
LeakBot: An Automated and Lightweight Tool
for Diagnosing Memory Leaks in Large Java

Applications

Nick Mitchell, Gary Sevitsky

IBM T.J. Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532 USA
{nickm,sevitsky}@us.ibm.com

Abstract. Despite Java’s automatic reclamation of memory, memory
leaks remain an important problem. For example, we frequently en-
counter memory leaks that cause production servers to crash. These
servers represent an increasingly common class of Java applications: they
are large scale and they make heavy use of frameworks. For these appli-
cations, existing tools require too much expertise, and, even for experts,
require many hours interpreting low-level details. In addition, they are
often too expensive to use in practice. We present an automated, adap-
tive, and scalable tool for diagnosing memory leaks, called LeakBot.
LeakBot incorporates three new techniques. First, it automatically ranks
data structures by their likelihood of containing leaks. This process dra-
matically prunes the set of candidate structures, using object reference
graph properties and knowledge of how leaks occur. Second, it uses Co-
evolving Regions to identify suspicious regions within a data structure
and characterize their expected evolution. Third, it uses the first two
methods to derive a lightweight way to track those regions’ actual evolu-
tion as the program runs. These techniques are mutually beneficial: we
need only monitor what is highly ranked, and, because the tracking is so
cheap, a region’s rank can be continually updated with information from
production machines. Finally, this whole process can be done without
user assistance.
We demonstrate LeakBot’s effectiveness on a number of large-scale appli-
cations that we have analyzed as part of the ongoing consulting practice
our group maintains. We have found that the ranking analysis scales (e.g.
written in Java, it analyzes 106 objects in 30 seconds with a 300M heap),
is selective (e.g. it prunes that set to three candidate leak roots), and is
accurate (it discounts non-leaking roots). The CER generation completes
in tens of seconds. The lightweight tracking refines the rankings, while
lowering throughput by less than 5%.

1 Introduction

Despite automatic garbage collection, memory leaks remain an important prob-
lem for many Java applications. A memory leak occurs when a Java program

inadvertently maintains references to objects that are no longer needed, pre-
venting the garbage collector from reclaiming space. Memory leaks are easy to
spot, but are often difficult to diagnose. We can determine that a memory leak
is likely to exist by using a black-box analysis, monitoring the heap after each
round of garbage collection. We observe a downward-sawtooth pattern of free
space (every collection frees less and less) until the application grinds to a halt
for lack of space.

A number of diagnosis tools exist that help the user look inside the black
box to determine the root cause of a leak. They rely on a combination of heap
snapshot differencing [26,19,30], and allocation and/or usage tracking at a fine
level of detail [27,29,11,4,21,24]. We have used tools in both of these categories as
part of an active consulting practice our group maintains helping solve memory
leaks in large stand-alone Java applications and in IBM customer e-Business
systems (web-based transaction processing systems built on an application server
framework, such as J2EE1 [28]). We have found that these techniques are not
adequate for these large-scale applications.

In our experience, to diagnose a memory leak, the user must look for a set
of candidate data structures that are likely to have problems. Finding the right
data structures to focus on is difficult; as we will see in Section 2, when exploring
the reference graphs of large applications, issues of noise, complexity, and scale
make this a daunting task. For example, e-Business servers intentionally retain
a large number of objects in caches. Existing approaches require that the user
manually distinguish these cached objects from truly leaking ones. In general,
these approaches swamp the user with too much low-level detail about individual
objects that were created, and leave the user with the difficult task of interpreting
complex reference graphs or allocation paths in order to understand the larger
context. This interpretation process requires a lot of expertise; even for experts,
it usually takes many hours of analysis work to find the root cause of a leak.
Moreover, these techniques will in some cases perturb the running application
too much to be of practical value, especially in production environments.

1.1 A summary of the contributions of LeakBot

We propose a way around these difficulties: raise the level of analysis from indi-
vidual objects to regions within data structures. This approach has two beneficial
consequences. First, it enables automated discovery and simple presentations of
what is really causing the leak. Second, it enables lightweight and automated
tracking of how whole data structures evolve. To realize these benefits, we have
developed three new techniques: a way to rank data structures automatically by
their likelihood of containing leaks, a way to identify suspicious regions within a
data structure and characterize their expected evolution, and a lightweight way
to track those regions’ actual evolution as the program runs. We present an im-
plementation of these techniques in an automated and lightweight memory leak
1 J2EE may more accurately be described as a large collection of libraries and frame-

works, covering many different areas of functionality such as database access, session
management, directory access, asynchronous messaging, etc.

detection tool called LeakBot. We demonstrate that these techniques work well
on several large-scale Java applications. Furthermore, we explain how they are
especially powerful when used in combination.

Our first step in finding leaks is to identify the few data structures in which
leaks are likely to be occurring. We introduce the concept of a leak root, which
is the head of a data structure containing regions exhibiting unbounded growth.
Section 3 discusses why finding candidate leak roots is not straightforward: data
structures are complex, and their properties do not have a simple linear effect
on the importance of that data structure. We present a method for ranking
candidate leak roots which combines, in a non-linear fashion, a collection of
structural and temporal properties of the object reference graph. This method
uses no knowledge of any particular framework. Section 3.6 demonstrates the
effectiveness of the model on three representative IBM customer applications. For
example, on a customer form-processing server application, it finds two candidate
leak roots from a heap containing one million live objects. In addition, it does
so quickly: the ranking process completes in under thirty seconds.

Under one leak root there may be multiple regions evolving in different ways.
In Section 4 we introduce the notion of Co-evolving Regions, as a way to identify
these distinct regions and concisely model the essence of their evolution. To this
purpose, we introduce the owner-proxy and change-proxy, waypoints along each
member’s path from the leak root. We show how these waypoints are useful for a
number of purposes. First and foremost, they classify members into Co-evolving
Regions, and allow us to rank regions according to whether they leak. They are
also useful for summarizing the structural highlights and severity of each region’s
growth for the user.

The two previous steps work by analyzing two snapshots2 of the reference
graph taken early in the run. A user could stop there, and operate in an off-line
mode. But, in order to refine the results of those previous steps, it is sometimes
necessary to acquire more information as the application runs. However, in prac-
tice, taking additional full reference graph snapshots either often, or late into an
application’s run, is far too expensive on large-scale applications.

In Section 5 we show how to acquire additional information selectively, using
the results of the previous steps. In this on-line mode, we can be selective in two
ways. First, we need only monitor the few most highly ranked regions. Second,
we need only track a small subset of an entire region in order to determine how
the entire region evolves. We show how to use the owner-proxy and change-proxy
to derive a short path that LeakBot can periodically traverse to detect how a
region evolves. The number of hops in this traversal is very small in relation to
the size of large, leaking data structures.

LeakBot uses the on-line findings to refine the analyses and user presentation.
For example, it characterizes each Co-evolving Region according to its actual
evolution, and tells the user which containers are growing (i.e. are likely sources

2 A reference graph snapshot is a list of currently live objects, including, for each
object, its identifier, data type, and outgoing references. By live we mean objects
that are not collectible by the garbage collector.

of leaks), which are alternating in size (e.g. a cache with a flux of constituent
objects, or a database connection pool), and which have reached a plateau (e.g.
a data structure fully initialized at application startup time). It uses the char-
acterization trend to update the rankings, and also presents this information to
the user to assist in understanding the dynamic behavior of each region. Finally,
the updated rankings allow LeakBot to adaptively adjust the frequency with
which it explores each region.

Fig. 1. The fringe is the boundary between older and recently created objects.

We have implemented LeakBot in two components. The ranking and CER
generation occur in an analyzer that runs independently of the target application.
The tracing agent attaches to the application using JVMPI [15]. In on-line mode,
the agent takes the initial snapshots and periodically samples the CERs.

2 Diagnosing Leaks in Large Java Applications

The applications that motivated the work in this paper have properties, com-
mon to many Java applications today, that make memory leak diagnosis espe-
cially difficult. These applications make heavy use of reusable frameworks and
libraries,3 often from many sources. These framework-intensive applications con-
tain large amounts of code where the inner workings are not well understood by
the developers, let alone those doing the problem determination. Server-side e-
Business applications make use of particularly large frameworks, and introduce
additional analysis difficulties due to their high degree of concurrency, scale, and
long-running nature.

Before LeakBot, we used existing tools to help diagnose leaks as part of our
consulting practice. HPROF [29] works by categorizing each object according
to its allocation call path and type, as shown in Table 1. Many tools work by
dividing the heap into old and new objects, under the assumption that older
objects are expected to be more permanent. The user manually tries to discover
why newer, supposedly temporary objects are being retained, by exploring what
we call the fringe, the boundary between old and new objects, as shown in
3 For convenience we will use the term framework to mean a framework or library.

percent live alloc’ed stack class
rank self accum bytes objs bytes objs trace name

1 97.31% 97.31% 10280000 10000 10280000 10000 1995 byte array
2 0.39% 97.69% 40964 1 81880 10 1996 object array
3 0.38% 98.07% 40000 10000 40000 10000 1994 MemoryConsumer
4 0.16% 98.23% 16388 1 16388 1 1295 character array
5 0.16% 98.38% 16388 1 16388 1 1304 character array

Table 1. The output of HPROF on a toy example. It divides the heap objects
based on allocation site (stack trace) and type.

Figure 1. Below, we describe the many difficulties we encountered when using
these tools.

Perturbation: In tracking the call stack of every allocation, HPROF can
reduce the throughput of a web-based application by five to ten times. Heap
differencing tools that acquire full heap snapshots late into a leak can cause a
system with a large heap size to pause for tens of seconds. For servers these
slowdowns or pauses can cause timeouts, significantly changing the behavior
of the application. On production servers, this level of service degradation is
completely out of the question.

Noise: Given a persisting object, it is difficult to determine whether it has
a legitimate reason for persisting. For example, caches and resource pools inten-
tionally retain objects for long periods of time, even though the objects may no
longer be needed. This is especially relevant to e-Business applications, where
numerous resource management mechanisms (such as database connection pools
and web page fragment caches) are used behind the scenes to ensure good trans-
action performance. Some other common examples of noise are: session infor-
mation that is retained for a fixed time period in web-based systems, in case
the user returns later; containers that have lazy removal policies; objects that
appear to persist only because they are part of a transaction that was in progress
when the application’s state was captured. Noise can be especially problematic
when diagnosing slow leaks in long-running systems; noise effects can dwarf the
evidence needed to diagnose a slow leak until very late in the run.

Existing techniques provide little assistance in this area. An aggregate view,
such as that shown in Table 2, dividing the heap into old, new, and fringe
objects, gives us little insight for determining which objects exist due to the flux
in and out of caches, which are from a transaction in progress, and which are
leaks. Existing approaches leave the user with the hard work of digging through
reference graphs or call stacks manually. Users must rely on their own, often
limited knowledge of how the application and frameworks manage their data, in
order to segregate objects by their likely usage.

Data Structure Complexity: Knowing the type of leaking object that
predominates, often a low-level type such as String, does not help explain why
the leak occurs. This is because these Strings are likely to be used in many
contexts, and even may be used for multiple purposes within the same high-level

class name old new

java.lang.ref.Finalizer 20246 17084
java.lang.String 223266 9453
xerces...TextImpl 9035 7676
character array 202782 5290
xerces...AttrImpl 6258 5135
object array 17165 3255
java.util.Hashtable$Entry 56745 3244
xerces...NamedNodeMapImpl 3667 2713
xerces...ElementImpl 3204 2123
integer array 4410 2064
java.util.Vector 6394 1993
xerces...DeferredTextImpl 960 1209
java.util.ArrayList 215 1151
com.bank...log.Record 1 1045

class name fringe-new

java.util.HashMap$Entry 322
java.lang.String 243
java.util.Hashtable$Entry 95
com.ibm...CredentialsImpl 20
com.bank...MessageModel 20
byte array 15
character array 14
xalan...KeyTable 12
java.util.Hashtable 11

Table 2. Number of non-collectible instances in a leaking customer Websphere
application. We have divided the heap as shown in Figure 1.

data structure, such as a DOM document. In addition, presented with the context
of low-level leaking objects, it is easy to get lost quickly in extracting a reason for
leakage. A single DOM object contains many thousands of objects, with a rich
network of references among them. Without knowledge of the implementation of
frameworks, it is difficult to know which paths in the reference graph to follow,
or, when analyzing allocation call paths, which call site is important.

3 Finding Candidate Leak Roots

Consider a buggy e-Business application where each transaction places items
into a global ActiveOrders structure, but forgets to remove some of them when
the transaction is complete. In this simple example, shown in Figure 2, Book’s
are removed properly, but CD’s are inadvertently left connected.

We may distinguish between a data structure that contains a leak, in this
example ActiveOrder’s, and the actual leaking substructures, in this case the
CD objects and everything they point to. In general, a single data structure may
contain more than one different type of leak, in addition to regions that are
stable or are in flux but not growing. In this section we describe a technique for
discovering the overall data structures that are likely to contain leaks. Our even-
tual goal is the discovery and characterization of the leaking regions themselves,
which we describe in Section 4 and 5.

Definition 1. A leak root is the object at the head of a data structure which is
leaking in one or more ways.

Our approach to finding leaks is to first identify candidate leak roots. We
do this by ranking each object based on a mixture of structural and temporal

Fig. 2. If every transaction leaks a CD object, then ActiveOrders is probably
the best leak root: the most indicative, highest-level object responsible.

properties of the object reference graph, using a small number of snapshots
gathered while the application is running. Each candidate leak root may then
be used as a proxy for a data structure containing leaks, and ultimately as one
of the attributes describing each leaking region.

3.1 An overview of leak root ranking

A number of requirements influence the design of our ranking scheme. First, it
must be a good discriminator of leak roots. The discovery process should not
propose many more candidates than actual leaks in the program. In addition, it
is not enough for the ranking to be merely an ordering; it must be a meaningful
ranking as well. If one object is much more likely than another to be a leak root,
this should be reflected in those objects relative ranks.

Second, the ranking must be resilient to the time at which the snapshots
were taken. We would like the ranking to do a good job with input taken early
in a programs run. This allows for quicker turnaround in test environments. and
it is a practical concern for production settings, where taking snapshots late in
a run with a severe memory leak can be prohibitively expensive.

Finally, it is important that the ranking scale to large object reference graphs,
both in its memory and time consumption. We achieve this by filtering many
objects down to a small set of candidates in a succession of three steps, each
utilizing different criteria. Each ranking step applies an increasingly expensive
algorithm to a successively smaller set of candidate leak roots. Each algorithm
assigns a number between zero (definitely not a candidate) and one (a highly
probable leak root), and each subsequent step only applies to objects ranked
above a chosen threshold. The final rank of an object indicates its goodness as
a leak root. We term this final rank the leakroot rank, or L.

In our example above, the algorithm would identify the ActiveOrders object
as a likely leak root. A number of considerations lead us to rank this object higher
than other objects in the graph (for example, higher than the Vector). The
ranking algorithms which led to this choice are the realization of the following
four observations.

Observation 1 (Binary Metrics) Structural and temporal reference graph at-
tributes can definitively rule out many objects, but definitively rule in none.

We can easily eliminate some of the objects in Figure 2 from any further
consideration. For example, in Java, array objects do not automatically grow.
Therefore, we can rule out the object array, [Object. Section 3.3 provides a
collection of binary (yes or no) metrics which eliminate a large number of objects
from further consideration. We will show how eight binary metrics typically
reduces the set of candidates from a million to a few hundred objects.

Of the remaining candidates, however, we cannot with absolute assurance
assign them a rank of one. Based on a few heap snapshots, we cannot know that
the application will not eventually remove the Order objects from the Vector
(just as e-Business applications eventually clear out cached user sessions). At
best, we can say the an object is a good candidate and, with additional evidence,
that it is increasingly likely to be so. Also, for the reasons of noise described
in Section 2, there are typically many such possibly leaking structures in the
reference graph. We should prioritize those not immediately ruled out.

Observation 2 (Mixture Metrics) For those objects not ruled out yet, some
reference graph attributes are positive indicators, in favor of candidacy, and some
are negative indicators. But no one attribute either stands out or always applies.

Data structures and leaks have many forms, thus the importance of each
attribute varies. Consider the importance of the size of a candidate, treated as a
data structure.4 Increasing size is a positive indicator, in favor of candidacy. But
it is not always indicative in every leak situation, since not all big data struc-
tures leak. For example, we analyzed a customer’s business-to-business gateway
application. Typical of many applications, the top five data structures by size
were all caches and resource pools. They ranged from 200kB to 1.5MB in size.
The known leak root, on the other hand, was (at one point) only 64kB large.
In another typical example, an e-Business form processing application with two
leaks, one leak showed up as the largest data structure, while the other leak
showed up only as the 85th-largest; the second case turned out to be a slow leak.

Observation 3 (Gating Functions) Some positive indicators are much more
positive than others; ibid for negative.

If the binary metrics prune the candidates down to a hundred, the mixture
model must do better than just ordering those hundred by likelihood. Instead,
we starkly differentiate those that are very likely from those that are less so.
We accomplish this differentiation by applying nonlinear gating functions to the
values of the reference graph attributes.

For example, one criterion that helps rank an object is the number of objects
it owns which are referenced by on-stack variables. Owning such objects is a
negative indicator, because it implies that this data structure is changing in size
4 Note that this alone would be an advance over existing tools.

only because the heap sample happened to capture some operations in progress.
We’d like this indicator to follow a very sharp curve: owning just a few on-stack
roots should highly discount the candidate; owning none shouldn’t discount the
candidate at all. This is an example of applying a “low-pass” gating function
to a reference graph attribute. Section 3.4 shows how other attributes are gated
with high-pass or band-pass gates.

Observation 4 (Fixpoint Metrics) The rank of an object depends on the
rank of other objects.

We have found two main cases when metrics based only on reference graph
attributes are insufficient. First, when one data structure leaks, all of its enclosing
leak as well. However, if the only reason we think the enclosing data structures
leak is due to that one data structure, then we have falsely identified multiple
leak roots for a single leak. However, there are common cases where, looking
only at the members and reachability of a candidate leak root, we will be left in
this situation (for example, when a candidate has multiple parents).

The second reason stems from the need to combat the noise effects described
in Section 2. Consider a leak of the form that objects of type B leak under an
object A, and where each B is itself a complex data structure which is populated
during (but not after) a transaction. Therefore, if a graph snapshots is acquired
concurrently with transactions, then it will appear as if objects of type B are
leaking: e.g. in one snapshot they are empty (newly created), and in the second
they are fully populated. In this common scenario, object A will appear to leak
(because of the true leak of B’s into A); but a large number of B’s will also be
identified, falsely, as candidate leak roots by the attribute-based metrics.

3.2 Reference Graph Attributes

The first two ranking steps use metrics based on a collection of reference graph
attributes. While most of these attributes have a well-understood meanings [17],
we define them here, to avoid confusion.

single-entry equivalence Given an arbitrary graph G, we compute a reduced
graph G′ where a node in G′ represents all nodes in G in the same single-
entry (but not necessarily single-exit) region. The edges are collapsed in
the obvious way. In the applications we have studied, the collapsed graph
has about one eighth as many nodes of the original graph. For example,
many character arrays are each pointed to by a single String object; we can
collapse each pair of objects into a single node in G′.

GC roots Those objects referenced by sources other than fields of Java objects.
Examples of these GC roots include references from local variables currently
on the Java or native stack, JNI references from native code, references from
currently-held monitors.

reachability The reachers of an object o is the union of all paths from some
set of objects to o. To make this computation efficient, the ranker computes

reachability on the single-entry collapsed graph. In addition, rather than
computing all-points reachability, the ranker only computes a small reacha-
bility vector. Each element of the vector counts the number of GC roots of
a particular type that reach that single-entry subgraph.

unique ownership One object o dominates o′ if any path from a GC root
which includes o′ also includes o. In the other direction, the objects uniquely
owned by an o is the set of all objects dominated only by it; we denote this
by Mo. Again, so that this analysis scales, the ranker computes dominance
on the single-entry reduced graph (see Appendix A).

age The age of an object is the snapshot in which that object was first witnessed
by LeakBot. The fringe of an object reference graph is the set of objects in the
latest generation immediately pointed to by objects in earlier generations.
We say an object is on the fringe if it is a new object pointed to by an older
one. In this discussion, we say an object is new if it comes from the latest
generation, and otherwise it is older.

size We distinguish between the allocation size and the data structure size of
an object. The latter is the total size of its uniquely owned objects.

3.3 Binary Metrics (ranking step 1)

The step-1 rank of a candidate object is the product of the eight metrics of that
object. Each metric is computationally easy-to-compute and each takes on a
value of zero or one. Thus, if any metric assigns a value of zero, then that the
object is not a candidate. Otherwise, the binary metrics are “agnostic” to that
candidate, and it is passed on to the next ranking step. The following binary
metrics evaluate to zero for objects with certain structural (S1 through S4) and
temporal (T1 through T4) reference graph attributes. We show how, together,
these metrics quickly eliminate most objects from further consideration.

Binary Metrics based on Structural Graph Attributes

S1 leaf nodes: these objects cannot possibly be the root of a leaking data
structure. Note that a leaf node may eventually point to another object, and
commence leaking. But we rely on the fact that it has not yet.

S2 arrays: objects which are arrays; in Java, arrays are allocated with a fixed
size, therefore, a leak involving growth of an array must have that array as
part of a larger data structure (which reallocates the array when it reaches
its maximum size).

S3 internal nodes: objects which aren’t the head of a single-entry region.
From every single-entry region, we choose one (the head) as a representative
of that region, and disregard the rest. For example, the Vector in Figure 2
is filtered out using this property. In many cases, this will keep us from
identifying more than one leak root for the same leak.

S4 non-owners: objects which uniquely own nothing. An object may be a
non-leaf node, but only share ownership of objects with many others. These
objects tend to be located close to GC roots, such as class loaders. We ignore

them, and instead favor the objects they point to (directly or indirectly)
which do own objects. The parents of the ActiveOrders object in Figure 2
have this property.

fraction remaining
objects S1 S2 S3 S4

phone company 267,956 67% 59% 9% 6%

IDE 350,136 61% 55% 9% 7%

brokerage 838,912 65% 62% 7% 3%

brokerage2 1,015,112 71% 70% 2% 1%

finance 1,320,953 60% 56% 11% 8%

Table 3. For five applications, this table shows the cumulative effectiveness (from
left to right) of the four binary metrics based on structural graph attributes.

Binary Metrics based on Temporal Graph Attributes

T1 no age intersection: the object owns only older, or only new objects. If we
have witnessed no objects added to a data structure in any of the reference
graph snapshots, then this object is a very likely the owner of a pool, or
some other unchanging structure. Likewise, if we see no older objects as of
the latest graph sample, then we very likely have caught a transient data
structure, perhaps due to an in-progress transaction. In either case, we can
safely ignore this object.

T2 new arrays only: the object owns only new object arrays, but no new ob-
jects inside those arrays. For example, an empty hashtable used only during
program initialization may still own a large, but empty array.

T3 no fringe: the object owns no objects on the fringe. Some objects may own
both new and older objects, but they own none on the fringe. This is likely
to be an artifact of shared ownership. To avoid these artifacts, we favor the
objects which own both older, new, and fringe objects.

T4 no datatype intersection: the set of data types of older owned objects
intersected with the same for new objects is empty. For example, a generic
object cache may contain ten strings in one reference graph sample and
fifteen integers in a later sample. This data structure passes most of the
other binary filters, but nonetheless isn’t very likely to be leaking.

Table 3 and Table 4 give five examples of the effectiveness of the binary
metrics, for the structural and temporal metrics respectively. These five examples
come from engagements we’ve been involved with; four are large IBM customers,
and one (IDE) is an internal IBM application. In each case, the input to the
binary metrics was a pair of full reference graph snapshots. We had warmed up
the applications various amounts (e.g. with financial we warmed up the system

number remaining
objects Si T1 T2 T3 T4

phone company 267,956 16,346 73 73 72 29

IDE 350,136 25,653 99 99 29 10

brokerage 838,912 26,291 97 82 81 67

brokerage2 1,015,112 12,020 102 102 64 17

finance 1,320,953 106,900 579 519 518 242

Table 4. The cumulative filtering effectiveness (from left to right) of the four
binary metrics based on temporal graph attributes (T1, T2, T3, T4). Si shows the
number of objects left after applying all four structural metrics; see Table 3.

with only five minutes of typical load, whereas for brokerage2 we warmed up the
system with 30 minutes of typical load). We took the first snapshot, performed
additional load (roughly the same as the warmup load), and took the second
snapshot.

On the finance application, the second snapshot had around 1.3 million live
objects, and the combination of the eight binary metrics filtered out all but 242
objects. This number is somewhat higher than for the other applications because
we had warmed up the application for a much shorter period of time than for
the others. Nonetheless, the binary metrics are effective. As we discussed earlier,
resilience to input early in a program’s run is an important design criteria. Our
experience has shown that, given input from early in a program’s run, the binary
metrics typically filter down to several hundred candidates.

3.4 A Mixture of Gated Metrics (ranking step 2)

Of the (typically) several hundred remaining candidates, not all are equally likely.
Thus, we rank them by the unweighted sum of a collection of gated metrics.

As pointed out in Observations 2 and 3, no one metric is an overwhelm-
ing indicator of candidacy, but selected reference graph attributes can be very
strong negative indicators. To reflect this observation, we gate each attribute.
The particulars of each gating function depend on the attribute, but each has
the following characteristics. For extreme values of the attribute, gates are either
strongly against or agnostic to that object’s candidacy (but never strongly in fa-
vor). If an attribute has a strongly negative extreme, the gate assigns a negative
rank. By agnostic, we mean that, all other things being equal, we should assign
the object a rank of one. In-between, the gates use a superposition of cubic ex-
ponential gating functions to implement either high-pass, low-pass, or band-pass
filters on the attribute’s value. Space does not permit a full exposition of each
attribute’s gate, but we describe them for several of the following attributes.

G1 on-stack ownership: We discount data structures that are growing only
because we caught operations in progress based on the number of objects
owned that are referenced by on-stack GC roots.

G2 on-stack reachability: We discount those objects reachable from on-stack
roots, because the entire data structure may be transient.

G3 ownership counts: S4 has already filtered out objects which own nothing.
Here, we favor objects which own both a greater number and size of objects.
We consider number and size separately: owning one large array isn’t as
indicative of problems as owning many smaller objects. But comparing two
objects which own the same number, we somewhat favor the one of larger
data structure size.

G4 new ownership: T1 has already filtered out objects which own no new
objects. Here, we favor objects which own a greater number of newer objects.

G5 array ownership: The larger the number of object arrays compared to
objects, the less likely the candidate. Also, if a data structure contains no
object arrays, we have found it to be less likely (though not entirely unlikely)
to be a root of leaks. Therefore, for this criterion, the number of object
arrays in a data structure, we must apply a band-pass gating function to
array ownership: not too large a fraction of object arrays, and not too small.

G6 fringe ownership: If an object owns many objects on the fringe, that is
a sign that the leak is progressing quickly. All other things being equal, we
favor these candidates over others.

G7 fringe datatype uniformity: Single leaks tend to have a fairly uniform
datatype on the fringe. 5 If there is only a plurality of datatypes on the fringe,
this is an indication either that this data structure may have multiple leaks,
or that it is a general-purpose data structure with a constantly-changing
constituency (like a cache). In the former case, we’d like to favor the smaller
data structures which contain the individual leaks (if not heavily discounted
by other metrics). We want to ignore the latter case entirely.

G8 datatype intersection: As explained earlier, we strongly discount objects
without high overlap in owned datatypes from one sample to the next.

G9 dominance frontier: Data structures that are highly embedded in larger
ones tend not to leak. Rather, leaking data structures extend ownership all
the way down to graph leaf nodes. Therefore, we discount an object which
owns many objects with a non-empty dominance frontier.

3.5 Iterative Fixpoint Ranking (ranking step 3)

Finally, LeakBot updates the step-2 rank to account for the interactions identi-
fied in Observation 4. We account for interactions using an iterative algorithm
which inflates or discounts the rank of one object based on its rank relative to
the rank of related candidates. The algorithm starts with all objects whose rank,
so far, lies above a specified threshold (see Appendix B). It then iterates until
no candidate’s rank changes appreciably. We have found that, in nearly every
case, no more than three iterations are required.

Initially, the step-3 rank of every object equals its step-2 rank. At each iter-
ation, choose a candidate o, and compute the three metrics from o.

5 This is the change proxy introduced in Section 4.

F1 immediate domination residue: the sum of the step-3 ranks of each ob-
ject o immediately dominates.

F2 by-type immediate domination residue: as F1, but sum the maximum
by datatype.

F3 immediate dominator residue: the maximum of the step-3 ranks for
every object in immediate dominators from, but not including o.

Let ro be the current step-3 rank of o. Update ro as follows. If F1 ≈ 0,
then no sub-structures are better candidates than the current object; continue
to the next iteration with no changes. If F1 = ro, then o is a candidate mainly
because exactly one of its sub-structures is a good candidate; discount ro by
50%. Otherwise (if F1 > ro) multiple of o’s sub-structures contribute to o’s
candidacy; if F2 = F1 then there are two independent problems in sub-structures,
and so discount ro by 50%; otherwise, we are witnessing the falsely-identified
leaks described in Observation 4, and so discount each of the falsely identified
candidates by 50%. We perform similar updates based on F3. If F3 = 0, then no
larger structure is a good candidate, so continue with no changes. If F3 � ro,
then there is an enclosing data structure which is a much better candidate than
o; discount ro by 50%.

3.6 Examples of the Ranker in Use

We have applied LeakBot in off-line mode to a variety of applications, both large
GUI applications and e-Business applications. We have used it for a number of
purposes: to diagnose known leaks, to check whether an application has leaks
before shipping it, and to verify that fixes for known leaks do in fact work. Here,
we share three of these experiences. In each of these examples, the input to
LeakBot was a trace containing two snapshots of the heap, with a number of
suspected leaking operations separating the two snapshots.

Discovering and diagnosing a leak In this example, we analyzed a large
GUI integrated development environment, heavily dependent on frameworks,
for leaks. We tested opening and closing an editor window, thinking that this
should be a “round trip” scenario: all resources for the editor window should go
away when it is closed. We performed a total of three operations: we warmed up
the IDE with two operations, took a heap snapshot, then performed one more
operation, and finally took a second heap snapshot. Table 5(a) shows that, from
350 thousand live objects, the ranker chooses only three with non-zero leakroot,
and only one with leakroot above 0.5. We were surprised to find these highly-
ranked suspects. It turns out that LeakBot had identified a previously unreported
leak. With a 90MB heap, the structural computation takes 5 seconds, and the
metric computation takes another 5 seconds (on a 1.2GHz Pentium3-M).

For comparison, we enabled HPROF, and exercised the application similarly.
We started the application with the option -Xrunhprof:heap=sites, and used
the IBM 1.3.1 JVM. After we had issued eighteen leaking operations, we exam-
ined the HPROF output. Recall that HPROF aggregates allocations by call site

class name L
(*)WorkbenchPage 0.719
WidgetTable 0.446
ResourceBundle 0.31

(a) IDE

class name L
WidgetTable 0.430
DeltaDataTree (#1) 0.322
DeltaDataTree (#2) 0.320

(b) IDE- bug fixed

class name L
DDRMain 0.396
ibm.LogUtil 0.265

(c) auction-

no leak

class name L
APCache 0.830
TemplateCache 0.805
AntiVirus 0.757
Record 0.596
(*)XSLTransform 0.582

(d) brokerage

class name L
(*)EventNotifier 0.848
ibm.CachedTargets 0.579
(*)FormProperties 0.572

(e) brokerage2

class name L
ibm.CachedTargets 0.271
ibm.ORB 0.234

(f) brokerage2-bug

fixed

Table 5. Examples of the leak root ranking, showing the objects with highest
rank (L), with those at the head of actual leaks annotated (*).

and type. It ranks these aggregations by the number of non-collectible bytes due
to that call site and type. Table 6 shows the top five, all of which are primitive ar-
rays. The first leaking application-typed aggregate, of type StyleRange, has rank
45. However, given the rate at which this application was leaking StyleRange
objects, we would have to perform around 200 leaking operations before its ag-
gregate floated to the top. In contrast, as we have shown, LeakBot is robust to
the quality of the input: leakroot does well with many fewer extant leaks: after
only three leaking operations, it has identified the leak as the top suspect.

Checking for a leak before shipping In this case, we applied the ranker to a
high-volume e-Business application. We now know this application is leak free.
At the time, however, we needed to verify this before the application went into
production. We applied the ranker to a previously acquired trace, collected while
the application was running a workload mix of various web transactions. Of seven
hundred thousand objects, the ranker assigns 11 a non-zero leakroot; it assigns
only two objects a leakroot above 0.25, and none above 0.4. Table 5(c) shows
the leakroot metric for those two objects. With a 300MB heap, the structural
analysis (computing the reduced object reference graph, and the dominator and
reachability relations) took 10 seconds, the metric computation took 15 seconds.

Verifying that a fix to a known leak works Our third demonstration
is from a leaking e-business form-processing application. The developers had
already implemented fixes to two leaks, but wanted two types of assurance:
first, that the patches indeed fixed the problem, and second, that there were no

percent live alloc’ed stack class
rank self accum bytes objs bytes objs trace name

1 5.27% 5.27% 639600 39 2279600 139 1522 character array
2 4.57% 9.84% 554488 7339 559752 7540 2262 character array
3 4.35% 14.20% 528192 6762 589504 7294 1530 character array

...
640 0.01% 85.45% 1152 18 1152 18 19766 EditorManager$Editor

Table 6. A subset of the output of HPROF on the IDE application from Ta-
ble 5(a). The head of the structures which are leaking is ranked 640th.

remaining leaks. The customer could not afford to discover, after deploying the
fixes and running in production for several days, that there were still leaks. We
first applied LeakBot’s ranker to the server running a known-buggy version of
the code. Table 5(e) shows the result: from one million live objects, the ranker
finds ten with non-zero leakroot, five with leakroot above 0.3, and only three
above 0.5. With a 300MB heap, the structural and metric computations took 15
seconds each (on a 1.2GHz Pentium3-M). The same analysis applied to the fixed
code appears in Table 5(f). This time, the ranker assigns 9 objects a non-zero
leakroot, and it assigns no objects a leakroot greater than 0.3.

4 Co-evolving Regions: patterns within leaking structures

Section 3 identifies leaks by finding candidate leak roots, objects which head data
structures that possibly contain leaks. However, there are several reasons why
this information is too coarse. For example, one leak root may identify more than
one leak. In addition, leakage isn’t the only way a data structure can change.
There is a variety of ways in which evolution happens. For example, one data
structure can have distinct regions that evolve as leaks (grow without bound), as
caches or pools (bounded size, changing constituency), that may never change
(e.g. a preloaded data structure), that may shrink (e.g., if used for initialization),
or that may switch between these various types of evolution. This section refines
from the level of a data structure to the level of regions within that structure.6

We desire to identify regions that are as big as possible, but that still evolve in
a single, coherent way. We term such regions Co-evolving Regions (CERs).

Coherency of evolution is determined by several factors. First, the region
should only exhibit one type of evolution: either monotonic growth, monotonic
shrinkage, bounded-changing constituency, and bounded-fixed constituency. Sec-
ond, as a region evolves, different of its elements are, or once were, on the fringe.
Those fringe elements must share a similar to each other. Third, all members of
a region must share a similar relationship to the region’s leak root.

This section presents a mechanism for finding likely7 Co-evolving Regions.
To find CERs, we develop an equivalence relation for objects owned by a leak
6 In [7], they discuss the “geometry of containment”.
7 Likely, not certainly. Section 5 shows how to adapt regions as the program runs.

root. To every object owned by a candidate leak root we assign a Region Key, a
tuple of features reflecting the important components of equivalence. We define
similarity of Region Keys, and classify a leak root’s members based on Region
Key similarity. Finally, we describe how to prioritize the Co-evolving Regions
using a simple ranking algorithm.

4.1 Region Keys

(a) (b)

Fig. 3. The leak-path does not solely indicate co-evolution. The elided path of
leak root, owner-proxy, and change-proxy is a better indicator.

Two members are part of the same CER based in part on their paths from
their leak roots. As there may be many such paths, we identify one.

Definition 2. The leak-path, Pm, of m owned by leak root o is the reverse of
the path of immediate dominators from the m to o.

The entire leak path is too rigid a specification to be useful for classifying
objects into regions. For example, Figure 3 shows the structure of two leaks, an
array leak (from the application covered in Section 3.6) and a linked list leak. In
the array example, both the EditorManager objects and all their constituents
should be part of the same CER, and yet their paths are, in large part, different.
In the linked list example, even the leak-paths of only the highest-level leaking
objects (the Entry’s) can be very different. And yet, in both examples, members
of one region have somewhat similar leak-paths.

Eliding leak-paths via the owner-proxy and change-proxy. While the
leak-path in its entirety does not indicate co-evolution, there is an elided version
which does. We identify important “waypoints” in every leak-path, that indicate
similarity of evolution [12]. Every object between the waypoints is effectively a

wildcard for determining in which region a member belongs. The only parts of
the path which do matter are the leak root, two concepts we now introduce: the
owner-proxy, and the change-proxy.

The owner-proxy is a stable object on the old side of, and in close proximity
to, the fringe. The change-proxy is that indicator of updates to the region; for
this, we choose the largest stable object on the new side of the fringe. For ex-
ample, Figure 4 shows the leak-paths for several of the objects in Figure 3(b). It
illustrates how the waypoints define wildcarded subpaths of the each leak-path.
The change-proxy for the Shirt and Button objects is the same, because, every
leak to that region is indicated by the addition in a similar way.

Fig. 4. Some leak-paths from Figure 3(b). The Region Keys for the Shirts and
Buttons are the same, so they are part of one Co-evolving Region.

Definition 3. The distance-from-fringe of an object o on a leak-path Pm is the
number of hops from o to an object on the other side of the fringe. It is positive
for objects on the old side of the fringe, and negative for those on the new side.
We’ll denote this by do,m. Also let co,m be the number of fringe crossings along
Pm from m to o. Finally let to be the expected lifetime of object o.

For example, along the highlighted leak-paths in Figure 3(a), [Object has a
distance of 1, and the EditorManager objects have distance -1. When computing
the Region Key for m, we have found that a simple model of expected lifetime
works very well in practice. Assume that arrays and objects with the same data
type as the chosen change-proxy have an expected lifetime of 0, that new objects
have 1, and that old objects have 10.

Definition 4. The change-proxy of a new member m, Cm is that object o in Pm

that maximizes −to/do,m/(1+ co,m). The owner-proxy, Om, maximizes to/do,m.

Consider finding the owner-proxy and change-proxy for the Shirt object in
the linked list example shown in Figure 3(b). We use the lifetime model defined
above. It’s leak-path contains all seven objects in the figure. In determining
the change-proxy, the ratios specified in the above definition for each element
in Pm are (−0.833, 1.25,−2.5,+0.333,−5,+1,+0.5), indicating the best choice

of change-proxy is the right-most Entry object. For the owner-proxy, the ratios
specified in the above definition for each element in Pm are (+3.33,+5, 0, 0, 0, 0,−0.125)
indicating the best choice of owner-proxy is the List object. A similar process
for the leak in Figure 3(a) will determine that the ArrayList from is the owner-
proxy of every EditorManager object: the [Object array is closer to the fringe,
but has a much shorter expected lifetime, and the objects further upstream have
equal lifetimes but larger distances.

Definition 5. The Region Key of an object m belonging to leak root L is the
tuple (L,Om, Cm). The Region Key for m and m′ are equal (i.e. objects m and
m′ belong to the same co-evolving region) if L = L′, Om = Om′ , and the datatype
of Cm is the datatype of Cm′ .8

Using Region Keys to find Co-evolving Regions. For every leak root
candidate L whose rank lies above a desired threshold, we compute Co-evolving
Regions as follows. To L we associate a set of regions. To each region, we associate
two numbers to measure a region: the total number of bytes which belong to that
region, and the number of distinct data structures within that region. The latter
is a useful metric, because it estimates the number of leaking operations which
led to that region’s current constituency.

Definition 6. The dump-size of a region is the number of Region Keys that map
to that region (using Definition 5’s). The proxy-size of a region is the number of
distinct change-proxy objects over all Region Keys which map to that region.

Then, for each m ∈ ML whose Pm has spans the fringe (i.e. cL,m > 0),
do the following. Compute m’s Region Key as described above, and insert it
into L’s region set. If an equivalent Region Key already exists, increment that
region’s dump-size. If an equivalent Region Key with the same change-proxy
exists, increment that region’s proxy-size.

For example, using this process, in the IDE application from Section 3.6, the
highest-ranked candidate leak root (the WorkbenchPage object) has two regions.
The proxy-size of the known leaking region is precisely the number of leaking
operations that had been performed: three (recall from that section that we had
performed three suspected leaking operations).

4.2 Ranking Regions

Finally, not all regions are equally likely to leak, so we rank them. When com-
paring one region to another, we consider three criteria. First, if one region’s
leak root has been ranked higher than another, this influences the relative rank-
ing of the regions similarly. Second, if one region has a higher proxy-size than
another, we favor the larger one. We do not use dump-size, because we’d prefer
to rank based on an estimate of the number of leaking operations which have

8 More generally, either Cm is assignable to the datatype of Cm′ or vice versa.

been performed, rather than the byte-size of the leak. Finally, if one region’s
proxy-size is growing faster than another’s, we favor the faster one. This third
criterion allows for updating the region ranks as we gather more information
from the running application. A region’s rank is the the unweighted average of
these three elements. Unlike the leak root ranking described in Section 3 where
a root’s rank was bounded at one, we allow a region’s rank to grow without
bound. This allows for differentiating regions based on their leak rate, whereas
bounding at one would asymptote all leaking regions to the same rank.

5 Cheap, Adaptive, Online Exploration of Regions

We have described the analyses of Sections 3 and 4 assuming an off-line usage
scenario: acquire snapshots, find candidate leak roots, and then find co-evolving
regions within highly-ranked candidates. We could very well stop here. An imme-
diate benefit of having found regions that are likely to co-evolve is that LeakBot
can present a high-level schematic of the suspected problematic regions of the
reference graph. However, we’d like to know more than just the structure of
problematic regions. We’d also like to know how those regions actually evolve.

In off-line mode, our estimates of actual evolution are limited by the infor-
mation in initial snapshots. Recall that we desire to acquire initial snapshots as
early into the run as possible. On the other hand, if LeakBot remains connected
to the program under analysis, it can present a more refined view of how regions
actually evolve.

A principal constraint of LeakBot is that it must minimally perturb the
program’s behavior. Region Keys, in addition to helping us find Co-evolving Re-
gions, can also help us derive lightweight probes to discover how these regions
actually evolve. To this gather information, the LeakBot agent periodically tra-
verses selected subgraphs of the object reference graph of the running applica-
tion. It reports important structural changes back to the analyses of the previous
sections. With the updated analysis (closing the feedback loop), we update the
traversals as described below.

For example, to efficiently detect leaks of data structures into an array, we
needn’t keep track of every element in those leaking data structures. Instead, it
is sufficient to periodically examine the references from the array, to a depth of
one. There is no need to look any deeper into each leaking data structure, since
we can just count the array contents by datatype. However, there is another case
we must consider. In Java, an array is of bounded size. Thus, if the Co-evolving
Region has monotonic growth, we would expect occasional reallocations of the
array; when adding to an ArrayList, the underlying array is a transient object.
Therefore, we must start the traversal from ArrayList, not the array. Observe
that the same traversal also detects elements having been removed from the
array. In addition, it can be used to inform us of when a relinking has occurred
— that is, when one path element has been replaced by a new one. Observe that
this traversal (in this case) follows precisely the path between owner-proxy and
change-proxy.

This example shows that, to know how a Co-evolving Region evolves, we
must derive a set of traversals that detect certain updates: additions, removals,
and relinking. In some cases, one traversal can detect more than one of these
updates. If, when doing the actual traversal, we witness an evolution, we say
that update has been detected.

For every region, we keep a histogram of detected updates. We use this to
estimate a region’s evolution trend. For example, if only addition updates have
been detected for a region, we say that region is a monotonic grower. If a roughly
equal mixture of addition and removal updates have been detected, we classify
the region as an oscillator. If only removal updates, it is a shrinker. If no updates,
then it is a flatliner. Figure 5 shows the actual tool in action. The table has one
row per Co-evolving Region, and indicates for each its current proxy-size and
evolution trend.

Fig. 5. Screenshot of the LeakBot tool. Each row corresponds to one suspect
region. For each region, we show its region rank (“rank of leak”), the proxy-size
(“# leakages”), and a summary of the trend and tick of that region’s evolution.

Note that, in some cases, such as Figure 3(b), that traversal would be much
longer than necessary: as the list in that example grows, so does the traversal.
The solution to this problem of finding efficient traversals involves defining a
family of short traversals which explore the fringe as it evolves. Space does
not permit discussion of this topic, and therefore we leave it to future work.
Nonetheless, the owner-proxy and change-proxy can still be used to define these
traversals without a full dump of the object reference graph.

5.1 Tracing Adaptively

LeakBot first publishes the traversals to the tracing agent. The tracing agent
spawns a thread that cycles through the unique traversals and periodically (once
per second) performs at most one every time it wakes up. The agent assigns, to
each unique traversal, a sample bias which lies between 0 and 1, and is initially 1.
The bias is the probability that, when a traversal’s turn comes up, the agent will
actually perform the traversal. For every traversal, the agent determines whether
any of that traversal’s associated updates have been detected. It reports any
detected updates (i.e. as an element having been added, removed, or relinked)

back to the analyzer. For example, when an addition update is detected, the
analyzer updates the proxy-size of that region.

LeakBot adaptively adjusts the sample bias of the traversals. Since we are
interested in tracking leaks, we increase the bias whenever an addition template
fires, and decrease it whenever no template fires, and decrease it even more
so when a removal template fires. LeakBot ensures that no CER is completely
ignored, in case the CER’s mode changes at some point.

5.2 Implementation of the Tracing Agent

LeakBot works with either full reference graph snapshots acquired earlier, or it
selectively acquires this information via a live connection. LeakBot’s analyzer
can parse previously acquired trace files in the Sun heapdump format, the IBM
heapdump format, or the Jinsight [18] format. The agent relies on the JVMPI [15]
profiling interface to gather information from the JVM.

JVMPI identifies objects by their memory address. Therefore, to maintain
unique object identifiers in between initial snapshots, the agent needs to listen
to object move and free events. This slow down garbage collection by as much
as a factor of two. Luckily, LeakBot allows this interval to be very short. Once
we have identified CERs, we no longer listen to move and free events. Instead,
we use weak references to maintain persistent identifiers just for the elements
of traversal paths — a very small number of weak references in relation to the
entire reference graph. Therefore, once tracing begins, we do not measurably
perturb the garbage collection. In addition, because the sampling process itself
is so infrequent and selective, the cost of the sampling is also very small. In fact,
the only measurable slowdown is the cost of having a JVMPI agent attached,
not of listening to events. For example, when attached, some JVMs use a slower
object allocator. This overhead can run as high as several percent, which still
meets our design constraint.

6 Additional Related Work

This section categorizes and discusses the related research we have encountered.
Type Assistance: Some recent work use static semantics to enforce and

detect ownership using ownership types[6,5]. Perhaps, knowing aspects of data
structure flux at compile-time, such as the allocation site of constituents, and
the sites at which members are added or removed, or substructures relinked, we
could insert instrumentation at just those sites.

Heap Analysis: Some have studied the interaction between the applica-
tion’s and the runtime’s use of objects [22,23]. They break an object’s lifetime
into several phases, such as the time after allocation and before first use, and the
time between last use and collection (“drag”). Glasgow Haskell [10] as of version
5.03 has built-in support for this type of analysis, which it calls “biographical
profiling.” Other works study how liveness information [1,13] or reachability [14]

can benefit conservative garbage collection. As with static analysis, it is conceiv-
able that LeakBot could leverage these findings in its ranking. However, they
gather the information via a pre-pass profiling run, which doesn’t fit with our
goal of analysis on production machines.

Debugging Memory Problems by Tracing: Others have explored in-
strumenting allocation sites [3,11,29] and instrumenting field access and modifi-
cation [24,25] in order to assist in tracking down memory-related errors. Some
of these [24,25] using the notions introduced by [22], strive to automatically fix
the problems, by instrumenting field updates to remove “dragging” references
to array elements. In addition to high overhead, these techniques do not address
the issues of ease of tool use in framework-intensive environments. While static
assistance could possibly guide the instrumentation points to reduce runtime
cost, it would have to be very precise in order to be useful.

Glasgow Haskell supports a form of heap analysis called “retainer profiling”
to help fix memory consumption problems due persisting, but unevaluated clo-
sures. At least as of version 5.04, this profiling is based only on reachability, has
a fixed maximum-size retainer set, and exploring multi-hop ownership requires
multiple passes. In addition, retainer profiling is done on a per-class basis, with
classes specified on the application command-line. For long-running, framework-
intensive servers we think this approach is too restrictive.

Debugging via Tracing: Some approaches instrument the application [16]
or debugger [2]) to alert the tool user to specific conditions specified by the tool
user. Based on the specified conditions, these tools insert or activate instrumen-
tation to gather the relevant information. This is akin to the interaction between
the analyzer and tracing agent in LeakBot, except that in LeakBot the requests
for information gathering have been automated, and are specific to the evolution
of whole data structures.

Discovering Static Properties with Tracing: Several works collect and
analyze traces to establish properties of programs which are difficult to establish
with static analysis [8,9]. As with other work we have discussed, collecting the
required traces can be expensive. Perhaps detecting invariant properties of data
structures could assist LeakBot in ranking the objects or refining the CERs.

7 Conclusion

We had two design goals for LeakBot. First, it should be usable by non-experts,
and by experts without many hours to burn. Second, it should be feasible to
apply on production machines. In our consulting practice with IBM customers,
we happily found that these two goals are not at odds. In fact, we found a
synergy between them. Being selective about what the tool presents to the user
(because those are the aspects which best explain the problem) facilitates being
selective about what it traces.

In this paper we have presented a tool called LeakBot, which we have demon-
strated to achieve these goals. We have used LeakBot successfully in our con-
sulting practice to assist in problem determination on large IBM customer ap-

plications. It has quickly identified that leaks do or do not exist, verified that
bug fixes actually fix problems, and assisted in diagnosing and expediting the
resolution of known leaks. We were able to analyze applications with millions of
live objects, and trace the ongoing evolution of suspicious data structures with
negligible impact on the transaction throughput of those server applications.
LeakBot implements four contributions presented in this paper:

Raising the level of analysis. Our technique presents results, and performs
analysis at the level of data structures, not individual objects. This enables dis-
covery and presentation of high-level properties, both structural and temporal,
of those data structures.

A way to automatically find problematic data structures. We define
the concept of leak roots, objects that are likely to be at the head of these struc-
tures: they contain one or more leaks. We identify a set of important structural
and temporal properties of data structures, and introduce a nonlinear combina-
tion of them that prioritizes objects based on the likelihood that they are leak
roots. Without any knowledge of specific frameworks, it quickly finds a small set
of candidate leak roots out of millions of live objects.

Concise models of data structure evolution. We introduce Co-evolving
Regions, sub-structures whose members exhibit coherent evolution behavior. We
identify salient features — the leak root, the owner-proxy, and the change proxy
— that concisely describe this similarity. These features not only group members
into regions, but they also aid in explaining the regions to a user, and in observing
the actual evolution in a cheap way.

A lightweight tracing agent. We show how to use Co-evolving Regions
to automatically derive tracing schemes to detect when elements are added to,
removed from, or repositioned within a region. To track these changes, we derive
traversals from the owner-proxy and change-proxy.

An adaptive loop that combines ranking and evolution tracing to
mutual benefit. Ranking informs the tracing: it identifies a small set of data
structures that we need to track. Tracing informs the ranking: it identifies new
temporal properties of those data structures. These new findings refine the rank-
ings, which in turn allows the tracing agent to focus on only the relevant regions.

We continue to validate these techniques in our consulting practice. For ex-
ample, as new frameworks come along, we may need to refine the model LeakBot
uses for object ranking; new data structure or temporal properties, or new ways
of combining them may be appropriate. We also continue to refine the CERs,
and their use in the adaptive agent. Other areas of future work include using
the high-level properties that LeakBot uncovers to develop better presentations,
and exploring additional applications of CERs beyond memory leak diagnosis.

8 Acknowledgements

We appreciate the assistance of Matthew Arnold, Jong-Deok Choi, and Harini
Srinivasan at IBM T.J. Watson Research Center in the refinement of the pre-
sentation of this paper.

References

1. O. Agesen, D. Detlefs, and J. E. B. Moss. Garbage collection and local variable
type-precision and liveness in Java virtual machines. In Programming Language
Design and Implementation, 1998.

2. J. K. A. W. Appel. Traversal-based visualization of data structures. In Symposium
on Information Visualization, pages 11–18, 1998.

3. D. R. Barach, D. H. Taenzer, and R. E. Wells. A technique for finding storage
allocation errors in c-langage programs. ACM SIGPLAN Notices, 17(5), May 1982.

4. Borland software corporation optimizeitTM.

5. C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe programming:
preventing data races and deadlocks. In Object-oriented programming, systems,
languages, and applications, 2002.

6. D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment.
In European Conference on Object-Oriented Programming, 2001.

7. J. S. Dong and R. Duke. The geometry of object containment. Object-oriented
Systems, 2:41–63, 1995.

8. M. Ernst, W. G. Griswold, Y. Kataoka, and D. Notkin. Dynamically discover-
ing pointer-based program invariants. In International Conference on Software
Engineering, 1999.

9. S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly
detection. In International Conference on Software Engineering, May 2002.

10. The Glasgow Haskell compiler user’s guide. http://haskell.cs.yale,edu/ghc.

11. R. Hastings and B. Joynce. Purify — fast detection of memory leaks and access
errors. In USENIX Proceedings, pages 125–136, 1992.

12. B. Hayes. Using key object opportunism to collect old objects. In Object-oriented
programming, systems, languages, and applications, 1991.

13. M. Hirzel, A. Diwan, and A. Hosking. On the usefulness of liveness for garbage
collection and leak detection. In European Conference on Object-Oriented Pro-
gramming, 2001.

14. M. Hirzel, J. Hinkel, A. Diwan, and M. Hind. Understanding the connectivity of
heap objects. In International Symposium on Memory Management, 2002.

15. http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/jvmpi.html.

16. R. Lencevicius. On-the-fly query-based debugging with examples. In Automated
and Algorithmic Debugging, 2000.

17. S. S. Muchnik. Advanced Compiler Design and Implemtnation. Morgan Kaufmann,
1997.

18. W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang. Visu-
alizing the execution of Java programs. In Software Visualization, State-of-the-art
Survey, volume 2269. Springer-Verlag, 2002.

19. W. D. Pauw and G. Sevitsky. Visualizing reference patterns for solving memory
leaks in Java. Concurrency: Practice and Experience, 12:1431–1454, 2000. previ-
ously appeared in ECOOP 1999.

20. G. Ramalingam. On loops, dominators, and dominance frontiers. ACM Transac-
tions on Programming Languages and Systems, 24(5):455–490, 2002.

21. Rational software corporation quantifyTM.

22. N. Rojemo and C. Runciman. Lag, drag, void and use — heap profiling and
space-efficient compilation revisited. In International Conference on Functional
Programming, pages 34–41, 1996.

http://haskell.cs.yale,edu/ghc
http://java.sun.com/products/jdk/1.2/docs/guide/jvmpi/jvmpi.html

23. C. Runciman and N. Rojemo. New dimensions in heap profiling. Journal of
Functional Programming, 6(4):587–620, July 1996.

24. R. Shaham, E. K. Kolodner, and M. Sagiv. Automatic removal of array memory
leaks in java. In Computational Complexity, pages 50–66, 2000.

25. R. Shaham, E. K. Kolodner, and M. Sagiv. Estimating the impact of heap liveness
information on space consumption in Java. In International Symposium on Memory
Management, June 2002.

26. Sitraka Inc. JProbeTMProfiler with Memory Debugger ServerSide Suite.
27. Heap Analysis Tool. http://java.sun.com/people/billf/heap.
28. Java 2 Platform, Enterprise Edition. http://java.sun.com/j2ee.
29. Sun Microsystems HPROF JVM profiler.
30. S. Wilson and J. Kesselmann. JavaTMPlatform Performance Strategies and Tactics.

Addison Wesley, June 2000.

A Handling multiple ownership

We detail two solutions to multiple ownership. One generalizes the definition of
ownership, and the other prunes the reference graph so that multiple ownership
does not occur.

First, we can generalize unique ownership to k-ownership, which is the num-
ber of objects owned by this object and k other objects. Thus, 0-ownership is
equivalent to the unique ownership described above. We can derive this new
relation by weakening dominance to allow for k-dominance. In this case, the
dominator tree becomes a diamond-free graph (i.e. a tree with neither cross nor
back edges).

In practice, however, computing k-dominance may be too expensive. Alter-
natively, we can use a technique similar to [20]: reduce the graph to a depth-first
spanning tree. Since there are many such trees for one graph, we provide heuris-
tics which guide which non-tree edges are more favorable to prune than others.
For example, we populate the start set (of graph roots) in priority order: we
give highest preference to first class objects, then objects referenced by on-stack
GC roots, then every other graph root. Another example heuristic: for objects
on the fringe, we make sure that if we clip any incoming edges, we clip edges
which do not cross the fringe in preference to those which do. Note, however,
that by pruning these edges, the ranking algorithm loses shared ownership infor-
mation. Therefore, this pruning trades off speed of analysis with completeness
of information.

B Choosing a threshold for leak root ranks

In our implementation, we have designed the gating functions so that most
objects with a step-2 rank below 0.4 are fairly certain not to be leak roots. In
off-line mode, we tend to set the threshold at least to 0.4 under the assumption
that the snapshots we have are all the information we will get. In online mode, we
can leverage the online evolution tracker described in Section 5: set the threshold
lower, and use evolution tracking to quickly confirm or deny the candidacy of all
non-zero ranked leak roots.

http://java.sun.com/people/billf/heap
http://java.sun.com/j2ee

	LeakBot: An Automated and Lightweight Tool for Diagnosing Memory Leaks in Large Java Applications
	Nick Mitchell, Gary Sevitsky

