

1

An Efficient Method for Performing Record Deletions
and Updates Using Index Scans

C. Mohan

IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA
mohan@almaden.ibm.com

www.almaden.ibm.com/u/mohan/

Abstract

We present a method for efficiently performing
deletions and updates of records when the records
to be deleted or updated are chosen by a range
scan on an index. The traditional method involves
numerous unnecessary lock calls and traversals of
the index from root to leaves, especially when the
qualifying records' keys span more than one leaf
page of the index. Customers have suffered
performance losses from these inefficiencies and
have complained about them. Our goal was to
minimize the number of interactions with the lock
manager, and the number of page fixes, comparison
operations and, possibly, I/Os. Some of our
improvements come from increased synergy
between the query planning and data manager
components of a DBMS. Our patented method has
been implemented in DB2 V7 to address specific
customer requirements. It has also been done to
improve performance on the TPC-H benchmark.

1. Introduction

Relational database management systems (RDBMSs)
utilize B+-tree indexes [BaMc72] very often to efficiently
identify a set of records with certain characteristics. The
CPU cost of performing a root-to-leaf traversal in an index
tends to be very high since a binary search is done at
every level of the tree. We would like to avoid traversals
as much as possible by performing range scans at the leaf
level. Here, we illustrate how traditionally RDBMSs have
not been that efficient during certain types of index
accesses. We present a method to improve that situation.

The query processing (optimization and execution)
research community is yet to recognize the need for the
query processing component (let us call it RDS (relational
data system), following the System R terminology) to be
conscious of concurrency control implications of its

actions. In [Moha92], we argued in favor of increased
synergy between the RDS and data manager (DM)
components by giving specific examples where both
correctness of query executions and/or performance were
impacted. This paper, in the process of describing an
efficient method to perform record deletions and updates
via index scans, provides another illustration of the
benefits of such increased synergy.

The rest of the paper is organized as follows. Before
discussing, in section 2, the problem that we are solving,
in the rest of this section, we give a brief introduction to
the relevant aspects of query processing and index
locking. In section 3, we describe our method for
efficiently performing record deletions via an index scan.
In section 4, we discuss extensions of our method to
handling record updates. We conclude with section 5.

1.1 Query Processing

RDBMSs implement the concept of a cursor. A cursor is a
construct (an iterator) used to scan and process a set of
data (records/keys/tuples satisfying certain conditions),
one at a time. RDBMSs implement two types of cursors:
user cursors and system cursors. A user cursor directly
corresponds to a cursor defined in a user application
using an SQL DCL CURSOR statement. System cursors are
the ones that the RDBMS defines and uses internally to
access the tables whose data is needed to satisfy users'
queries. One or more system cursors might be used to
produce the output corresponding to a single user cursor.
An example of a situation when a single user cursor might
be implemented using multiple system cursors is one
where the query requires accessing multiple tables (e.g., a
join operation). In such a situation, each of the tables' data
will be accessed using a separate system cursor. It is also
possible that there are some system cursors in use that do
not relate to any user cursors. This will be the case when
the user issues set-oriented delete/update statements (i.e.,
SQL statements of the form DELETE/UPDATE ... FROM ...

2

WHERE ...). Such statements are also called searched
deletes/updates.

For exposition purposes, the data storage model that we
assume is that of System R, where the data (i.e., the
records of the table) is stored in a set of data pages that
are separate from the B+-tree indexes. All the indexes on
the table contain only the key values and record identifiers
(RIDs) of records containing those key values. Each key
consists of a <key value,RID> pair. A RID consists of a
data page ID concatenated with a sequence number
unique within that page. The latter is the RID map slot
number. The RID map on each data page is an array of
pointers and it provides a level of indirection that permits
the record to be moved around within the page or even be
overflowed to a different page, without affecting the index
entries. Traditionally, B+-trees have been used to support
range scans. Comp ared to hash-based storage structures,
the CPU cost of traversing a B+-tree from root to leaf is
significantly higher since a binary search is performed at
every level of the tree. As sizes of tables grow, the number
of levels also increase. Further, the cost of fixing and
unfixing a page in the buffer pool as we search down the
tree also turns out to be significant. Hence, performance-
conscious DBMS designers try hard to minimize the cost
of tree traversals and scans via various optimizations
[Anto93, Anto96, CHHIM91, GLSW93, MHWC90].

An access path is used to implement a system cursor. The
most common access paths are sequential scan of a table's
data pages (a table scan cursor (TSC)) and range scan on
a B+-tree index (an index scan cursor (ISC)). Both system
cursors and user cursors might operate over permanent
data as well as temporary data (e.g., intermediate or final
results of a query stored in temporary tables or workfiles).
Even if a user cursor requires accessing only a single
table's data, multiple system cursors might have to be
used due to the exploitation of query processing
techniques like index ANDing/ORing [Anto93, MHWC90].

Information relating to a cursor is represented using a
cursor control block (CCB). The most important
attributes of a cursor are:

• Is the cursor open or not?

Only when a cursor is open, can a next (or fetch) call be
issued to get the next piece of data in the set of data over
which the cursor is defined.

• Does it have a valid position?

A user cursor has a valid position if it is positioned on a
piece of data that still exists. This means that anytime a
DBMS deletes a record, it has to make sure that all those
user cursors of that transaction which are positioned on
that record are invalidated. Invalidation will prevent a
cursor-based update/delete (i.e., SQL statements of the

form UPDATE/DELETE WHERE CURRENT OF CURSOR -
also called positioned updates/deletes) from being
processed, until the cursor position becomes valid again
by the issuance of a next call. The reason invalidation is
important is because of the fact that another record might
be inserted which is assigned the same RID as that of the
deleted record and then if the cursor-based update or
delete were to be processed after such a reuse of the RID,
the wrong record would get updated or deleted. Of course,
the situation gets much more complicated with the use of
optimizations like blocking of the transfer of the records
satisfying the user's query [Moha92] and the support of
features like scrollable cursors. More sophisticated
techniques are needed to avoid such errors when those
features are supported. Even if only one system cursor is
being used to support a given user cursor, the positions
of the user and system cursors might be different at any
given point in time due to the support of features like
blocking and scrollable cursors.

Since cursor-based deletes and updates are specified by
users only with reference to user cursors, there is no need
to perform invalidations of system cursors. System R used
to unnecessarily perform invalidations even for system
cursors.

In the case of set-oriented delete and update statements,
where the DBMS creates system cursors without any
related user cursors, RDS will issue cursor-based deletes
and updates with reference to those system cursors.

• If a cursor has a valid position, what is it?

In the case of a TSC, the cursor position is denoted by the
RID of the record on which the cursor is positioned. In the
case of an ISC, it is denoted by the key on which the
cursor is positioned.

• Is a cursor updateable?

If a cursor is updateable, then the UPDATE/DELETE
WHERE CURRENT OF CURSOR SQL statements can be
used with such a cursor. When such a statement is issued
against an updateable user cursor that has a valid
position, the record on which the cursor is currently
positioned is updated or deleted. In the case of an update,
the cursor continues to be positioned on the same record.
In the case of a delete, the cursor no longer has a valid
position. Typically, a user cursor is updateable if it does
not involve any joins and it does not contain an ORDER
BY or a GROUP BY clause.

• What are the predicates of a cursor?

Many times, a cursor is defined with a set of predicates
associated with it. These predicates are typically derived
from the information in the WHERE clause of the SQL
statement issued by the user. The set of predicates of a
cursor can be divided into two classes: sargable and
residual. Sargable predicates are the ones that are

3

evaluated by DM. Residual or non-sargable predicates are
the ones that are evaluated by RDS. In the case of an
index scan, the sargable predicates can be further
subdivided into two classes: ipreds (index predicates) and
dpreds (data predicates). Ipreds are the predicates that
involve only the columns in the index and hence can be
evaluated by the index manager (IM). Dpreds involve one
or more columns that are not present in the index. Hence,
the data record needs to be accessed by the record
manager (RM) for dpreds to be evaluated by RM.

1.2 Index Locking

Sophisticated concurrency control is employed while
accessing indexes to assure that several properties are
satisfied. One property is serializability (or repeatable read)
[EGLT76]. In the case of unique indexes, another property
to be guaranteed is assuring that no two keys with the
same key value are present at any time in the index.
Various sophisticated index locking protocols are
described in [Lome93, Moha90a, Moha95, MoLe92,
WeVo01]. Two types of locking are done in those
protocols: data-only locking and index-specific locking.
ARIES/IM is the index locking and recovery method
implemented in DB2 for Unix and Windows. An extended
version of it has been implemented in DB2 for the
mainframe [Moha99a]. Variants of ARIES/IM can support
both index-specific and data-only locking.

With data-only locking , a lock on a key is equated to a
lock on the corresponding piece of data that contains the
key. For example, with data-only locking and record
locking granularity, to lock a key, ARIES/IM locks the
record whose RID is present in the key.

 Data-only lock name := <TableID, RID(Key)>

With data-only locking and page locking granularity, to
lock a key, ARIES/IM locks the data page whose PageID
is present in the RID in the key.

 Data-only lock name := <TableID, PageID(Key)>

With index-specific locking, a lock on a key is made to be
different from the lock on the corresponding piece of data
that contains the key. For example, in ARIES/IM, with
index-specific locking and record locking granularity ,

 Index-specific lock name := <IndexID, RID(Key)>

With data-only locking and page locking granularity ,

 Index-specific lock name := <IndexID, PageID(Key)>

Tradeoffs are involved in choosing between index-specific
locking and data-only locking [Moha95]. Index-specific
locking requires more locks to be acquired for most
operations compared to data-only locking. But under some
conditions, index-specific locking can support higher
levels of concurrency.

In order to guarantee serializability, in ARIES/IM,
whenever a key is deleted (due to a record deletion or a
record update which causes the key value to change), an
exclusive (X) lock for commit duration is obtained on the
next higher key that currently exists in the index. It is this
next key lock which blocks subsequent readers who look
for the deleted key until the deleting transaction
terminates. In a similar fashion, a next key lock is acquired
momentarily on the next key during the insert of a key to
make sure that the insert is not going to interfere with a
reader who has already searched for (and not found) the
key being inserted. If such a read transaction is still
executing, the inserter's next key locking delays the insert
since a reader obtains a share (S) lock for commit duration
on the next key if the reader does not find the key that it is
looking for (S is compatible with S but is incompatible with
X). The mode (X, IX, etc.) in which the next key lock is
acquired during inserts is unimportant for the discussions
of this paper. For details, the reader should refer to the
papers on ARIES/KVL and ARIES/IM [Moha90a, Moha95,
MoLe92].

Typically, when DM is called by RDS for a record to be
fetched via a cursor, RDS will know more about why the
record is being retrieved:

• only for reading - a non-updateable cursor

• definitely for being updated/deleted - a set-oriented
delete/update statement with no residual predicates

• possibly for being updated/deleted - a set-oriented
delete/update statement with residual predicates or an
updateable cursor (i.e., the user might issue an
update/delete where current of cursor)

Consequently, RDS indicates to DM what mode of lock
should be acquired on the record when the record is
fetched via a cursor. Typically, RDS asks DM to get an S
lock. In some systems, when RDS suspects or knows for
sure that the fetched record would be updated/deleted
subsequently by the current transaction, then, to reduce
the likelihood of deadlocks, RDS asks for an update (U)
lock to be acquired. Since U is incompatible with U and X,
but is compatible with S, this ensures that no other
transaction would be able to obtain a U lock on the same
record until the current transaction terminates. For this
case, if only an S lock were to be obtained, then two
different transactions could both first get S locks. Later,
both may try to update/delete the record at which point
both will try to get X locks and thereby create a deadlock
situation. Some systems (e.g., DB2) avoid such a
possibility by using U locks.

Typically, acquiring a lock in the absence of contention
requires 100s of instructions. DBMS and application
designers normally spend a significant amount of effort in
minimizing the cost of locking by reducing the number of

4

locks, number of lock calls, etc., while at the same time
permitting a high degree of concurrency. We have
discussed els ewhere [Moha90b] the significance of
reducing locking overhead and proposed a simple, yet
powerful, technique called Commit_LSN that has been
implemented in DB2 to great advantage.

2. Problem Description

Consider the following set-oriented SQL delete statement:

 DELETE

 FROM T1

 WHERE C1 > 10 AND C1 < 20

Assume that an ascending B+-tree index on C1 exists (call
it I1) and that the optimizer chooses to use I1 and perform
a range scan to determine the set of records to be deleted.
In this case, there are only ipreds and no dpreds. RDBMS
users very commonly issue these sorts of deletes. Deletes
like these are also generated internally by RDBMSs to
implement referential integrity when cascade-on-delete is
the rule and there is an index on the foreign key of the
child table, where that key is the primary key of the parent
table, and a parent record deletion's effect needs to be
propagated to the child table [CEHH90, HaWa90].

For the above DELETE statement, a typical execution in
existing RDBMSs would involve the following steps (in
addition to others which are not of interest here):

• RDS would call DM to open a range scan on the C1
index and fetch the RID of the first qualifying record.
Let the ISC so created be called ISC1. RDS would
request the qualifying data to be locked in S or U
mode.

Key PageID Key
Position

Page
LSN

Return_Current Lock
Mode

Table 1 Some of the Fields in an Index Scan Cursor
Control Block

• DM would invoke IM which would perform a root-to-
leaf traversal on I1 to locate the first key whose key
value is greater than 10. Let that key be k1 (<kv1,
rid1>). As a result of this action, k1 would be locked
in S or U mode. If index-specific locking is being done,
as in System R, ARIES/KVL and a variant of
ARIES/IM [Moha90a, MoLe92], then the lock would
be acquired on the key itself and this lock would be
different from a lock on the data from which the key
was derived. If data-only locking is being done, as in
the implemented (in DB2) version of ARIES/IM, then
the lock would be actually on the underlying data
(e.g., on rid1 if the locking granularity is a record).
ISC1 would be positioned on k1, and the ID of the leaf
page (say page Pi), the logical position of k1 on the

page (say jth key) and the log sequence number (LSN)
[MHLPS92] of the page (say LSNk) would be
recorded in the ISCCB for use during a next call
[Moha90a, MoLe92] - see Table 1.

• DM would return rid1 to RDS which would
immediately turn around and ask DM to delete the
record on which ISC1 is positioned (the one with RID
rid1). Unlike in this example, if residual predicates had
existed, then RDS would have to evaluate those
predicates before it is determined whether the record
should be deleted. If this were a cursor-based delete,
then the application would have to decide whether
the record should be deleted.

• RM would then acquire an X lock on rid1 and delete
the record. If IM was doing data-only locking, then
this locking would be an upgrading of the previously
acquired S or U lock to an X lock; otherwise, it would
be a new lock on rid1. Next, RM would examine the
descriptor for I1, create the key (k1) for that index and
ask IM to delete k1. Note that even though the key for
I1 is already known, the existing DBMSs waste their
time looking up the index descriptor for I1 and
reconstructing k1!

Of course, if there are other indexes on T1, then RM
would have to make sure that their keys are also
deleted.

• IM would traverse I1 from root to leaf to locate k1.
Assuming that no changes had taken place on Pi
between the time of key lookup and the time of key
deletion, the leaf page arrived at would still be Pi. If
index-specific locking is being done, then IM would
lock the key in X mode. In all cases, in order to
guarantee serializability, the next key would be locked
in X mode for commit duration before the deletion of
k1 is performed. As a result of the logging of this key
deletion and the consequent updating of page_LSN
[MoLe92], the LSN on Pi would become greater than
LSNk.

It is totally unnecessary to retraverse the tree to
locate the key since IM already knows from ISC1's
CCB as to where the key was located when it was
looked up last! The traditional execution strategy in
all does N root-to-leaf traversals during key deletions,
where N is the number of records to be deleted. Our
method avoids the traversals completely as long as
the affected leaves are not modified in the interim by
other transactions.

• DM would then return to RDS which would
immediately issue a next call on ISC1.

• IM would examine ISC1's CCB and noting that
previously the scan was positioned on a key on Pi,
reaccess Pi and check if its LSN is still LSNk (which it

5

finds in the CCB). Since Pi's LSN is no longer LSNk,
IM can no longer use the logical key position
information in the ISCCB to determine cheaply what
the next key is. IM can still search the same page and
locate the next key safely only if it finds that the key
k1 is bound on the page (i.e., there is a smaller key
and a larger key compared to k1 on the same page).
This boundedness condition would not be satisfied if,
for example, k1 had been the very first key on the
page. In the latter case, IM would retraverse the tree
from the root to locate the next key. Assuming that no
other transaction had altered Pi between the time the
scan was positioned on k1 and now, we know that the
retraversal would result in Pi again being determined
to be the correct leaf page to look into to locate the
next key!

Note that as long as the qualifying keys for the record
deletions span more than one leaf page, we are
guaranteed to encounter this deletion-of-first-key-on-
page condition at least from the second of those leaf
pages which contain the qualifying keys. From then
on, until the rest of the keys are examined and deleted,
for all those next calls the unboundedness condition
would hold, thereby forcing IM into doing a root-to-
leaf traversal on every next call! The traditional
execution strategy does N root-to-leaf traversals
during the open and next calls, where N is the number
of records to be deleted, if the first qualifying key to
be located happens to be the smallest key on the leaf
page in which it exists. If the latter condition is not
true, then there would be M traversals, where M-1 of
the qualifying keys do not exist on the first leaf page
in which a qualifying key is found. These traversals of
course would be very expensive, especially in terms
of CPU costs. In fact, these traversals may also cause
unnecessary I/Os since they ensure that all the
ancestors of all the accessed leaves would also be
accessed. Ideally, we should be able to avoid those
I/Os. Our method would guarantee that ideal
performance as long as no other transactions make
any changes to the leaf pages of interest during the
course of the processing of the set-oriented delete
statement.

• Once the next key is located, IM would behave as
described before for the first key. In particular, it
would unnecessarily lock in S or U mode the found
key, without realizing that that key had already been
locked in X mode as part of next key locking during
the deletion of the previous key!

• When RDS returns with a delete call, RM, in the case
of data-only locking, without realizing that the record
is already locked in X mode, would request an X lock
on the record!

• When RM calls IM to delete the just deleted record's
key, IM will again retraverse the tree to locate that key
and, in the case of index-specific locking, lock that
key again in X mode, even though it had locked that
key in X mode as a result of next key locking during
the earlier key deletion!

To summarize, the following are the costs involved in
performing a set-oriented deletion using the traditional
method, where N is the number of records qualifying for
deletion and M-1 is the number of qualifying keys (out of
N) which are not on the first leaf that is accessed:

• Data-only locking: 3N lock calls involving N+1 locks

N S/U-lock calls on records during open and next
calls,

N upgrade-to-X-lock calls on records during record
deletions,

N X-lock calls on next keys' records during ke y
deletions.

• Index-specific locking : 4N lock calls involving 2N+1
locks

N S/U-lock calls on keys during open and next calls,

N X-lock calls on records during record deletions,

N X-lock calls on keys during key deletions,

N X-lock calls on next keys during key deletions.

• 2N or N+M root-to-leaf traversals

N root-to-tree traversals during key deletions

First qualifying key is smallest key on first leaf
accessed: N root-to-tree traversals during open and
next calls

First qualifying key is not smallest key on first leaf
accessed: M root-to-tree traversals during the last M
next calls

Note that we do not count the unlock calls and the tree
traversals that might be caused by page deletions since
these would be the same with the traditional method as
well as our method.

Our customers have noticed the above inefficiencies and
have complained about them. That is what motivated us to
tackle these inefficiencies. We are not aware of any
database research literature that discusses the kind of
method that we present in this paper!

It is interesting to note that current optimizers do not
estimate correctly the CPU cost of using an index for the
example delete statement. They assume that a range scan
will be done. Hence, they account for only one traversal of
the index. They assume that after the initial traversal for
the first RID to be fetched, subsequent RIDs' retrieval will
cost very few instructions during the next calls! As a

6

consequence of RDS designers not paying enough
attention to the actual processing that occurs in IM, in
comparing the costs of a table scan versus an index scan
for the above scenario, the wrong choice may be made due
to the cost model not reflecting reality!

3. Our Method

In our method, during key deletions, IM avoids performing
root-to-leaf traversals, and RM avoids looking up the
range-scan index's descriptor and reconstructing the key
by exploiting the information in the ISCCB. That is, RM,
for the range-scan index only, instead of performing the
normal descriptor lookup and key construction, and
invoking the normal key delete IM routine, invokes a new
delete where current of cursor command on the ISCCB. In
processing this command, IM would look at the
information about the scan position (page number, logical
key position within page and LSN on page) and access
immediately the corresponding leaf page to do the key
deletion. If the page had not changed since the scan was
positioned on it, IM would know precisely where the key
is on the page and hence it would delete it right away.
Even if the page had changed (leaf's current page_LSN >
LSN in ISCCB), IM can check to see if the key is still on
the same page. Only if it weren’t on that page anymore,
would it have to traverse the tree from the root to locate it.
The key may not be on the same leaf anymore since
another transaction could have done a split of that leaf
and moved the key of interest to a different page. In many
DBMSs (e.g., NonStop SQL, Informix, DB2) and index
concurrency control methods like ARIES/KVL and
ARIES/IM, in the interest of supporting very high
concurrency, one transaction is allowed to move to a
different page a key which is currently locked by another
transaction.

With the above approach, when no concurrent changes
by other transactions are happening to the leaf pages of
interest, we eliminate completely N root-to-leaf traversals
during key deletions. We also avoid the key
reconstruction overheads. The other goal of our method is
to avoid the root-to-leaf traversals during the next calls.
These traversals traditionally happen because the LSN on
the leaf page changes between the time of retrieval of a
key and the time of the retrieval of the following key
during a next call due to the intervening key delete call
that causes the currently smallest key on the leaf to be
deleted. Since the previously deleted key is no longer
bound on the page, IM is unable to safely do a local
search on the leaf to locate the next key that is now
actually the smallest key on the page! For us to safely still
return the currently smallest key on the page as the next
key, what we need is a way to know that even though the
LSN currently on the leaf is different from what it used to

be (as recorded in the ISCCB) during the earlier next call,
the only change that had been made to the page between
the time of the previous key lookup and the current one is
the deletion of the previously returned key. Our method
does this by adding a return_current flag to the ISCCB
(see Table 1).

This flag is reset to '0' when ISCCB is created and when a
key is returned as part of an open or next call.

Our method takes the following additional steps during a
delete where current of cursor operation involving the
ISCCB:

• If IM had to search to locate the key to be deleted
(since page_LSN of leaf whose ID was remembered in
ISCCB was > LSN remembered in ISCCB), then IM
updates the ISCCB to contain the page number and
logical position where the key to be deleted was
found. Note that the value in the key field in ISCCB is
not modified since that value will be needed during
the next call if a tree traversal or binary search within
the leaf page were to be required at that time to get
the next higher key.

• After deleting the key (which is performed after doing
the X locking of the next key), logging the deletion
and setting the page_LSN to the delete-key log
record's LSN, set the LSN in ISCCB to the leaf's new
page_LSN.

• Set to '1' the return_current flag.

When a next call is issued, our method does the following:

• Access the leaf page remembered in ISCCB and check
that page's LSN. If the page_LSN is equal to the LSN
in ISCCB and return_current is set to '1', then return
the key that is currently in the same logical position
remembered in ISCCB. Note that there is no need to
lock this key before returning it since the locking
would have been done during the preceding key's
deletion. This is how we avoid the unnecessary
relocking, and traversal or at least a local binary
search that happens (in the key is bounded case) in
the traditional method.

On the other hand, if the page_LSN is equal to the LSN in
ISCCB but return_current is not '1', then return that key
which is in the position that is next to the logical position
remembered in ISCCB, after locking that key. If the LSNs
don't match, then IM behaves as in the traditional method
(i.e., try to do a local search and if it is not possible, then
retraverse). Return_current will be '0' if the previously
returned key was not deleted. This handles the case where
dpreds and/or residual predicates exist and some of those
predicates were not satisfied for the previously returned
key's RID. Of course, in the example delete statement of
the last section, there were only ipreds and so all returned
keys' records would be deleted.

7

• Before returning to the caller, modify ISCCB as in the
traditional method (copying the returned key,
recording page number, logical position and LSN) and
in addition reset return_current to '0'.

Data-only Locking

Predicates Present Mode of Lock Acquired

Only Ipreds X

Dpreds and/or
Residuals

S/U

Index-specific Locking

Predicates Present Mode of Locks Acquired

Only Ipreds KLOCK=X; RLOCK=X

Dpreds, but no
Residuals

KLOCK=S/U; RLOCK=X

Residuals KLOCK=S/U; RLOCK=S/U

For determining lock modes, treat cursors used for cursor-
based updates/deletes as if they have residual predicates
even if they don’t have them.

Table 2 Lock Modes Chosen by RDS in our Method for
Non-Read-Only Cursors

One more goal of our method was to avoid, in the case of
data-only locking, the two-step process which consis ts
of the initial S/U locking of the record by IM and the
subsequent upgrading of that lock to an X lock. In the
above example scenario, since we know that all qualifying
key's records are going to be deleted, we would rather
have one interaction with the lock manager and acquire
the X lock up front. This is done by making RDS request
that an X lock be acquired (rather than an S/U lock) on
qualifying data, when RDS knows that all the qualifying
data will be deleted (i.e., when RDS knows that there are
no residual predicates - cursor-based updates/deletes can
be treated uniformly by pretending that they have residual
predicates even when they don't have them). With data-
only locking, RDS must also be sure that all the predicates
involve only the key columns (i.e., there are no dpreds).
This is so that we do not unnecessarily make IM get an X
lock on a key's record only to discover later that RM finds
that the record does not satisfy some dpreds. This would
reduce concurrency and we would like to avoid it since in
typical DBMSs once an X lock is obtained that lock is not
released or downgraded until the transaction terminates.

With index-specific locking , RDS should specify one
mode for the key lock (KLOCK) and, if necessary, a
separate mode for the record lock (RLOCK). The latter

would be necessary if the record needs to be accessed by
RM after the index lookup call, but before returning to
RDS, to evaluate some dpreds or to fetch some columns. If
there are no residual predicates, but there are some
dpreds, and all retrieved records would be
updated/deleted, then KLOCK should be asked for in S/U
mode and RLOCK in X mode. If there are no dpreds, then
KLOCK should also be asked for in X. If there are residual
predicates, then both locks should be asked for in S mode
for a read-only (non-updateable) cursor. For an updateable
cursor, both locks should be asked for in U. Table 2
summarizes the locks used by our method.

To make the previously given steps work correctly when
dpreds are present, we add to the ISCCB a mode field
(lock mode) which keeps track of the mode in which the
returned key has been locked. In the case of index-specific
locking, that information will be examined by IM during
key deletes to make sure that the right lock is held on the
to-be-deleted key or is acquired if necessary before
performing the key deletion. Then IM will update the mode
information in ISCCB to reflect the X lock that it acquires
on the next key.

Traditional DBMSs that do index-specific locking, after
accessing an index and retrieving a RID, lock the
corresponding record before accessing the record and
applying any dpreds. In our method, if any dpreds exist,
then RM does any necessary locking of the record after
evaluating the predicate under a latch on the data page.
This is done to minimize the duration and/or exclusivity
(i.e., S lock rather than X) of locking in the case where the
record does not qualify.

This is a better strategy since most of the time most of the
data is in the committed state. Hence, it is very likely that
when a lock is requested after predicate evaluation it will
be granted. With our strategy, when RLOCK is X, if a
record does not satisfy the dpreds, then, to verify that the
record is in the committed state and that it would not
change later on, acquiring an S lock would be sufficient,
rather than the more restrictive X lock that would have
been acquired if the record had qualified.

If, instead of serializability, the isolation level of cursor
stability (degree 2 of System R) had been chosen, then, in
the non-qualifying case, we may be able to completely
avoid any locking by using the Commit_LSN technique of
[Moha90b]. Even if Commit_LSN does not work, in the
non-qualifying case, an instant duration lock, which
involves only a single interaction with the lock manager,
would most likely be sufficient than a medium duration
lock which involves two interactions with the lock
manager. When locking is needed while holding the page
latch, we of course need to be prepared for the rare cases
where after predicate evaluation we discover that the lock
request is encountering a conflict and hence cannot be

8

granted immediately. In such cases, to avoid deadlocks
involving latches, we need to release the latch, wait for the
lock and, after obtaining the lock, relatch the page and
check if the record's state has changed. To try to avoid the
reevaluation of the dpreds, we can cache the page_LSN
value of the data page in the CCB before unlatching the
page. When the page is relatched after obtaining the lock,
dpreds would need to be reevaluated only if the current
page_LSN is greater than the cached page_LSN. This
works since the page_LSN would have been increased in
value if any change had been made to the page between
the times of unlatching and relatching.

With data-only locking , RM would also examine the lock
mode field in ISCCB to ensure that the X lock is already
held or is acquired before a record is deleted.

To summarize, using our method, the following will be the
costs involved in performing a set-oriented deletion (like
the one given in the example before):

• Data-only locking: N+1 lock calls involving N+1 locks

1 X-lock call on a record during the open call,

N X-lock calls on next keys' records during key
deletions.

• Index-specific locking: 2N+1 lock calls involving
2N+1 locks

1 X-lock call on the first key during the open call,

N X-lock calls on records during record deletions,

N X-lock calls on next keys during key deletions.

• 1 root-to-leaf traversal during the open call

The reader may wish to compare the above numbers with
those given in section 2 for the traditional method's way of
doing such a set-oriented deletion.

4. Extensions

Even though we started out with set-oriented deletes, our
method also applies, without changes, when the user
specifies cursor-based deletes. As far as the data manager
is concerned, a cursor-based delete is no different from a
set-oriented delete with some residual predicates.

The techniques presented here are also directly applicable
to set-oriented updates where the qualifying records are
being determined using an index scan and that index's key
is being updated. Even though for a long time RDBMSs
were avoiding using such an index to prevent the so-
called Halloween Problem, Tandem's NonStop SQL
started using such an index for such an update operation
as long as it was guaranteed that after the update of the
key value via this statement is performed the new value
will no longer be within the set of key values qualifying for
update (see [Tand87] for more details). When a record is
being updated, only the old key can be deleted directly on

the leaf page based on information in the ISCCB. The
insert of the new key would most likely require traversing
the tree since it is unlikely that it will reside on the same
page from which the old key was deleted. The idea of RDS
specification of the X locking requirement when there are
no residual predicates is also applicable to other kinds of
set-oriented updates since it reduces the number of
interactions with the lock manager.

Although we talked about LSNs which might have been
taken to imply that our ideas work only with write-ahead
logging [MHLPS92], they are also applicable with other
recovery methods like shadow-paging, as long as a
version number field exists in every database page and its
value is incremented on every update to the page. The
latter is exactly what AS/400, Informix, SQL/DS and
System R do for index pages [Moha90a].

5. Conclusions

In this paper, we addressed a real-life, customer-
encountered problem which arose in the context of set-
oriented deletes based on an index scan with only index
predicates (ipreds) and an index manager performing data-
only locking. First, we proposed a method that minimizes
the number of lock calls and the number of root-to-leaf tree
traversals for situations like that customer scenario. Then,
we generalized our method to deal with cursor-based and
set-oriented deletes/updates where data predicates
(dpreds) and residual (RDS-applied) predicates are also
present. The extensions also dealt with index locking
algorithms that do index-specific locking. We showed how
the query processing component (RDS) by becoming more
aware of locking implications could improve performance.
Increased awareness by RDS designers of the processing
that goes on in the data manager is also important for the
optimizer's cost model to reflect reality correctly.
Otherwise, the optimizer will wind up making non-optimal
decisions. More accurate modeling of the actual data
manager processing is even more important now since,
compared to System R, today's DBMSs' optimizers model
different costs in much finer detail (e.g., see [CHHIM91]
for samples of some of DB2 optimizer's cost equations).

Another aspect of modeling query execution costs is that
even today, starting from System R days, only the costs
associated with retrievals have been modeled. That is,
even for update and delete statements, only the costs of
identifying the records to be updated or deleted have been
modeled to choose between different available access
paths for doing the selection. The consequence is that the
optimizer will not know the difference in delete costs
between using the index as we have done before for the
example scenario (i.e., immediate access of record after an
index lookup) and another approach where we delay
accessing the data pages until all the qualifying RIDs have

9

been determined via a range scan. The latter is similar to
what is done with index ANDing/ORing. The idea there is
to sort the RIDs before data page accesses to convert an
unclustered index scan into a clustered scan (see
[MHWC90]). In this case, as each record is deleted, unless
something special is done, every key delete will cause a
root-to-leaf traversal even on the index used to choose the
records for deletion. With our method, the first approach
was able to avoid such traversals. If the optimizer does not
model the costs of doing the deletions in the different
approaches, then it might make the wrong choice during
access path selection.

Our patented method [Moha99b] has been implemented in
DB2 V7 to address specific customer requirements. It has
also been exploited to improve performance on the TPC-H
benchmark [PoFl00, TPC99]. We would like to
acknowledge the work of Quanhua Hong who
implemented our method in DB2.

6. References

[Anto93] Antoshenkov, G. Dynamic Query Optimization
in Rdb/VMS , Proc. International Conference on Data
Engineering, Vienna, April 1993.

[Anto96] Antoshenkov, G. Dynamic Optimization of
Index Scans Restricted by Booleans, Proc. International
Conference on Data Engineering , New Orleans, February
1996.

[BaMc72] Bayer, R., McCreighton, E. Organization and
Maintenance of Large Ordered Indices, Acta Informatica,
Volume 1, Number 3, 1972.

[CEHH90] Crus, R., Engles, R., Haderle, D., Herron, H.
Method for Referential Constraint Enforcement in a
Database Management System, U.S. Patent 4,947,320,
IBM, August 1990.

[CHHIM91] Cheng, J., Haderle, D., Hedges, R., Iyer, B.,
Messinger, T., Mohan, C., Wang, Y. An Efficient Hybrid
Join Algorithm: a DB2 Prototype, Proc. 7th International
Conference on Data Engineering, Kobe, April 1991. An
expanded version of this paper is available as IBM
Research Report RJ7884, IBM Almaden Research
Center, December 1990.

[EGLT76] Eswaran, K.P., Gray, J., Lorie, R., Traiger, I. The
Notion of Consistency and Predicate Locks in a
Database System, Communications of the ACM, Vol. 19,
No. 11, November 1976.

[GLSW93] Gassner, P., Lohman, G., Schiefer, B., Wang, Y.
Query Optimization in the IBM DB2 Family, Data
Engineering, Volume 16, Number 4, December 1993.

[HaWa90] Haderle, D., Watts, J. Method for Enforcing
Referential Constraints in a Database Management
System, U.S. Patent 4,933,848 , IBM, June 1990.

[Lome93] Lomet, D. Key Range Locking Strategies for
Improved Concurrency, Proc. 19th International
Conference on Very Large Data Bases, Dublin, August
1993.

[MHLPS92] Mohan, C., Haderle, D., Lindsay, B., Pirahesh,
H., Schwarz, P. ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging, ACM
Transactions on Database Systems , Vol. 17, No. 1, March
1992.

[MHWC90] Mohan, C., Haderle, D., Wang, Y., Cheng, J.
Single Table Access Using Multiple Indexes:
Optimization, Execution and Concurrency Control
Techniques, Proc. International Conference on Extending
Data Base Technology, Venice, March 1990. An expanded
version of this paper is available as IBM Research Report
RJ7341, IBM Almaden Research Center, March 1990;
Revised May 1990.

[Moha90a] Mohan, C. ARIES/KVL: A Key-Value Locking
Method for Concurrency Control of Multiaction
Transactions Operating on B-Tree Indexes, Proc. 16th
International Conference on Very Large Data Bases,
Brisbane, August 1990. A different version of this paper is
available as IBM Research Report RJ7008, IBM Almaden
Research Center, September 1989.

[Mohan90] Mohan, C. Commit_LSN: A Novel and Simple
Method for Reducing Locking and Latching in
Transaction Processing Systems , Proc. 16th International
Conference on Very Large Data Bases, Brisbane, August
1990.

[Moha92] Mohan, C. Interactions Between Query
Optimization and Concurrency Control , Proc. 2nd
International Workshop on Research Issues on Data
Engineering: Transaction and Query Processing, Tempe,
February 1992. Also available as IBM Research Report
RJ8681, IBM Almaden Research Center, March 1992.

[Moha95] Mohan, C. Concurrency Control and Recovery
Methods for B+-Tree Indexes: ARIES/KVL and ARIES/IM ,
In Performance of Concurrency Control Mechanisms in
Centralized Database Systems, V. Kumar (Ed.), Prentice
Hall, 1995.

[Moha99a] Mohan, C. Repeating History Beyond ARIES ,
Proc. 25th International Conference on Very Large Data
Bases , Edinburgh, September 1999.

[Moha99b] Mohan, C. System and Method for Performing
Record Deletions Using Index Scans, United States
Patent 6,009,425, IBM, December 1999.

[MoLe92] Mohan, C., Levine, F. ARIES/IM: An Efficient
and High Concurrency Index Management Method Using
Write-Ahead Logging, Proc. ACM SIGMOD International
Conference on Management of Data, San Diego, June

10

1992. A longer version of this paper is available as IBM
Research Report RJ6846, IBM Almaden Research
Center, August 1989.

[PoFl00] Poess, M., Floyd, C. New TPC Benchmarks for
Decision Support and Web Commerce, ACM SIGMOD
Record, Volume 29, Number 4, December 2000.

[Tand87] The Tandem Database Group NonStop SQL: A
Distributed, High-Performance, High-Availability
Implementation of SQL, Proc. 2nd International
Workshop on High Performance Transaction Systems ,
Asilomar, September 1987.

[TPC99] TPC Benchmark H (Decision Support) Standard
Specification, Revision 1.3.0, 1999.

[WeVo01] Weikum, G., Vossen, G. Transactional
Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control and Recovery, Morgan
Kaufmann, 2001.

