architecture and performance model speci�cation. Thus, con�guration
modes do not only apply to low level bitmap type con�gurations.

8 Conclusion

The ARC System is an ongoing project that is currently under development. For
more speci�c details of the ideas and concepts presented in this paper, see the
technical report entitled \ARC Technical Report #980123" on the ARC home
page via the URL http://www.ececs.uc.edu/�ddel under the research projects
link.

References

1. C. Iseli and E. Sanchez. A C++ Compiler for FPGA Custom Units Synthesis.
In IEEE Conference on FPGAs for Custom Computing Machines, pages 173{179,
1995.

2. Michael J. Wirthlin and Brad L. Hutchings. A Dynamic Instruction Set Computer.
In IEEE Workshop on FPGAs for Custom Computing Machines, pages 99{107,
1995.

3. Ranga Vemuri, Ram Mandayam, Vijay Meduri. Performance Modeling Using PDL.
IEEE Computer, pages 44{53, April 1996.

4. Je�rey Walrath and Ranga Vemuri. Symbolic Evaluation of Performance Models
for Tradeo� Visualization. In Proceedings of 34th Design Automation Conference,
pages 359{364, 1997.

5. M. Nagl and A. Schurr. A Speci�cation Environment for Graph Grammars. In
H. Ehrig and H.-J. Kreowski, editors, Graph Grammars and their Application to

Computer Science, volume 411, pages 599{609. Springer-Verlag, 1991.
6. U. Kastens. Ordered Attribute Grammars. In Acta Informatica, volume 13, pages

229{256, 1980.
7. K. Kennedy and S.K. Warren. Automatic Generation of E�cient Evaluators for

Attribute Grammars. In Proceeding of 3rd ACM Symposium on Principles of Pro-

gramming Languages, pages 32{49, 1976.
8. M. Jazayeri, W. Ogden, and W. Rounds. The Intrinsically Exponential Complexity

of the Circularity Problem for Attribute Grammars. Communications of the ACM,
18:679{706, December 1975.


