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Simple, secure, and small, Java’s object-
oriented code promotes clean inter-
faces and software reuse, while its

dynamic, distributed nature makes it a nat-
ural choice for network applications.
Applications written in Java offer the advan-
tage of being more robust, more portable,
and more secure than applications written
in conventional languages. (Gosling, Joy,
and Steele give a thorough description of the
Java language.1) 

Applications in Java are compiled to tar-
get the Java Virtual Machine.2 Until now,
however, such applications compiled to this
virtual machine’s instruction set (called Java
byte codes) had to run on a processor either
through an interpreter or through just-in-time
(JIT) compilation. Often, these mechanisms
are embedded in an operating system or an
Internet browser.

Each of these methods offers advantages
and disadvantages. Interpretation is simple,
does not require much memory, and is rel-
atively easy to implement on an existing
processor. On the other hand, the nature of
interpretation involves a time-consuming
loop which, combined with the emulation
of the Java byte codes, affects performance
significantly. 

A JIT compiler, while offering significant
speedups over an interpreter, consumes
much more memory, a precious resource in
the embedded market. The compiler itself
along with the memory footprint for the
compilation may require a few megabytes
of storage. 

By directly executing the byte codes, a
processor can combine the advantages of
interpretation and JIT compilation while
eliminating their disadvantages. First,
because we can tailor the processor to the
Java environment, it can deliver much bet-
ter performance than a processor designed
to run C or Fortran applications. For

instance, by providing hardware support for
garbage collection and thread synchroniza-
tion not typically found on conventional
chips, the processor can further enhance the
performance of Java applications. Second,
the elimination of a JIT compiler drastically
reduces the amount of memory required. 

The possibility of designing a processor
that could offer these advantages while
maintaining other characteristics important
in the embedded market is what led Sun
Microelectronics to develop picoJava-I.

Our primary goal here is to describe the
picoJava-I architecture. To do so, we first
describe characteristics of the Java Virtual
Machine that are of interest to a processor
designer. To illustrate the microarchitecture
trade-offs we made for picoJava-I, we also
present statistics on the dynamic distribution
of byte codes for various Java applications as
well as the impact of the Java runtime.
Finally, we present the microarchitecture
itself and discuss its performance. 

Java Virtual Machine: 
A hardware perspective

Applications written in Java are compiled
to an intermediate representation before
being sent to a client over the Internet or
another network. Any processor and oper-
ating system combination that has an imple-
mentation of the Java Virtual Machine, either
embedded in the operating system or in a
browser, can execute these Java applications
and produce correct results. 

The Java compiler produces a class file
that contains the code and static data for the
application being compiled. It generates the
code based on a complete definition of a
hypothetical target machine, the Java Virtual
Machine. This virtual machine comprises a
specification of a file format for the exe-
cutable (called a class file), an instruction set
(Java byte codes), and other features such
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as threads and garbage collection. The main factors that influ-
enced this design are portability, security, code size, and the
ease of writing an interpreter or a JIT compiler for a target
processor and operating system. 

Unfortunately, features that contribute to making the virtual
machine portable, secure, and so on often presented chal-
lenges to designing an effective processor implementation.
In some cases, we had to design novel structures, while in
others, we applied techniques used in typical RISC processors.

Instruction set. The Java Virtual Machine’s instruction set
defines instructions that operate on several data types. These
types include byte, short, integer, long, float, double, char,
object, and return address. All opcodes have 8 bits, but are
followed by 0 to 4 operand bytes. The specification defines
200 standard opcodes that can appear in valid class files. In
addition, the specification describes 25 “quick variations”
and three reserved opcodes. 

Quick variations of some opcodes exist to support efficient
dynamic binding. The specification requires all references to
an object’s fields or methods to be resolved during runtime at
the time of the initial reference. The first time a method or
field is referenced, the original instruction resolves which
method or field is correct for the current runtime environment.
The original instruction also replaces itself with its quick vari-
ant. The next time the program encounters this particular
instruction, the quick variation skips the time-consuming res-
olution process, and simply performs the desired operation
directly on the already resolved method of field.

Since most of the instructions implicitly operate on the top
of the stack, there are no register specifiers. Therefore, Java-
based byte codes are relatively small; the dynamic average
instruction size is 1.8 bytes.

The instructions fall into several broad categories, Table 1
shows their dynamic frequencies. (We obtained these fre-
quencies from two benchmark programs, discussed later.) 

The most common instructions are loads from the stack’s
local-variables area to the top of the stack; more than one-
third of the instructions belong to this category. Loads of data
from memory are the next most common group of instruc-
tions, with another one out of every five instructions belong-
ing to this class. The other types of instructions include stores
to local variables and stores to memory. These operations

are much less frequent than their corresponding loads.
Compute instructions such as integer ALU operations and
floating-point operations constitute 9.2% of the dynamic
instruction count, while branches are 7.9% of the instruction
mix. Method calls and returns make up 7.3% of the instruc-
tions. Finally, the last category of instructions that has a sig-
nificant dynamic frequency are pushes of simple constants
onto the stack; these operations are 6.8% of all instructions. 

Miscellaneous stack operations such as popping data off
the stack and duplicating stack values only make up around
2% of the total instructions. Other instructions exist, such as
those to create new objects or synchronize with other
threads; however these occur less than 0.5% of the time.

Many instructions are associated with data type informa-
tion. In fact, many instructions that nominally operate on dif-
ferent data types have identical functions. For instance, iload
and fload both copy a 32-bit value from a local variable onto
the top of the stack. The only difference is that subsequent
instructions treat the data moved by iload as an integer, but
treat the data moved by fload as a single-precision floating-
point value. The reason different instructions with the same
function exist is to facilitate static type checking of Java code
by the byte code verifier software prior to execution. Internal
to an implementation of the virtual machine, these two
instructions can use the same execution mechanism. Thus,
hardware must support a smaller total number of distinct
operations than the number of different opcodes suggests.

Stack architecture. The Java Virtual Machine architec-
ture is stack based; all operations on data occur through the
stack. The machine pushes data from the constant pool and
from local variables onto the stack, where instructions implic-
itly get their operands. Both integer and floating-point
instructions take their operands from the same stack. 

The stack functions as a repository of information for
method calls as well as for working data for expression eval-
uation. Each method invocation creates a call frame on the
stack at execution time. The frame contains the parameters
for the method and local variables. The frame also includes
the frame state, which documents pertinent information
needed when returning after the method is completed, such
as the program counter and any monitor entered.

Java programs typically contain a high percentage of
method calls, so optimizing method invocation can sub-
stantially improve the performance of Java code. The stack
structure optimizes parameter passing from a caller to a
method. We designed the method calls to allow overlap
between the methods, enabling direct parameter passing
without requiring copying of the parameters. The machine
pushes parameter values onto the top of the operand stack
where they become part of the local-variables area of the
called method. By passing parameters through the operand
stack, the virtual machine avoids the explicit register-spilling
and -filling operations found in conventional architectures.

As mentioned earlier, the stack contains the parameters
and local variables for each method. Access to this area is
available through the local-variable load and store instruc-
tions defined by the Java Virtual Machine. Recall that, accord-
ing to dynamic instruction counts, local-variable accesses are
the most common type of instruction. These instructions do
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Table 1. Dynamic opcode distributions.

Instruction class Dynamic frequency (percentage)

Local-variable loads 34.5
Local-variable stores 7.0
Loads from memory 20.2
Stores to memory 4.0
Compute (integer/floating-point) 9.2
Branches 7.9
Calls/returns 7.3
Push constant 6.8
Miscellaneous stack operations 2.1
New objects 0.4
All others 0.6

.



one of two things: They copy a value at some offset from
the current method’s local-variables area on the stack to the
top of the stack (for example, the iload instruction). Or they
write the value at the top of the stack into some offset from
the current method’s local-variables area (for example, the
istore instruction). These instructions require any Java Virutal
Machine implementation to offer good support for random
access into the stack. 

Fortunately, on average the start of the local-variables
region for the current method is less than 15 elements down
from the current top of the stack. This fact allows some opti-
mizations in the implementation.

Multithreading. The Java Virtual Machine provides sup-
port for running multiple concurrent threads of execution.
Furthermore, thread primitives are an integral part of the Java
language, which suggests applications will use threads wide-
ly. As a result, Java programs may frequently wish to enter
“monitors” associated with objects. A monitor ensures that
only one thread of execution can access the associated object
at a time. No other thread can access the object until the first
thread exits the monitor. 

This function allows threads to perform atomic updates to
a group of fields in an object without the worry that anoth-
er thread may try to use the object in an inconsistent state
(see Figure 1). For example, if object X were being inserted
into the middle of a doubly linked list between objects J and
K (Figure 1a), the insertion method would attempt to enter
the monitors for all three objects. Once the thread had
acquired exclusive access to J, K, and X, it could update J’s
next pointer, K’s previous pointer, and X’s next and previous
pointers. No other thread using this doubly linked list would
ever see a situation with X partially inserted (Figure 1b).
Note, however, that methods that traverse the doubly linked
list must also enter monitors associated with each object in
the list as they move over the list to make sure no updates
are taking place.

This example illustrates the fact that for almost any shared
object, a thread will have to enter a monitor associated with
that object for either reading or updating the object. This is
particularly true for some of the standard Java libraries. Since
multiple threads could use the standard libraries, the libraries
must be “paranoid”—guarding objects with monitor entries
even from applications with only one thread. 

Java monitors also allow a single execution thread to enter
a monitor associated with an object multiple times without
releasing the monitor. Because various standard library func-
tions may call other methods in the same library, the same
monitor for the same shared resource may be entered in mul-
tiple methods. Consequently, each monitor must also keep
track of the number of times the current thread has entered
it, as well as efficiently allowing multiple entries into the
monitors. 

Memory management. The virtual machine provides
substantial leeway for the memory management implemen-
tation. Essentially, it specifies only that any space allocated
for a new object is preinitialized to zeros, and that there must
be some form of automatic garbage collection.

The Java Virtual Machine does not rely on a programmer
to explicitly indicate when the program will no longer use

an object (thus allowing the program to reclaim the memo-
ry the object occupies). Instead, once an object is no longer
referenced by any objects in any thread of execution, a mech-
anism “collects” this “garbage” object’s memory and returns
it to the pool of available memory. 

An abundance of literature exists on various garbage col-
lection techniques; Wilson surveys most of these.3 Many of
these algorithms are based on the following model:
Periodically a process runs that examines the objects in mem-
ory, determines which objects are reachable, and thus deter-
mines that all unreached objects have become garbage.
Simple algorithms scan all the objects in memory; however,
this may require a significant amount of time, introducing
unacceptable performance. 

Wilson discusses one class of algorithms that aim to
improve garbage collection performance: generational col-
lectors.3 These collectors divide memory into several regions
called generations. Generational collectors exploit the obser-
vation that recently allocated objects are the most likely to
become garbage within a short period of time. Those objects
that survive for some period of time progress into succes-
sively older generations. To minimize the number of objects
examined during each period, these algorithms typically col-
lect only the youngest generation. Since young objects often
become garbage at the highest rate, restricting a collection
to this area is still very effective at keeping plenty of mem-
ory available for new object allocation. 

For simplicity, consider an example with only two gener-
ations, young and old. The young generation is typically only
a small fraction of the total memory, while the old genera-
tion occupies the remainder. Since the young generation can
contain only a small subset of all the objects in the system,
the garbage collector must only scan a fraction of all the
objects in the system to determine which objects in the young
generation are garbage. Only references from old-genera-
tion objects can serve as starting points in the algorithm’s
examination of the young generation for still-active objects.
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Figure 1. Using “monitors” to maintain consistency
among threads: consistent state before insertion—no
objects are locked (a); inconsistent state during inser-
tion—all affected objects are locked (b); and consistent
state after insertion—no objects are locked (c).
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Thus, between collections, the algorithm must actively
update a list of all the pointers from old-generation to young-
generation objects. Otherwise, it would have to scan all the
old-generation objects to find the current pointers into the
young generation. 

Tracking these intergenerational pointers can be difficult,
however. One technique for logging updates to these point-
ers uses “write barriers.” This technique is based on the fact
that any store of a pointer into the old generation might be
an intergenerational pointer. Thus, a write barrier intercepts
any pointer stores into the old generation and examines them
to determine if they must be logged as intergenerational
pointers. 

Many software-based systems accomplish this write barri-
er with a few extra instructions around every store to perform
the necessary checks. This scheme, however, reduces per-
formance by introducing overhead near every pointer store.
Alternatively, some memory management units can be con-
figured to cause an exception on stores to certain regions of
memory. The exception handler could then perform the
appropriate checks. Unfortunately, since conventional MMUs
cannot distinguish between stores of pointer values and
stores of other data, they perform many more write barrier
checks than are actually needed. Because the Java Virtual
Machine instruction set contains type information, a proces-
sor implementing the virtual machine can avoid write barri-
er checks in many cases of stores of nonpointer data. This
would improve the performance of a system implementing
a generational garbage collection scheme.

picoJava-I microarchitecture
picoJava-I is a small, configurable core designed to sup-

port the Java Virtual Machine specification with excellent
price-performance (see Figure 2). This core architecture gives
designers maximum flexibility when building a Java-based
application. Depending on cost and performance goals, the
designer can choose the appropriate I/O and functional

blocks for the target environment. Moreover, picoJava-I
allows variable-size instruction and data caches and the
option of including or excluding a floating-point unit. This
means that developers of cost-sensitive applications can save
die area by taking advantage of configurable features.

Extended instruction set. The picoJava-I core includes
a RISC-style pipeline and a straightforward instruction set.
We implemented in hardware only those instructions that
directly improve Java execution. Most instructions execute in
one to three cycles. For example, integer addition and quick
loads of object fields fall into this category. Of the instructions
not implemented directly in hardware, those deemed critical
for system performance execute through microcode or state
machines. The core traps and emulates the few remaining
instructions. 

For instance, invoking a method is a common, perfor-
mance-critical operation, but it is fairly complex. picoJava-I
handles this instruction category with microcode. Creating a
new object is less common, and far more complex than
invoking a method. Thus, picoJava-I traps and emulates the
new instruction. This instruction execution hierarchy leaves
complex and infrequent operations to software to keep the
complexity and size of the core manageable.

In addition to the instruction set defined by the Java Virtual
Machine, picoJava-I implements some extended instructions
in the reserved opcode space set aside in the specification.
These instructions all have 2-byte opcodes, the first byte
being one of the reserved virtual machine opcode bytes. We
included these extended instructions to allow programmers
to write system-level code. The Java Virtual Machine typi-
cally relies on library calls to the underlying operating sys-
tem to perform certain functions; picoJava-I must provide
instructions to allow those functions. The extended byte
codes fall into four major classes: arbitrary load/store, cache
management, internal register access, and miscellaneous. 

The arbitrary load and store instructions allow access to
arbitrary memory locations and permit noncacheable, little-
endian, and/or sign-extended loads and stores of 1-, 2-, or
4-byte values. Applications typically use these load and store
instructions to communicate with memory-mapped I/O
devices. The cache management instructions support cache
flushing for coherency reasons. The internal register access
instructions allow the internal state of the chip to be saved,
restored, or modified to permit such services as context
switching. Finally, the miscellaneous instructions include a
power-down instruction, diagnostic accesses to the caches,
and various others.

The virtual machine specification generally specifies the
input and output data types for each instruction. Some of
the quick variations, however, only specify the size of the
input or output data items. For instance, putfield_quick only
specifies that the data item to be stored in an object field is
one word in size. It may be an integer, a single-precision
floating-point instruction, or a pointer. Therefore, we added
a couple of instructions to the picoJava-I instruction set to
cover this case, in which type information is ambiguous. The
picoJava-I core uses one of these new instructions, aput-
field_quick, when writing a pointer into an object field. As
a result of these new instructions, the picoJava-I core can
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always detect when a pointer is writ-
ten to memory. This means that
garbage collection checks for inter-
generational pointers (described ear-
lier) occur only when strictly
necessary.

These extended instructions are
part of the picoJava-I native instruc-
tion set and cannot be contained in
Java class files sent over the Net. The
Java byte code verifier enforces this
requirement.

Front end. An instruction cache
that can range from 0 to 16 Kbytes
in size stores the Java byte codes.
This direct-mapped cache has a line
size of 8 bytes, which is small com-
pared to other RISC processors. But
since the virtual machine’s instruc-
tions are shorter on average, the end result is approximate-
ly the same. 

A 12-byte instruction buffer decouples the instruction
cache from the rest of the pipeline. The processor can write
a maximum of 4 bytes into the buffer at one time, whereas
it can read out 5 bytes at once. Since most instructions are
1.8 bytes, the processor can read more than one instruction
in a single cycle. All instructions consist of an 8-bit opcode
and 0 or more operand bytes as defined in the Java Virtual
Machine specification. The processor can decode up to 5
bytes at the head of the instruction buffer and send them to
the next pipeline stage for execution in a single cycle. The
5 bytes that the processor can read out correspond to the
largest single instruction or to a pair of smaller instructions
that can be folded together. (We discuss folding later.)

The picoJava-I core does not have branch prediction logic;
it simply predicts every branch as not taken. Because
picoJava-I core’s pipeline is short (four stages, discussed
later), there is a penalty of only two cycles when a branch
is taken. The additional complexity of supporting a branch
prediction scheme would improve performance by only a
few percentage points. Since picoJava-I’s goals are good
price-performance and low power consumption, Sun
deemed the area and power impact of branch prediction
logic too expensive. 

Furthermore, in picoJava-I, many of the control transfers
in Java programs are method invocations implemented in
microcode. The implementation of the microcode exposes
the details of the picoJava-I pipeline and allows the core to
hide the taken-branch penalty completely. It does this by
identifying the target PC to the instruction cache well before
the microcode finishes updating the call frame on the stack.
Thus, many microcode operations can take place in the
branch’s delay slot. This branch delay slot is visible only to
the microcode—not to the application programs.

Stack cache. The picoJava-I core implements a hardware
stack directly supporting the Java Virtual Machine’s stack-
based architecture. The core caches the stack’s top entries in
its 64-entry on-chip stack cache (see Figure 3). The stack
cache is implemented as a register file and managed as a cir-

cular buffer. As elements are pushed onto the stack, the
pointer to the top of the stack in the stack cache is decre-
mented (the stack grows downwards). As elements pop off
the stack, the top-of-stack pointer increments. If too many
pushes or pops take place, the top-of-stack pointer wraps
around. 

If the stack cache were to wrap around when too many
pushes take place, it might overwrite valid data. Similarly,
as popping takes place, it is possible that the stack cache
might contain no valid data. Therefore, the core uses a tech-
nique called dribbling. When the stack cache is almost full,
it writes the oldest entries to the data cache, thus making
available room for further growth. Similarly, when the num-
ber of valid entries gets too low, the stack cache reads back
in the entries it has previously scrubbed out until there are
enough valid entries. The points at which the dribbler
decides to spill or fill entries depends on high and low water
marks set in a control register.

An example is the best way to illustrate this mechanism’s
effectiveness. A certain Java application could call several
methods in a row and thereby exceed the stack cache capac-
ity. In the background, the dribbling mechanism would cre-
ate space on the stack and store the oldest entries in the data
cache. As the most recently executed methods completed,
the mechanism would preload older stack entries from pre-
vious call frames onto the stack from the data cache well in
advance of their use. The very predictable behavior of the
stack when expanding and contracting in size allows this
dribbling implementation to minimize pipeline stalls due to
overflows and underflows.

Folding. picoJava-I also accelerates Java byte code exe-
cution with a folding operation (see Figure 4, next page). 

In most stack implementations, stack operations require
several steps, adversely affecting the throughput of instruc-
tion execution. These implementations typically access
operands from the stack and put the result back on the stack.
Furthermore, conventional stack architectures limit access to
the top portion of the stack. As a result, when variables are
not available on the top of the stack but are needed for an
operation, they must be copied from the stack’s current local-
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variables area to the top of the stack. Eliminating this extra
step could dramatically improve the performance of the typ-
ical stack architecture.

To boost performance, picoJava-I relies on a folding oper-
ation that takes advantage of random, single-cycle access to
the stack cache. Frequently, an instruction that copies data
from a local variable to the top of the stack immediately pre-
cedes an instruction that consumes that data. The instruc-
tion decoder detects this situation and folds these two
instructions together. This compound instruction performs
the operation as if the local variable were already located at
the top of the stack. Since, on average, the variables area is
within 15 entries of the top of the stack and the stack cache
is designed to contain nearly 64 valid entries, the local vari-
able requested is almost always in the stack cache. In the
unlikely event that the local variable is not contained on the
stack cache, folding cannot occur, and picoJava-I suppress-
es it. picoJava-I also suppresses folding for single-step debug-
ging purposes.

A further enhancement of the folding technique allows
the core to fold pushes of simple constants, which consti-

tute almost 7% of the dynamic
instruction frequency. Because the
processor can determine the con-
stant early in the decoding stage, the
constant can go directly to the sub-
sequent instruction without requir-
ing a stack update.

Simulations of the same bench-
marks used for the data in Table 1
show that folding eliminates approx-
imately 15% of the total dynamic
instruction count. Once we enabled
folding, we made a composite of
instruction distribution for several
key benchmark programs (Table 2).
The resulting instruction distribution
shows reduced overhead for local-
variable access and constant pushing.

Data cache. The data cache, like
the instruction cache, can range in
size from 0 to 16 Kbytes. To improve
the hit rate and performance, it is a
two-way, set-associative, write-back
cache. The data path between the
picoJava-I data cache and the
pipeline is 32 bits wide. 

The data cache also supports a
line_zero instruction, which sets a
line as valid and dirty and sets all the
data in the line to zero. This instruc-
tion is very helpful in reducing the
bus traffic required for initializing
new objects.4 The virtual machine
requires all newly allocated objects
to be initialized to zero. Without the
line_zero instruction, the code must
waste bandwidth writing out zeroes
one word at a time, creating a data

cache line that will be completely overwritten with zeroes
to be read into the cache. The line_zero instruction simply
creates a fully zeroed cache line in a few cycles without caus-
ing an unnecessary cache line fill from memory.

Floating-point unit. The Java Virtual Machine supports
both single- and double-precision floating-point operations. It
dictates that all floating-point arithmetic comply with IEEE Std
754, including full support for denormalized values and grad-
ual underflow. The only rounding mode supported is the
round-to-nearest mode for floating-point results and round-
towards-zero for floating-point conversions to integer results.

To enable lower cost designs, we made the floating-point
unit easily removable from the picoJava-I core. If the floating-
point unit is not present, each floating-point instruction traps
to a software routine that may emulate the instruction using
available integer instructions. When present, the floating-point
unit supports the virtual machine’s specification for floating-
point arithmetic. In particular, the floating-point unit directly
supports both single- and double-precision computations,
denormalized values, and gradual underflow. It also performs
round-to-nearest and round-towards-zero when appropriate.
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iadd execute in the same cycle (b).

Table 2. Opcode frequencies with folding.

Dynamic frequency  Dynamic frequency  Instructions 
before folding after folding folded 

Instruction class (percentage) (percentage) (percentage)

Local-variable loads 34.5 24.4 10.1
Local-variable stores 7.0 7.0 0
Loads from memory 20.2 20.2 0
Stores to memory 4.0 4.0 0
Compute (integer/ floating-point) 9.2 9.2 0
Branches 7.9 7.9 0
Calls/returns 7.3 7.3 0
Push constant 6.8 2.0 4.8
Miscellaneous stack operations 2.1 2.1 0
New objects 0.4 0.4 0
All others 0.6 0.6 0
Total 100.0 85.1 14.9
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The floating-point unit executes only one instruction at a
time. Since a stack-based architecture typically results in code
in which every instruction depends on the result of the pre-
vious instruction, there is little benefit to overlapping differ-
ent stages of floating-point execution from several different
instructions. This feature allows a fairly compact floating-
point unit that still has good latency characteristics. For
instance, most single-precision addition and multiplication
operations require only three cycles.

Memory and I/O controller interface. The picoJava-I
core can easily interfaced with various memory controllers
(SDRAM, EDO, SRAM, DRAM, flash, and so on) and various
I/O controllers (PCI, USB, PCMCIA, and so on). To achieve
this flexibility without loss in memory latency, we designed
an interface from the core to a virtual memory controller. 

The picoJava-I memory bus is a 32 bits wide, optimized for
32-bit transfers. Designers can apply simple logic and buffer-
ing outside the core to support narrower or wider bus widths.
One exception is that during boot up, an external signal can
control the instruction fetch width. This signal allows the sys-
tem designer to interface the picoJava-I core to an 8-bit boot
PROM interface. Asserting this signal at boot time causes the
instruction fetches to be in sizes of single bytes.

Simple four-stage pipeline. The pipeline in picoJava-I
has four stages based on the fundamental paths needed for
execution, similar to other RISC pipelines (see Figure 5). The
core fetches instructions from the instruction cache into an
instruction buffer in the fetch stage. It decodes the instruc-
tions at the head of the instruction buffer, folds them, and
accesses the stack cache in the decode stage. The instruc-
tion takes one or more cycles to execute (accessing the data
cache as necessary) in the execute stage. Finally, the core
writes the result back to the stack in the write-back stage.
There is full bypassing, so the execute stage does not need
to wait for the write-back stage to complete before using the
result of the previous computation.

In a stack-based architecture, an instruction almost always
depends on the result of the previous instruction.
Consequently, one operation at a time occupies the execute
stage. Unlike most RISC processors, picoJava-I does not over-
lap access to the data cache by one instruction (or a folded
pair of instructions) with the execution of the next instruc-
tion (or folded pair). This is because in all likelihood the
result of the data cache access is required as an input for the
execution of the next instruction.

Monitor support. The speed of monitor entry operations
plays an important role in overall system performance. This
motivation resulted in a simple mechanism that speeds the
common case, while efficiently supporting the full range of
possible situations for monitor entry.

One key element of the monitor support is simply reserv-
ing the low-order 2 bits in each object header. These are
called LOCK and WANT. All accesses to the object header
except by the monitor-enter and monitor-exit operations
have these bits masked off by hardware, allowing the core
to treat the object header as a word-aligned pointer. The
LOCK and WANT bit scheme allows a monitor entry opera-
tion to merely check the state of the LOCK bit, setting it if it
is not set. When another thread holds that object’s monitor,

a trap is signaled, and the operating system sets the WANT
bit, tells the thread to wait, and marks the thread as waiting
on that monitor. 

When a thread exits a monitor, the operating system clears
the LOCK bit and checks the WANT bit. If the WANT bit is
set, that indicates that another thread is waiting for that
object, and a trap to the operating system is generated. The
operating system identifies and informs the waiting thread
that it can acquire the monitor.

In addition to efficiently supporting the initial entry into a
monitor, we have accelerated a thread’s reentry of a monitor
before exit as well. The operating system maintains a list of
the monitors each thread has entered, and the picoJava-I core
contains a two-entry cache of the two most recent monitors
that the current thread has entered. Associated with each of
these cache entries is a counter that indicates how many times
the thread has entered the monitor. On each monitor entry,
this cache is associatively examined. If the requested moni-
tor is in the cache and, thus, has already been entered, the
entry count for that monitor is simply incremented in the
hardware. A monitor exit decrements the counter in hard-
ware. If the counter reaches zero, the monitor is exited com-
pletely. Maintaining a small cache listing the monitors that a
thread currently holds greatly accelerates monitor reentry over
a pure software solution. A software mechanism would have
to search some data structure for the held monitor before it
could adjust the entry count of the monitor.

To reduce complexity, the core manages the monitor
cache completely in software. Traps occur whenever a mon-
itor cache miss is detected. The trap code determines the
placement policy in the cache and handles evicting and
adding new entries. The resulting hardware structures are
very small and simple, yet can greatly speed Java execution.

Performance
Clearly, this approach of implementing the Java Virtual

Machine in hardware has merit only if the resulting proces-
sor has performance advantages over alternative methods of
executing Java code. This section describes the resulting per-
formance advantage for this approach.

Selecting Java benchmarks. We specifically designed
the picoJava-I architecture to run complex object-oriented
Java code. Most existing Java benchmark suites do not offer
these characteristics. Therefore, the challenge was to find
applications that would give a good representation of real-
world Java code.
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We considered several programs for suitability but did not
select them. For example, we chose not to use a benchmark
called Pentominos5 because it is far too simplistic. This tiny
16-line C program, when translated into Java, does not accu-
rately reflect the sophisticated applications that Java can cre-
ate. For similar reasons, we did not include other
microbenchmarks like CaffeineMarks,6 since they do not
reflect the characteristics of actual Java code.

The two Java programs we did choose as benchmarks for
the analysis provide the advanced programming activity like-
ly to be found in a typical Java application. The programs
include a high percentage of method calls and returns—com-
mon occurrences in object-oriented code—and they create
objects at a reasonable rate, similar to real-life applications.
The two benchmarks are

• Javac—Compilers typically represent a large block of
complex code. This Java compiler, from Sun
Microsystems JDK 1.0.2, is an object-oriented program,
with over 25,000 lines of Java source code in 170 dif-
ferent classes. It has a Java byte code size of approxi-
mately 422 Kbytes.

• Raytracer—This program, based on work resulting from
a Stanford University class project, represents a more tra-
ditional, scientific benchmark with substantial floating-
point activity. The Raytracer program generates a 100 ×
100-pixel image of a 1,400-triangle dinosaur standing on
a glossy table. This is a heavily object-oriented, 3,500-
line Java program containing 32 different classes. Its
byte code size is 36 Kbytes. 

Test setup and methodology. To prove that picoJava-I
delivers the expected performance gains, we simulated these
benchmarks on the picoJava-I core. Specifically, we com-
pared Java code running in native state on the picoJava-I
core with the same code executed on Intel’s 486 and Pentium
processors, using both a JIT compiler and an interpreter. We
used a simulator to emulate the performance of the picoJava-
I core. We scaled all the measurements to the same clock
rate—100 MHz—and normalized the results to the slowest
running processor. 

We chose the Intel processors as competitive benchmark
systems primarily because both the platforms themselves and
tuned Java implementations on those platforms were readi-
ly available. 

Our choice of clock frequency was arbitrary. We intend
the picoJava-I core for use across a broad range of applica-

tions, from thin-client network computers to low-cost,
embedded applications. We expect that picoJava-I will sup-
port clock frequencies comparable to most other micro-
processors implemented in similar semiconductor process
technology. We chose 100 MHz for the sake of comparison;
it does not reflect the maximum clock frequency expected
for chips based on the picoJava-I core.

The systems we used for the benchmarks were configured
as follows. The first was a 33-MHz Dell 433/ME System
80486, with 16 Mbytes of RAM, a 256-Kbyte external cache,
and the Windows 95 operating system. The interpreter was
Sun Microsystems’ JDK 1.0.2 for Windows 95/NT, and the
JIT compiler was the Symantec Cafe 1.5 for Windows 95/NT. 

The second system was a Hewlett-Packard Vectra VL 5/166
Series 4 with a 166-MHz Pentium processor, 32 Mbytes of
RAM, a 256-Kbyte external cache, and Windows 95. 

The picoJava-I environment consisted of a 100-MHz
picoJava-I functional simulator that included a 4-Kbyte direct-
mapped instruction cache, an 8-Kbyte, two-way set-
associative data cache, no external cache, a floating-point
unit, and 120-ns latency to DRAM.

We ran the benchmark programs on the three systems with
the times scaled to 100 MHz. In other words, we multiplied
the execution times for the 486 by 0.33 and the times for the
Pentium system by 1.66. The picoJava-I simulator output was
already configured for a 100-MHz system. Since the picoJava-
I simulator does not accurately simulate I/O, we added a 0.8-
second penalty for the Javac benchmark for I/O. For the
Raytracer benchmark, we added 0.4 seconds to the results for
I/O. We based these values on experiments that measured
the I/O time for these benchmarks on a Sun Sparc system
running the Java interpreter.

We also minimized the effects of garbage collection by siz-
ing the amount of memory allocated by Java for the pro-
gram. If we allocate a large amount of memory for the
benchmarks, the core never invokes garbage collection.
However, because the 486 system had only 16 Mbytes of
RAM, sufficient RAM could not be allocated for the program,
so a small amount of garbage collection was required.

Results. Table 3 lists the scaled runtime results from the
benchmarks. Table 4 illustrates how much faster in orders of
magnitude the picoJava-I executes the benchmark code com-
pared with the Java code running on the other processors. For
example, picoJava-I is 15 to 20 times faster than a 486 with an
interpreter at an equal clock rate, and still five times faster than
a Pentium with a JIT compiler at an equal clock rate.
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Table 3. Scaled times (to 100 MHz).

Benchmark performance (s)
Method System Javac Raytracer

Native picoJava-I 1.8 13.0
JIT Pentium 9.3 64.5

486 10.7 109.5
Interpreter Pentium 20.4 174.3

486 27.3 254.8

Table 4. Resulting speedups compared 
to the slowest system.

Speedup factor      
Method System Javac Raytracer

Native picoJava-I 15.2 19.6
JIT Pentium 2.9 3.9

486 2.6 2.3
Interpreter Pentium 1.3 1.5

486 1.0 1.0

.



With significant performance gains, the benchmark results
clearly demonstrate the advantage of directly executing Java
applications on the picoJava-I core. This large performance
advantage gives an embedded design team a substantial
degree of flexibility when designing an embedded applica-
tion around this core.

For example, if minimal power consumption is paramount,
the designers might run the core 10 times slower than a com-
petitive solution to reduce power requirements. Another pos-
sibility is that picoJava-I could be implemented in a slower,
less-expensive technology to minimize manufacturing costs.
Also, its small footprint and low power requirements make
it easy to integrate a full solution on a single chip. The per-
formance gains will vary depending on the application char-
acteristics, the size of the caches, and whether or not the
floating-point unit is included.

OVERALL, WE DESIGNED this architecture to be simple
and flexible and to support a broad range of possible appli-
cations—from low cost to high performance. With the con-
figurable instruction and data caches and the option to include
or exclude the floating-point unit, designers can customize
the core processor to meet their specific area, performance,
and power requirements. At the same time, they can maintain
cost, performance, and/or power advantages over competitive
Java Virtual Machine execution solutions. Sun Microelectronics
is also working on several future Java core designs. These will
target a wide range of price and performance points—from the
very low end to the very high end.
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