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Abstract

Use of the Internet and the World-Wide-Web has become widespread in recent
years and mobile agent technology has proliferated at an equally rapid rate. In this
paper, we introduce the Concordia infrastructure for the development and
management of network-efficient mobile agent applications for accessing
information anytime, anywhere, and on any device.

Concordia has been implemented in the Java language to ensure platform
independence among agent applications.  The design goals of Concordia have
focused on providing complete coverage of flexible agent mobility, support for
agent collaboration, agent persistence, reliable agent transmission, and agent
security.

Concordia offers a flexible scheme for dynamic invocation of arbitrary method
entry points within a common agent application and extends the notion of simple
agent interaction with support for agent collaboration, which allows agents to
interact, modify external states (e.g., a database), as well as internal agent states.
Concordia provides support for agent persistence and recovery and guarantees the
transmission of agents across a network. Concordia has also been designed to
provide for fairly complete security coverage from the outset. An alpha release of
Concordia is available.

1. Introduction

Use of the Internet and the World-Wide-Web has become widespread in recent
years and agent technology has proliferated at an equally rapid rate.  There are two
commonly accepted classes of agents in the literature: intelligent agents and mobile
agents [25].  Intelligent agents are typically static entities with much built-in
intelligence to perform a specific task.  Mobile agents, on the other hand, are
dynamic and have the ability to traverse an entire network, performing a number of
tasks along the way, but with minimal intelligence.   A number of recent efforts have
been initiated to address the latter class of agents [1,14,15,21,23].



Concordia is a new framework for developing and executing highly mobile
agents. Concordia offers a full-featured middleware infrastructure for the
development and management of network-efficient mobile agent applications for
accessing information anytime, anywhere, and on both wire-based and wireless
devices.  Concordia has been implemented in the Java language to ensure unimpeded
interoperability and platform independence among agent applications.  The design
goals of Concordia have focused on providing complete coverage of flexible agent
mobility, support for agent collaboration, persistence of agent state, reliable agent
transmission, and agent security.

The remainder of the paper will proceed as follows.  In Section 2, we discuss the
overall system architecture of Concordia. In Section 3, we discuss Concordia agent
mobility and transport.  In Section 4, we present Concordia support  for agent
interaction.  Finally, in Section 5, we discuss the current status of this work and the
future directions that this work may take.

2. System Architecture

The Concordia infrastructure toolkit consists of a set of Java class libraries for
server execution, agent application development, and agent activation.  Each node in
a Concordia system consists of a number of interacting component servers that could
be executing on one or more Java virtual machines as shown in Fig. 1.

Fig. 1.  Concordia System Data Flow Diagram
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Concordia is similar to a number of existing agent infrastructures and toolkits
with respect to its support for the basic communication plumbing that is required for
agent mobility.  For instance, both FTP Software’s CyberAgents [5] and UC
Berkeley’s Java-To-Go [14] require the notion of a agent propagation server to
propagate an agent.  In CyberAgents, this server is called a community, while in
Java-To-Go, this server is called the Hall Server.  In the University of Stuttgart’s
Project Mole, this propagation service is embedded in the location server[13].  In
Concordia, this propagation server is called the Conduit Server.

The Conduit Server serves as the communication server for agent transfer.  An
agent program initiates its transfer by invoking the Conduit Server’s methods. The
Conduit Server then proceeds to propagate the agent to the Conduit Server at another
Concordia system. Concordia’s agent mobility mechanism extends beyond the
functionality provided in other Java-based agent systems by also offering  a flexible
scheme for dynamic invocation of arbitrary method entry points within a common
agent application. This flexible scheme for agent mobility is discussed in more detail
in Section 3.

While a number of efforts have provided support for agent interaction [1,5],
Concordia extends this notion of simple agent interaction with support for two forms
of inter-agent communication: asynchronous distributed events and agent
collaboration. Asynchronous distributed events are scheduled and managed by the
Event Manager, while agent collaboration requires the agent application programmer
to specify a collaborating AgentGroup object through the utilization of the Concordia
class libraries. Agent collaboration allows agents to interact, modify external states
(e.g., a database), as well as internal agent states. Inter-agent communication is
discussed in more detail in Section 4.

Agent persistence is required to ensure that agents can recover successfully from
system crashes.  Just as a number of other efforts currently (or plan to) offer support
for agent persistence [1,7], Concordia also offers support for agent persistence. The
Persistent Store Manager allows the internal state of agent objects to become
persistable.

Although the Persistent Store Manager was designed and developed specifically
to support persistence and recovery of agents, it is a general-purpose facility which
may also be used to store internal state to facilitate recovery after server failure. The
Persistent Store Manager implementation is based on the Java object serialization
facilities.

Concordia agents are highly mobile and their mobility can extend to a number of
local as well as wide area networks.  To alleviate potential performance and
reliability problems associated with the transmission of agents across networks with
different characteristics in the underlying communication medium, the Concordia
infrastructure also provides support for transactional queuing of agents between
Conduit Servers residing on different networks.

The Queue Manager manages inbound and outbound queues for reliable
transport of agents across a network.  The Queue Manager communicates with its
local Conduit Server and performs handshaking with other remote Queue Managers
for reliable agent transmission. The Queue Manager design goals centered on



achieving optimal disk space utilization, fast write operations, and fast recovery from
server failure. Its implementation borrowed some ideas from the log-structured file
systems research area [19,20] to employ a unique data architecture which  ensures
better overall performance  over traditional message queuing systems [6,8,16].  The
preservation of an object’s class specification on disk is handled by the Java object
serialization facilities while Queue Manager communication relies on the Java RMI
package.

Concordia’s security model provides support for  two types of protection: (1)
protection of agents from being tampered with, and (2) protection of server resources
from unauthorized access.

Agents are protected from tampering while stored on client systems during
transmission and while stored on the persistent store. Storage protection is handled
by encryption.  The only other system to address agent  protection on both the client
and server is the Itinerant Agents [4]. Concordia uses the SSLv3 protocol to transmit
agent information from one system to another. Transmission protection is a de facto
requirement for an agent  application. In contrast, CyberAgents and Telescript
appear to only provide secure internet transmission using encryption and digital
signatures [5,23].

Concordia has implemented a highly flexible user-based security mechanism for
server resource protection. The Concordia Security Manager, a Java object owned by
the Java VM rather than a full-fledge process or thread, manages resource protection.
Each agent  is assigned an identity which allows the agent to  access server resources.
Resource permissions for agents can also be dynamically adjusted to increase or
decrease an agent’s security clearance. Concordia’s resource protection differs from
Aglets and CyberAgents  in that it is based on the user of the agent rather than the
developer of the agent. [1,5].

Concordia system administration is handled by the Administration Manager.
The Administration Manager starts up and shuts down the other servers in the
Concordia agent system.  It also manages changes in the security profile of both
agents and servers in the system and makes requests on behalf of the agent or server
to the Security Manager.  The Administration Manager also monitors the progress of
agents through out the network and maintains agent and system statistics.

Users interact with a Concordia system by developing agent application
programs. In the Concordia infrastructure, agent application programs are
implemented as Java objects.  Users would first need to write a Java class that
specifies some action, such as accessing a database on a remote node.  Once this Java
class is written and compiled, the user can  launch the agent program in three ways:
(1) via a GUI Agent Launch Wizard, (2) via a command line tool, or (3) using the
external API. The first two mechanisms are provided with Concordia, while the last
one requires the user to write a customized launch class which makes use of the
Concordia class libraries.



3. Agent Mobility

Since the agent objects are composed of a combination of code and data, object
mobility means the network transportation of both code and data.  As stated earlier,
agent mobility is accomplished by the Conduit Server.  Beyond providing for just the
mobility of code and data, Concordia  provides for the transmission of state
information detailing where the agent has been and what it has accomplished  as well
as where it is going and what it still has to do.  Concordia also provides interfaces
allowing agents to create other agents and to clone themselves.

Some of the design goals for the Conduit Server were:
1. Provide for mobility that is transparent to users of the system.
2. Provide a programming model as close as possible to that of

                   “regular” programming.
3. Build on existing infrastructure where available.

Within Concordia, an agent’s travels are described by its Itinerary.  The
Itinerary is a data structure which is stored and maintained outside of the agent object
itself.  The Itinerary is composed of multiple Destinations.  Each Destination
describes a location to which an agent is to travel and the work the agent is to
accomplish at that location.  In the current implementation, location is defined by a
hostname of a machine on the network and the work to accomplish is by a particular
method of the agent class. Thus, if you had an agent class containing two methods,
named method1 and method2, a potential Itinerary for this agent could look like the
following;

LOCATION METHOD
server1.mycompany.com method1
server2.mycompany.com method2

When an agent is launched with this Itinerary, the agent would first travel to the
machine identified by the TCP/IP hostname server1.mycompany.com.  At that
location the method method1 would be invoked automatically  by the agent system.
After method1 completes execution, the agent is transferred by the system to the node
server2.mycompany.com.  As the agent is transferred to the new location all of its
internal state, meaning all of the information stored in its member variables, is
transferred with it.  This allows the agent to remember any computations it made at
prior stops in its travels.  Once the agent arrives at server2 the system invokes its
method2 method which is allowed to run to completion.

There are some important characteristics of this Itinerary model that is worth
noting.  The Itinerary is a completely separate data structure from the agent itself.
Thus where the agent travels is maintained in a separate logical location than what
the agent does.  This is very different than the Telescript [23] model where an
agent’s travel is initiated in its code by a call to its go method. A design decision was
made to separate the agent’s Itinerary from its code since  this leads to a much more



manageable system.  Without extensive analysis of  the Telescript code composing an
agent and some knowledge of what runtime conditions will be like, it can be difficult
to predict where a Telescript agent may travel.  Further, it can be very difficult to
locate where a Telescript agent has traveled after it has been launched.  Concordia’s
Itinerary model provides a simple mechanism for defining and tracking how an agent
travels.  For flexibility reasons, the system allows agent’s to modify their Itineraries
at runtime.

This Itinerary model also allows for multiple entry points into the agent to be
executed at multiple locations.  It appears that some existing agent systems, such as
IBM’s Aglets [2] or FTP Software’s CyberAgents only support a single entry point
into the agent.  In these systems, at each stop in the agent’s Itinerary, this entry point
method is invoked when the agent arrives.  Within the code of this one method, the
agent must determine what work has previously been executed and then proceed to
dispatch to the proper code to handle the work left to be completed.

 This single entry point model unnecessarily presents the agent programmer with
a different programming model than that of the non-mobile programming paradigm.
For complex agent applications, this constraint can require the programmer to
maintain a large amount of state information which can be better encapsulated within
the agent’s Itinerary.

Mobility of an agent’s data was accomplished using the Java Object Serialization
facility [17].  Transfer an agent state is a matter of serializing an agent’s data down
into a format suitable for network transmission, transmitting the data in this format,
and then deserializing the data back into the original agent.  This is very similar to
the  mechanism used by Java Remote Method Invocation (RMI) [18] for passing an
object by value between distributed objects. RMI itself does not provide for true object
mobility as it provides for no mobility of an object’s code and in fact requires that the
code for any objects passed by value be pre-installed on both sides of the network
connection.

Java’s Object Serialization features provide an almost transparent mechanism by
which Java objects can be serialized into data streams and provided suitable
technology for implementing agent mobility.

The problem of transmitting an Agent’s code is solved in a manner  similar to
the way in which a web browser loads a Java applet.  A browser will typically
implement a special Java class called a called a ClassLoader [11].  The Java virtual
machine makes a callback into the ClassLoader object whenever the system attempts
to load the bytecodes for a Java class.  In response to this callback, the ClassLoader
implemented within the browser makes an HTTP request to a web browser in order to
retrieve the file on the server containing the bytecodes for the class.  The Java
language provides a mechanism for converting the contents of this file into an actual
Java class from which objects can be instantiated.

The Concordia infrastructure uses a very similar mechanism to support mobility
of code.  As an agent travels around a network its bytecodes and the bytecodes of any
objects it creates and stores in its member variables are loaded via a special
ClassLoader.  This ClassLoader packages theses bytecodes into a special data
structure which travels with the agent.  During the deserialization of the agent, the



bytecodes for the agent and its related classes can be retrieved from this data
structure and are used to instantiate a new copy of the agent.

4. Agent Communication

Concordia includes two paradigms for inter-agent communication: asynchronous
distributed events and collaboration.  Its distributed events are, in many ways, similar
to those offered by other systems.  However, Concordia’s implementation of
collaboration extends the events mechanisms in unique ways.  Hence, this section
examines both modes of communication, but explores collaboration in greater detail.

4.1. Events
Concordia provides two forms of asynchronous distributed events: selected

events and group-oriented events.  The event selection paradigm enables agents to
define the types of events they wish to receive.  In contrast, group-oriented events are
distributed to a collection of agents (known as an event group) without any selection.

Selected Events
Concordia’s EventManager object is the focal point for selected events.  It

accepts event registrations, listens for and receives events, and notifies interested
parties of each event it receives. The EventManager filters each event it receives by
notifying only those objects (e.g., agents)  that have registered to receive events of
that type.

Before an agent (or any other object) can receive selected events, it must register
with the EventManager by sending it a list of event types it is interested in receiving
and a reference to a location where it wishes events to be sent.  This location is
actually a distributed object. Hence, the EventManager can forward events to an
agent even after it migrates to another system.  Agents may choose to handle events
synchronously in their main thread or asynchronously in an event handler thread.

The EventManager saves all registrations it receives in persistent storage via
requests to the Persistent Store Manager. No registrations are lost during
EventManager failures because it retrieves outstanding registrations from persistent
storage whenever it restarts. Furthermore, EventManager failures and restarts are
transparent to agents because they communicate via an EventManagerProxy object
rather than directly with the EventManager.  This proxy is responsible for re-
establishing failed connections with the EventManager.  (The EventManager itself is
automatically restarted by an administration server that starts and monitors critical
Concordia servers.)

The selected events programming paradigm is simple and easy to utilize in agent
applications.  As an example, an application may launch an agent that will notify it
when the airfare between two cities drops below a certain price.  The agent may
migrate to a remote location and monitor a database containing travel information.
When the agent detects the conditions have been met, it can notify the application via
an event. Events are also commonly used to inform an application of exceptional



conditions encountered by agents it launches.  (In the future, this may also be
accomplished via e-mail.)

Group-Oriented Events
As mentioned earlier, Concordia distributes group-oriented events to groups of

objects without filtering them.  Agents within an application that need to
communicate or coordinate with each other often do so via group-oriented events.  As
an example, agents may wish to be notified when an agent within the same
application encounters exceptional conditions. In particular, collaborating agents
communicate via group-oriented events.

Joining an event group is a prerequisite for communicating via group-oriented
events. Joining a group is similar to registering with the EventManager: each object
(e.g., agent) joining the group sends it a reference to a distributed object where it
wishes events to be forwarded. When the event group receives an event from one of
its members, it forwards it to other objects in the group.  Hence, all group-oriented
events are distributed to the event group’s entire membership.

Concordia offers two flavors of event groups: basic and persistent.  The
EventGroup object implements the basic functionality described above.  The
PersistentEventGroup object adds persistent group membership and reliable,
transparent recovery from failures via proxy objects.

4.2. Collaboration
Distributed events have many applications, but they are not flexible enough to

manage complex agent coordination. Concordia’s collaboration framework facilitates
this type of interaction by enabling multiple agents to work together to solve complex
problems.

Consider the following scenario: A user wishes to determine the best package
price for a ski trip given the following criteria: a resort in the Alps, for a week in
February, with slopeside lodging, and the lowest price for all expenses.  To solve this
problem, an agent obtains a list of  appropriate ski resorts from a database before
spawning other agents to query travel databases, possibly in different formats, for
package prices at those resorts in February. Agents can perform this task more
efficiently when they can correlate their results and adjust their computations based
on the outcome of that collaboration.

Suppose the agents visit local travel agencies and then share their intermediate
results and collaborate before migrating to travel agency sites in other cities.  If an
agent determines that a particular resort does not have any available lodging meeting
the user’s criteria, the agents may determine to drop queries about trips to that
destination.  As more information is gathered, agents may also make other decisions.
As this example demonstrates, agents can perform complex distributed computations
more effectively if they correlate their results and alter their behavior based on the
combined results. Concordia’s collaboration framework facilitates this process.

The class of application described above divides a complex task into smaller
pieces and delegates them to agents that migrate throughout the network to
accomplish them. These agents perform computations, synchronously share results,
and collaboratively determine any changes to future actions.



Concordia employs a simple programming paradigm for this type of
collaboration.  The goals of the collaboration framework include:

1. A simple programming interface for synchronous collaboration.
2. Asynchronous notification of exceptional conditions via events.
3. Reliable and robust implementation utilizing proxy objects

 to shield agents from the effects of software failures within
 the collaboration framework.

4. An infrastructure that enables location transparent inter-agent
 communication.

Agents within an application may form one or more collaboration units, known
as agent groups. Concordia provides base classes for collaborating agents and agent
groups (i.e., CollaboratorAgent and AgentGroup, respectively). AgentGroups are
implemented as distributed objects which export a simple interface to
CollaboratorAgents.  These agents hold remote references to AgentGroup distributed
objects and access them via Java’s Remote Method Invocation (RMI) facility.

AgentGroup collaboration is implemented via a distributed synchronization
point, known as a collaboration point, and a software method, analyzeResults.  The
AgentGroup abstraction provides the distributed synchronization.  Each application
need only supply its own implementation of analyzeResults to analyze the collective
results of the agents in the group and to allow each agent to adapt its behavior based
on those results.  Both the synchronization point and invocation of analyzeResults are
encapsulated within the AgentGroup’s collaborate method.

This distributed synchronization scheme requires that each agent “arrive” at the
collaboration point (by invoking the collaborate method on the AgentGroup
distributed object) before collaboration may commence.  Hence, it is ideally suited to
applications that subdivide a complex problem into sub-tasks that correlate their
results.  When each agent arrives at the collaboration point, it posts the results of its
computation to the AgentGroup and blocks until all the agents in the group arrive.

The AgentGroup collects the results of the agents’ computations, and when all
agents in the group arrive at a collaboration point, its collaborate method invokes
analyzeResults on behalf of each agent, passing it the collective result set. The
AgentGroup abstraction supports both parallel and serialized execution of the
analysis stage of collaboration.

Concordia also provides both strong and weak collaboration models.
Applications may specify (via an argument to the AgentGroup’s constructor) whether
collaboration should be allowed to continue if agents in the group fail to arrive at the
collaboration point.  The weak collaboration paradigm is useful for information-
gathering agents that may wish to coordinate with each other even if some agents
have terminated prematurely or encountered network failures.  Agents that modify
external states (e.g., updating a database) generally employ the strong collaboration
paradigm, which aborts collaborations if all agents in the group do not arrive at the
collaboration point.

The AgentGroup also utilizes time-outs to detect potential deadlocks. Note that
since AgentGroup collaboration is designed for closely coordinated agents, deadlocks



are generally caused by programming errors.  Hence, the AgentGroup does  not need
to use a more sophisticated scheme for deadlock detection or avoidance.

An added benefit of AgentGroup collaboration is that it enables location-
transparent inter-agent communication.  As each agent migrates, it carries a remote
reference to an AgentGroup distributed object and utilizes the AgentGroup as a
gateway for communicating with the other members of the group.

As mentioned earlier, AgentGroups facilitate both synchronous collaboration
and asynchronous notifications.  This is possible because the AgentGroup object
derives from the PeristentEventGroup object.  AgentGroups forward any events they
receive from their members (e.g., that an agent caught an exception) to the remainder
of the group.  Occasionally, they may also initiate events that they deliver to the
group.

A benefit of this event management scheme is that AgentGroups temporarily
queue events for in-transit agents and flush them after the agents arrive at their new
destinations.  Hence, no events are lost during agent migration.

The AgentGroup’s persistent membership and agent status information also
increase reliability.  Whenever the group membership or the status of one of its
agents changes, the AgentGroup saves the current state to persistent storage.  If an
AgentGroup terminates prematurely, it is restarted and restores the current state from
persistent storage.  Events queued for in-transit agents may optionally be saved to
persistent storage.

AgentGroup restarts are transparently handled by AgentGroupProxy objects.
Instead of communicating directly with an AgentGroup object, agents communicate
via proxies which shield them from the effects of AgentGroup failures.  Each agent
creates its own AgentGroupProxy and the proxies coordinate to atomically re-create
the AgentGroup, if it terminates or fails to communicate.

As detailed above, Concordia’s collaboration paradigm offers several benefits: a
simple programming interface for synchronous collaboration; asynchronous
distributed event management; support for agent mobility; location-transparent inter-
agent communication; reliability, persistence, and transparent recovery from failure;
deadlock detection; and a portable implementation.  No other agent collaboration
implementation offers all these features.

In contrast to Concordia’s simple programming interface in a language
increasingly used for application development, Telescript is a language designed for
writing mobile agents.  It supports agent cloning and provides meeting places --
locations where mobile agents may communicate with stationary specialized agents
(e.g., a mobile agent may request the lowest airfare between two points).  Telescript
does not, however, possess any support for agent collaboration.  IBM’s Itinerant
Agents [4] also utilize an agent meeting point abstraction that is very similar to
Telescript’s meeting places.

The artificial intelligence community provides a broad range of agent
collaboration features with an agent communication language (ACL) [10] (which
actually consists of two different languages (KQML and KIF) [9]), combined with the
development of an application-specific ontology [12]. Hence, it is much more



difficult to program agent collaboration with ACL given its added complexity.  In
addition, ACL does not support mobile agents.

Other agent implementations [3,22,24] provide some of the features of
Concordia’s collaboration framework, but fall short in several other areas.

5. Conclusion

In this paper, we have described the Concordia middleware infrastructure for
collaborating mobile agents. Concordia offers a complete framework for the
development and management of network-efficient mobile agent applications. The
design goals of Concordia have centered on providing support for flexible agent
mobility, agent collaboration, agent persistence, reliable agent transmission, and
agent security.

Concordia’s agent mobility mechanism extends beyond the functionality found
in current Java-based agent systems by offering a flexible scheme for dynamic
invocation of arbitrary method entry points within a common agent application. The
Concordia framework offers support for agent interaction via the notion of agent
collaboration, which allows agents to interact, modify external states, as well as
internal agent states. Concordia also provides support for agent persistence and
guarantees reliable transmission of agents across a network. Concordia has been
designed to provide complete security coverage from the outset.

Concordia has been implemented in Java to ensure platform independence
among agent applications. A alpha release of  Concordia is available at the
Mitsubishi Electric ITA Web site (URL=http://www.meitca.com).  Future extensions
to the existing functionality may include support for transactional multi-agent
applications and knowledge discovery for collaborating agents.
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