I nteractive Query Formulation in Semistructured
Databases

Agathoniki Trigoni

Athens University of Economics and Business
Department of Informatics
ntri g@bg. gr

Abstract. The use of large amounts of distributed and heterogeneous informa-
tion has become extremely cumbersome; this difficulty is mainly related to ex-
ploring the data, rather than actually storing or exchanging it. The user who is in-
terested in small bits of information is getting more and more confused when hav-
ing to dig under a large volume of diverse and more importantly semi-structured
data. In this paper, we propose an interactive and adaptive framework that guides
the user in the search for data, by disclosing only a part of the underlying infor-
mation at a time. It first provides the user with a high-level view of the raw data
and gradually adapts to his/her needs in order to offer a refined answer. The pro-
posed model offers the possibility to query a semistructured database based on
general schema-related constraints imposed by the user or identified by the sys-
tem, but without specific knowledge of the underlying metadata. This is achieved
by receiving initially an amorphic query, which may consist of one or more ba-
sic paths, and helping the user to refine it gradually to a specific semistructured
query, expressed in a language like XQuery or Lorel.

1 Introduction

The queries processed in the areas of databases and information retrieval are tailored
for the needs of the underlying systems. Regarding databases, query constructs vary de-
pending on whether the context is an object-oriented [1], relational [2], deductive [3] or
semistructured database [4—6]. In general, prior knowledge of the database structure is
required, even if it is limited or is inferred automatically, as in the case of semistructured
databases [7-9]. On the other hand, searches in the context of information retrieval have
a different style; they are usually based on identifying a set of keywords in a series of
documents, and using a variety of criteria and ranking algorithms to sort the resulting
documents based on their relevance to the keywords [10].

Neither of the two query styles provides the most natural way of searching. The
query framework proposed in this paper takes into account the following points:

— Users can usually contribute to the query input in a more intelligent way than by
providing a few keywords.

— A system is not user-friendly when it requires a detailed knowledge of the database
structure, especially in the presence of large amounts of heterogeneous data.

— The user would not like to miss information because of his lack of knowledge
about the schema. Query languages in semistructured systems currently allow the
user to avoid type errors when not complying with the explicit or implicit schema.
However, the user ends up receiving only a part of the information requested.

— Users usually have a high-level knowledge of the database structure, based on their
natural perception of data correlations.

— The lack of knowledge about the database structure does not preclude the need to
enforce specific selection criteria on the results.

Structured queries require knowledge of schema information, or else fail to deliver
complete and accurate results. IR-style searches do not exploit but a small part of the
user’s knowledge about the data (mainly keywords), and result in sets of documents that
cannot be filtered using detailed criteria. The idea behind this paper is that the tradeoff
between allowing natural queries and receiving quality (complete and accurate) results,
could be compromised if we adopted an interactive and adaptive query model.

University

University s College College

Department Department Department
Department Department Department
[J
+ Research : Visitor Faculty
| Professor
oo l/\emup i Prof-orI kofr
People ! s)
I ’ PeopleI j Professor Educ ICV Blographyl
i
¢ P mbllcatlons Languages, First_Degree
esst 1 Undergr
Profrl P(?f’ Professor grad Graduate l,PhD First_Degree PhD
‘. o ° » ©
Resume| . Educ .
Undergrad,
I\\ g/\eraduae
UndergradAGraduate

Fig. 1. XML data: Academic information about universities and colleges

Consider for instance an XML tree that represents academic information about
universities and colleges (figure 1). The root of the tree named Acad DB has several
University labels and each one of them is organised in a different way. Say that a
Scholarships Foundation is interested in funding the Computer Science department of a

university with strong background in mathematics. Hence, they look for the department
with the maximum number of academics having studied maths in their first degree and
computer science in their graduate studies. That is, they search for quite specific infor-
mation without having specific knowledge of the data organisation, but merely a high
level view of how universities are organised in general.

Using an IR approach and providing keywords like maths, professor, informatics
they might be able to receive relevant Web documents, but still it would be difficult
to identify automatically the department that satisfies their selection criterion. Since
there is a need for an exhaustive search in all universities, well-known semistructured
queries cannot be trusted, since they might exclude interesting information from the
result, without even sending an error message, e.g. type conflicts. Our objective is the
tight coupling of knowledge discovery and query processing, as a means of providing
the user with the best answer possible, exploiting existing high-level knowledge of the
domain context but also enabling low-level filtering techniques.

In what follows, we present the functionality of the proposed model. In section 2
we discuss the kinds of schema and semantic information used by the interactive query
processor. This information is either discovered in advance or mined upon the request
of a user. The algorithm that guides the interactive process is proposed in section 3.
A concrete example that demonstrates the process of gradual query refinement is pre-
sented in section 4. Based on the example, we discuss the advantages of our framework
compared to more traditional query or IR engines, and show how it could potentially
be extended in order to take into account new kinds of knowledge about the data (sec-
tion 5). Finally, section 6 refers to previous work related to our framework and section 7
presents concluding remarks highlighting the novel points of the proposed model.

2 DataOrganization: Schema, Morphology and Semantics

In most existing database systems, queries, which are expressed in declarative lan-
guages, provide information about the location of the data requested, and include oper-
ations like filtering, grouping and ordering. In our model, it is not necessary to specify
explicitly the location of data; instead a number of new search criteria can be used that
are metadata-related and allow for the expression of a wider variety of queries. Prior
knowledge of metadata is not required, but metadata information can be used as a re-
quirement (or filter) for the expected results. Metadata information is also used by the
query processor, e.g. in order to justify that the user requirements are not satisfiable, as
it will be shown in section 4.

The kinds of metadata information used either as search criteria (by the user), or
as guides for query refinement (by the query processor), are presented below. Sim-
ilar information has also been used for the semantic optimization of semistructured
queries [11, 12]. In what follows, paths are denoted as p, p; or p}, and represent either
specific paths (e.g. Student.course.name) or path patterns (e.g. Student.course.*,
Student. * (2,4).name). The symbol x represents a sequence of zero or more labels,
whilst *(m, n) represents a sequence of m to n labels. The notation 1ab,|labs denotes
that either of the two labels can be used; for example Person.name|job includes paths
Person.name and Person.job. More formally, a path (or path pattern) is a sequence of

zero or more elements of the form:

element ::= label
| labely]...|labely
| =
| *(m,n)
where 1abel, labely,. .., labely are names of labels in a semistructured database.

The expression p C p’ expresses that path p satisfies path p’, i.e. all specific paths
(sequences of labels) that are instances of p are also instances of p’.

1. Sequence patterns. Consider for instance a rule of the form
Vp1,p2. P1 C Py AP1-P2 = P2 C Pa

This rule expresses that if a path py satisfies the pattern pj and p; is followed by
P2, then the latter satisfies the pattern ps,.
This metadata information could be used by the user to search for all paths p; that
satisfy the rule above. For instance, a user might be interested in all authors that
have written only fiction and hence there are no other labels (e.g. novel, essay) that
start from these author nodes.
The rule above might also be useful to the query processor to inform the user about
the sequence patterns of a path pf, such that p{ C p} or to justify why a query
pY.py, such that p{ C p} and not(p} C p4) would yield no results.

2. Sibling patterns. Paths in semistructured databases often exhibit properties that are
related to the properties of sibling paths, i.e. of paths that start from a common
parent node. Consider for instance a rule of the form

Vp1,p2- P+ C Py Ap2 C py Ap1.p2 = Ips. ps C p3 A p1.ps

That is, if path p; is followed by p, then it is also followed by at least one path ps,
where py C p}, p2 C p5 and ps C ps.
The query processor could use this semantic information in order to present the
properties of a given path p; or p;.p2 and thus help the user to refine it to a specific
query.
The rule itself could be presented by the user as a query, e.g. find all paths p; that
satisfy (or not) the rule. This query could probably be expressed using existing
query languages for semistructured databases, but if the consequent of the rule was
a universal quantification, this would be impossible.

3. Shortcut properties Consider for instance the rule

Vp1,P2- P1 S P AP2 S Po AP1P2 =
Ips. ps C p3 A end node(ps.pa) = end node(pl.p3)

The rule expresses that a path p; .p2 leads to the same point as at least one alternative
path p;1.ps. If ps is shorter (has fewer labels) than p, then the former is a shortcut
of the latter.

The query processor might propose the use of a shorter path than the one specified
initially, in order to reveal potentially interesting schema information and thus guide

the user to express a more appropriate query. Shorter paths might also contribute to
the more efficient execution of the initial query.

On the other hand, the user might be interested in paths that satisfy the pattern p}.pj
and that have at least one alternative path. For instance, it might be interesting to
search for all countries such that if they export products to a certain country, they
also import other products from it.

. Specificity Consider for instance the following rule:

Vp.pCp =pCp’

It expresses the metadata information that paths that satisfy the pattern p’ also sat-
isfy the more specific pattern p”. If such a rule is true in the database, then the
query of a user that involves a path p; C p’ should become more specific, say ps S0
that p; C p”. Exploiting metadata information, the query processor helps the user
to refine his/her queries. Notice that this information is only exploited by the query
processor and is not usually expressed as a query by the user.

. Topological properties Topological information refers to the relevant location of a
path, e.g. to its distance from a certain node. For instance the semantic informa-
tion distance(anchor node, p) in R expresses the fact that the number of labels
leading from anchor node to the beginning of path p are in range R, e.g. R=[2,4].
The information bottom distance(p) in R denotes that the distance of the end of
path p to a leaf (to which it leads) is in range R.

A user might be interested in paths that are close to leaf nodes, since leaves contain
values upon which one may apply selection criteria. For instance, a user might
query all paths p such that bottom_distance(p) in [1, 3].

If a user has very little knowledge of the structure of an XML tree, he might be
interested in discovering gradually labels that are in the initial levels, and hence
denote general ideas, or in labels close to leaves, which express what kind of values
are stored in the database.

. Cardinality and Length of patterns

Users are often interested in paths that occur a certain number of times in the
database, independent of their location. The expression number(p) in R denotes
that the cardinality of paths of the form p are in range R. For instance, in a sur-
vey about labour conditions in U.K. it is expected that labels that link individuals
with jobs should be almost as many as the people of the sample. Hence, even if
we have no prior knowledge of the specific label, its cardinality can be used as
a starting point to enter and further explore the database. The problem of finding
frequent subsequence patterns of the form %.X;. % .Xg. * ... % .Xn.%, where X; is a
subsequence of at least #; labels (i = 1,...,n), has been studied in the context of
combinatorial pattern discovery for scientific data [13]. In that context, the notion
of maximum edit distance (as a dissimilarity measure) is used so that the support of
a pattern is also increased by sequences that approximately satisfy a pattern (within
edit distance d). This dissimilarity measure can also be used in our work, in order
to allow a user to express queries of the form: ”Find all subpaths of length 3 (i.e.
lab,.1abs.1labg) that occur at least 100 times in the database within distance 1”.
The length of paths satisfying a pattern can be used in order to avoid cyclic paths,
or indirect paths irrelevant to the user requirements. For instance, in a genealogic

XML graph, it is sufficient to use paths of length at most 3 in order to find the close
relatives of a certain person. If a user specifies a query pattern satisfiable by many
paths of completely different lengths, the query processor should notify the user of
this information, in order to help him/her refine the query.

7. Pattern Similarity In our discussion about pattern cardinality (or support), we men-
tioned the problem of searching for frequent subsequences of labels of length ¢
within edit distance d. The user searches for frequent patterns of a minimum length,
allowing for a certain degree of sequence dissimilarity. The dissimilarity measure
can also be used in a similar problem, in which the user searches for all paths that
contain a subsequence similar to an input path pattern. This need may occur for
two reasons: i) a user might be unable to find any paths in the database satisfying
the original pattern and ii) even if a pattern is found in the database, the user would
like to cover the possibility of ignoring very similar and equally interesting pat-
terns. Hence, given an initial path pattern, our framework provides the opportunity
of searching the semistructured data for all similar paths within distance 4, i.e. that
satisfy the pattern if we modify (insert, delete or substitute) at most d of their labels.

It is interesting to notice that the kinds of metadata information defined above could
be combined in several ways. For instance, a user might be interested in paths from a
source to a target node, such that the number of alternative paths of length £ that link
the two nodes are more than n. Likewise, the system could combine this knowledge
in order to justify why a certain query is expected to yield no results, or as a way to
aid in the refinement of the query. In the following section, we show the interactive
process that exploits the metadata information defined above, namely path sequences,
inheritance properties, connectedness and shortcuts, specificity rules, topological re-
quirements, cardinality and length properties, as well as pattern similarity.

3 Interactive Search Algorithm

The idea behind the interactive search algorithm is that the user cannot express ini-
tially a specific query, but gradually refines a general one based on either metadata re-
quirements that s/he enforces or metadata information about the schema that the query
processor reveals.

The detailed algorithm is given below:
Step 1: The user initially presents a query, as a set of path templates (patterns).
Step 2: Repeat substeps 2.1 and 2.2

— Substep 2.1: The system uses metadata information about sequence and inheritance
patterns, or specificity rules, in order to justify the absence of some input patterns,
as well as to refine others. If metadata information relevant to the patterns is not
available, the query processor navigates over the semistructured database in order
to identify new knowledge and store it in the warehouse.

— Substep 2.2: The user adds, modifies, deletes, or accepts the resulting path tem-
plates.

Until the resulting patterns from substep 2.1 are not altered at all by the user in
substep 2.2.
Step 3: Given the refined patterns, the user may proceed in either of the following ways:

1. By looking for metadata information relevant to one or more of the patterns.

The user may select one or more of the following metadata information:
— Sequence patterns
— Sibling patterns

Connectedness and shortcut properties

Topology information

Cardinality and Length information

Similar patterns within edit distance d
Based on the resulting metadata information, the user may modify some of the
existing paths, or add new ones. The algorithm is then continued from step 2.

2. By enforcing metadata conditions as requirements in order to further refine one or
more patterns.

The requirements might concern one or more of the following metadata conditions:
— Sequence patterns
— Sibling patterns
— Connectedness and shortcut properties
— Topology information
— Cardinality and Length information
The metadata conditions result in more refined patterns, that the user might then
accept, modify, reject or add new ones. The algorithm is then continued from step
2.

3. By asking the system to present the user with all specific paths in the database
that actually satisfy one or more of the refined paths. In fact, the user may only
be interested in the enumeration of £ consecutive labels preceding or following a
segment (subpath) of a given pattern.

In this case the user may select specific paths, or add, change, or delete some of the
initial path patterns. The algorithm is then continued from step 2.

4. If the patterns are already specific, the interactive process ends and the user may

express a detailed query in a language like Lorel or XQuery.

The functionality of the algorithm presented above is demonstrated through the use
of an example in section 4.

4 Searching and Querying a Semistructured Database: Example

Consider the database consisting of academic information about universities and col-
leges (figure 1), which was first mentioned in section 1. The user is interested in identi-
fying the university department with the maximum number of academics having studied
maths in their first degree and computer science in their graduate studies.

Step 1

— User: The user registers interest for paths of the form:

P; : x.University. * .Professor. x .Educ

Step 2

— System: The system applies the specificity rule that all paths should start with the
only entry point to the database Acad DB and converts Py to P,.

P : Acad DB.University. * .Professor. x .Educ

It also uses the sequence pattern that all children of University labels are named
Department to convert P to Ps.

P3 : Acad DB.University.Department. * .Professor. * .Educ
Step 3

— User: The user queries the length of subpaths Department. % .Professor in P
since he is interested in closely linked Department and Professor nodes. A long
path between a Department and a Professor would signify that the latter does
not belong to the former, but is rather remotely associated with it. If such a long
subpath leads to the same Professor as a shorter path, then the user would be
interested in considering only the shortcut.

— System: The answer is that we have paths of length 3 and 5.

— User: The user wonders why the subpaths Department. % .Professor are of two
different lengths, and attempts to investigate the properties of the longer ones. If
Professor nodes that are reached by paths of length 5 were also reached by paths
of length 3, then the former paths could be ignored. Thus the user puts the condition
that the length of Department. * .Professor in Pz should be 5 and queries any
connectedness properties of the resulting paths.

— System: The resulting subpaths of length 5 have the form Py:

P, : Department.Research.Group.People.Professor
Regarding connectedness properties of P4, all nodes reached by
Department.Research.Group.People.Professor

are also reached by
Department.Staff.Professor

Step 2

— User: Hence the user decides to refine P by specifying that only one label separates
Department and Professor:

Ps : Acad DB.University.Department. * (1,1).Professor. * .Educ
— System: No refinement is possible.
Step 3

— User: An enumeration of subpaths Department. * (1, 1).Professor (Of path Pg) is

requested.
— System: The answer is:

Department.Faculty|Staff|Visitors.Professor

Step 2:

— User: The user is not interested in Visitors, so s/he refines pattern Py to Pg. The
user also adds the new pattern P, taking into account that education information
about a professor might not necessarily follow an Educ node. Other relevant key-
words could be CV, Biography or Curriculum Vitae.

P : Acad DB.University.Department.Faculty|Staff.Professor. % .Educ
P; : University. # .CV|Biography|Curriculum_Vitae

— System: The system refines Pg and P7 to Pg and Pg respectively. Notice that label
Curriculum Vitae is not included in Py.

P : Acad DB.University.Department.Faculty|Staff.Professor. % .Educ
Py : Acad DB.University.Department. * .Professor.CV|Biography

Step 3

User: The user searches for sibling patterns in Pg and Pg. The reason is that s/he sus-
pects that graduate and undergraduate studies (independent of their actual labels)

are likely to occur together under either Educ or CV|Biography.
System: A sibling pattern was identified in Pg:

Vp.p C Educ A p.Undergrad = p.Graduate

User: Based on previous knowledge, the user refines path Pg by replacing its sub-
path Department. x .Professor with Department.Faculty|Staff.Professor.
Having no further specific requirements, s/he then asks for an enumeration of all
labels that follow CV or Biography in Pg.

System: PhD|First_Degree|Publications|Languages

Step 2 New paths presented by user.

Pio : Acad DB.University.Department.Faculty|Staff.Professor. * .Educ.Undergrad

Py1 : Acad DB.University.Department.Faculty|Staff.Professor. * .Educ.Graduate

Pi> : Acad DB.University.Department.Faculty|Staff.Professor.CY|Biography.First_Degree
Pi3 : Acad DB.University.Department.Faculty|Staff.Professor.CV|Biography.PhD

Step 3: The user queries the distance of these paths from leaves and the system confirms
that it is 0.
Hence the user may use these paths to form the following query:

Q: = (select dept : x.dept, no_of prof : count(x.prof)

from
(select dept : Acad DB.University.Department, prof : p
from Acad DB.University.Department.Faculty|Staff.Professor as p
where p. * .Educ.Undergrad contains Maths
and p. * .Educ.Graduate contains Computer|Inform
union
select dept : Acad DB.University.Department, prof : p
from Acad DB.University.Department.Faculty|Staff.Professor as p
where p.CV|Biography.First_Degree.university contains Math
and p.CV|Biography.PhD contains Computer|Inform)

as x
group by dept : x.dept)

Q4 returns all departments paired with the number of professors that have studied math-
ematics in their first degree and computer science or information techonology in their
graduate studies. The following query selects the department with the maximum num-
ber of these professors.

select dept : y.dept
fromQi asy
where y.no_of prof =
max(select z.no_of _prof fromQ; as z)

5 Advantages of the Interactive Search Algorithm

The example given above demonstrates a number of advantages of the proposed inter-
active search algorithm to traditional querying or IR techniques.

1. The user does not usually have a prior knowledge of schema information. Even if
this information is revealed, it might be very confusing for the user to assimilate and
handle. Our model provides the mechanism to gradually acquire relevant schema
information to his/her information needs.

2. The user is enabled to do a search not only based on content criteria (keywords),
neither only in exact location criteria (traditional queries). The model allows us to
use more meaningful schema-related criteria, e.g. sequence, sibling, topological,
connectedness, length and cardinality path constraints.

— By looking for schema-related patterns, the user can gradually find his way to
the paths that are relevant to his/her search. It is often more helpful to find our
way through a graph, if we know general structure characteristics, rather than
a detailed account of its paths.

— By enforcing schema-related constraints, the user manages to limit the scope
of the database, keeping a view only to the parts that satisfy the constraints.
This is a powerful mechanism for users who do not know the exact location
of the data, but have some intuitive knowledge of the constraints satisfied by
the interesting paths. Since these constraints are structure- rather than value-
related, they cannot easily be expressed in the where clause of a select query.
However, they are very useful in refining the paths presented initially by the
user.

— As a last resort the user may request an enumeration of all possible paths sat-
isfying a certain pattern. Such an enumeration is useful, because it is done in
a local context (after paths are already refined and the scope of the database
is limited). If it was performed in order to reveal the organisation of a whole
semistructured database, the amount of information would be overwhelming
and rather useless.

3. The iterative nature of the algorithm allows the user to readapt his search based
on the additional knowledge acquired in previous steps. The user may interrupt the
iterative process, only when s/he is satisfied with the expected degree of complete-
ness of the result.

4. The interactive algorithm is extendible in two ways: First, new kinds of patterns or
constraints could be searched or enforced respectively, as long as they are supported
in programming terms. For instance, distributed, or mobile data sources could be
queried based on semantic information about the distribution or movement patterns.
Second, ontological information could enhance the functionality of the system sig-
nificantly [14-16]. For instance, based on labels defined by the user, the system
may reveal synonyms or relevant concepts, that could be parts of equally interest-
ing paths. Ontologies have been traditionally used to enhance IR searches; however,
their use should also be beneficial in the process of defining more conventional se-
lect queries.

5. Our model is a hybrid system that combines characteristics of both IR and con-
ventional query models. The user may start with a few keywords (as in IR) and
by gradually identifying or imposing structural database constraints, s/fhe may then
refine the search gradually, until a detailed query is formed. Hence, the user may
satisfy his need for applying detailed selection criteria, despite the initial lack of
specific knowledge about the database schema. This is a very common need, and
hence our model is expected to be useful for a variety of applications.

6 Redated Work

The World Wide Web presents a great number of challenges from the viewpoint of
database theory [17], including storing and querying data, imposing constraints and
mining patterns [18]. As is stated in [17], ’a database is a polished artifact’, compared to
"a free-evolving, everchanging’ collection of data sources constituting the Web. Hence,
there is a need to devise flexible models for finding and extracting knowledge either by
querying raw XML-ized data or by mining patterns from semistructured databases or
their corresponding schemata (DTDs).

Several languages have recently been proposed for querying XML databases [4, 5,
19, 6]. On the other hand, many research groups have focused on integrity or typing
constraints applying to the semistructured model [20, 21]. These constraints have either
been used for query optimization or as a means of preventing anomalies during updates
or data integration. However, very little work has focused on a flexible mechanism
for querying information with the aid of constraints. Amongst the few tools available
for helping the user query a semistructured database, it is worth mentioning Docu-
ment Type Descriptors (DTDs). A DTD, which may optionally accompany an XML
document, serves the role of a schema specifying the internal structure of the docu-
ment. A significant amount of work has studied the inference of a DTD from one or
more documents, as well as the problem of deciding whether a document conforms to
a given DTD [7-9]. XTRACT, a recent system for inferring a DTD schema, applies the
Minimum Description Length (MDL) principle in order to generate both concise and
intuitive DTDs containing regular expressions. Semantically meaningful DTDs can be
used as a starting point in order to identify constraints, e.g. sequence or sibling patterns,
using a variety of data mining algorithms.

This paper proposes a framework for interactive query formulation using metadata-
related conditions; however, it does not consider the problem of actually identifying

constraints by defining new mining algorithms. The latter problem has been addressed
in the literature under the form of mining sequential patterns [22—-24] and association
rules [25] or combinatorial pattern discovery [13]. If we consider paths of a semistruc-
tured database as sequences of labels, then we may apply well-known algorithms in
order to find frequent subsequences of labels as well as (sequence or sibling) associa-
tion rules. This is a vertical way of deriving sequences from a semistructured database,
as opposed to the horizontal view of the database corresponding to DTDs. Mining as-
sociation rules or sequential patterns for our purposes may either take place initially, or
at the time of a request. In the latter case, our framework could benefit from algorithms
in which users play an active role in guiding the mining process [26, 27].

Our framework is equally relevant and could benefit from previous work on discov-
ering frequent tree expressions in documents [28, 29]. Typical structures in [28] can be
used as a ’table-of-content’ for gaining the general information of a source, or as a road
map’ for browsing and querying a source. The focus of our work is again not on min-
ing such typical structures, but on demonstrating the use of several kinds of metadata
information as guides in the querying process.

Finally, helping users find their way in a semistructured database has also been
considered in [30, 31] but following a different approach. In particular, they have not
considered structural properties and constraints as a means of adding flexibility to the
querying interface, but instead exploited path information generated and stored in dy-
namic schemata (DataGuides). DataGuides are similar to DTDs in that they provide
concise and convenient summaries of semistructured databases. Unlike static schemata,
DataGuides conform to the data, rather than forcing data to conform to DataGuides.
Hence, they always represent the current state of the database and play a significant
role especially in contexts where it is implausible to specify and maintain a schema.
DataGuide summaries may be used in our framework as concise and rich sources for
mining metadata constraints efficiently.

7 Conclusion

In this paper, we proposed an interactive and adaptive model for querying semistruc-
tured databases. Starting from an IR-style query, the user may discover interesting
schema information, and gradually refine his/her search to a conventional select query.
Our model has a dynamic notion of context, starting from high level information to raw
data and limiting the scope from the whole database, to local subpaths or subtrees. Ad-
hering to the human sense of searching things, it is not only based on value or location
criteria, but it equally exploits a variety of high level schema-related knowledge. This
information is stored in a warehouse, which is maintained based on an event-driven
mechanism. The proposed model should be very useful for searching semistructured
databases, when results need to be filtered based on detailed criteria and, hence, low-
granularity results (e.g. documents) are not acceptable. In general, it should be useful
for all applications with an underlying semistructured database, but its benefits would
be particularly obvious in the context of searches over the Web.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Cattell et al, R.: The Object Data Standard: ODMG 3.0. Morgan Kaufmann (2000)
Chaudhuri, S., Shim, K.: Optimizing queries with aggregate views. In: Extending Database
Technology. (1996) 167-182

Chakravarthy, U., Grant, J., Minker, J.: Foundations of semantic query optimization for de-
ductive databases. In: Foundations of Deductive Databases and Logic Programming. (1988)
243-273

Abiteboul, S.: Querying semi-structured data. In: Intl Conf on Database Theory. (1997) 1-18
Buneman, P.: Semistructured data: a tutorial. In: Symposium on Principles of Database
Systems. (1997)

Evangelista-Filha, 1., Laender, A., Silva, A.: Querying semistructured data by example: The
QSBYE interface. In: Intl Workshop on Information Integration on the Web (WIIW). (2001)
156-163

Buneman, P., Davidson, S., Fernandez, M., Suciu, D.: Adding structure to unstructured data.
In: Intl Conf on Database Theory. (1997) 336-350

Nestorov, S., Abiteboul, S., Motwani, R.: Inferring structure in semistructured data. In:
Workshop on Management of Semistructured Data. (1997)

Nestorov, S., Abiteboul, S., Motwani, R.: Extracting schema from semistructured data. In:
ACM Intl Conf on Management of Data. (1998) 295-306

Kobayashi, M., Takeda, K.: Information retrieval on the web. ACM Computing Surveys 32
(2000) 144-173

Buneman, P., Fan, W., Simeon, J., Weinstein, S.: Constraints for semistructured data and
xml. SIGMOD Record 30 (2001)

Buneman, P., Fan, W., Weinstein, S.: Query optimization for semistructured data using path
constraints in a deterministic data model. In: Workshop on Database Programming Lan-
guages. (1999) 208-223

Wang, J., Chirn, G.W., Marr, T., Shapiro, B., Shasha, D., Zhang, K.: Combinatorial pattern
discovery for scientific data: Some preliminary results. In: ACM SIGMOD Intl Conf on
Management of Data. (1994) 115-125

Chandrasekaran, B., Josephson, J., Benjamins, V.: What are ontologies, and why do we need
them? |IEEE Intelligent Systems 14 (1999) 20-26

Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems
16 (2001) 72-79

Zhong, N.: Ontologies in web intelligence. In: Practical Applications of Intelligent Agents,
Springer. (2001)

Vianu, V.: A web odyssey: From codd to XML. In: ACM PODS Symposium on Principles
of Database Systems. (2001) 1-15

Garofalakis, M., Rastogi, R., Seshadri, S., Shim, K.: Data mining and the web: Past, present
and future. In: ACM CIKM’99 2nd Workshop on Web Information and Data Management
(WIDM’99). (1999) 43-47

Chinenyanga, T., Kushmerick, N.: Expressive retrieval from XML documents. In: ACM
SIGIR Conf on Research and Development in Information Retrieval. (2001) 163-171

Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs. In: ACM PODS
Symposium on Principles of Database Systems. (2001) 114-125

Fan, W., Simeon, J.: Integrity constraints for XML. In: ACM PODS Symposium on Princi-
ples of Database Systems. (2000) 23-34

Agrawal, R., Srikant, R.: Mining sequential patterns. In: Intl Conf on Data Engineering
(ICDE). (1995) 3-14

23.

24.

25.

26.

27.

28.

29.

30.

31.

Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance im-
provements. In: 5th Intl Conf on Extending Database Technology (EDBT). (1996) 3-17
Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.: PrefixSpan
mining sequential patterns efficiently by prefix projected pattern growth. In: Intl Conf on
Data Engineering (ICDE). (2001) 215-224

Srikant, R., Agrawal, R.: Mining generalized association rules. In: Intl Conf on Very Large
Databases (VLDB). (1995) 407-419

Garofalakis, M., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern mining with regular
expression constraints. In: Intl Conf on Very Large Databases (VLDB). (1999) 223-234
Ng, R., Lakshmanan, L., Han, J., Pang, A.: Exploratory mining and pruning optimizations of
constrained association rules. In: ACM SIGMOD Intl Conf on Management of Data. (1998)
13-24

Wang, K., Liu, H.: Discovering typical structures of documents: A road map approach.
In: ACM SIGIR Intl Conf on Research and Development in Information Retrieval. (1998)
146-154

Wang, K., Liu, H.: Discovering structural association of semistructured data. Knowledge
and Data Engineering 12 (2000) 353-371

Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimization in
semistructured databases. In: Twenty-third Intl Conf on Very Large Data Bases. (1997)
436-445

Goldman, R., Widom, J.: Interactive query and search in semistructured databases. In: First
Intl Workshop on the Web and Databases (WebDB). (1998) 52-62

