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Measuring the Size of the Internet
via Importance Sampling

Song Xing and Bernd-Peter Paris

Abstract—Measuring the size of the Internet via Monte Carlo
sampling requires probing a large portion of the Internet protocol
(IP) address space to obtain an accurate estimate. However, the dis-
tribution of information servers on the Internet is highly nonuni-
form over the IP address space. This allows us to design probing
strategies based on importance sampling for measuring the preva-
lence of an information service on the Internet that are significantly
more effective than strategies relying on Monte Carlo sampling.
We present thorough analysis of our strategies together with accu-
rate estimates for the current size of the Internet Protocol Version
4 (IPv4) Internet as measured by the number of publicly accessible
web servers and FTP servers.

Index Terms—Importance sampling, Monte Carlo sampling, size
of the Internet.

I. INTRODUCTION

A S COMPUTERS and communication networks have be-
come faster and more widespread, the Internet has ex-

perienced tremendous growth since its inception. Unlike the
telephone network which was designed in a centralized way by
major corporations, the Internet design emphasizes decentral-
ized control. Though it is essential to the Internet’s scalability
and robustness, the decentralization of control causes prob-
lems that may hamper the evolution of the Internet, including
unreliable service or nonoptimal routing.

A more pernicious problem is that it is difficult to determine
how large the Internet really is, i.e., to quantify exactly how
many hosts are currently on the Internet. Therefore, it is difficult
to estimate reliably the growth of the Internet and predict, for
example, when the available Internet address will eventually run
out. Hence, developing efficient means for assessing the size of
the Internet, is of interest, for example, for network engineering
or network capacity planning purposes.

There are relatively few publications on measuring the size of
the Internet. The Internet Software Consortium, for example, at-
tempts to discover every host on the Internet by querying the do-
main name system (DNS) [1]. The problem with this approach
is that it is inaccurate since a host name with an assigned IP ad-
dress does not mean the host actually exists. Conversely, a host
does not have to be in the DNS to communicate, thus a second
“ping” step may be needed to obtain the number of live hosts.
This approach is also inefficient as it requires several days to

Manuscript received August 18, 2002; revised March 5, 2003.
The authors are with the Department of Electrical and Computer Engineering,

George Mason University, Fairfax, VA 22030 USA (e-mail: sxing@gmu.edu;
pparis@gmu.edu).

Digital Object Identifier 10.1109/JSAC.2003.814510

collect data, and it may not be scalable as the Internet continues
to grow. In fact, the survey conducted by the Internet Software
Consortium may be well suited to take advantage of the methods
described herein.

Netcraft does a periodic survey of web server software usage
on the Internet and the number of web servers [2]. Their statis-
tics are obtained by collecting and collating the host names pro-
viding the HTTP service, systematically polling each one with
an HTTP request for the server name, and looking in detail at
the network characteristics of the HTTP replies. Obviously, this
approach is time-consuming collection of the data and the accu-
racy of their survey depends on the number of data collected.

In this work, we emphasize our importance-sampling based
method over actual measurements. Nevertheless, to demonstrate
the usefulness of our approach, we report our measurements of
an important part of the current Internet. Specifically, we are
measuring the number of hosts connected to the public Internet
(hosts with a publicly routable IP address) providing a given in-
formation service such as WWW or FTP. As will be explained
below, our methods are based on sampling the Internet protocol
(IP) address space. Hence, our methods have their own short-
comings, including an inability to distinguish between multiple
web domains hosted by the same server (virtual hosting). Sim-
ilarly, we would not be able to tell that a system of servers
employing some form of load balancing should probably be
counted as only a single server. Because of these differences,
it should be expected that our results are quite different from
those obtained by Netcraft [2] for example.

The primary strengths of the methods proposed herein are
simplicity, wide applicability, and scalability. The sampling
based strategies consist only of an address generator that
determines which IP addresses are to be probed, the probing
client itself, and a simple analysis system for tallying the results
of the probes. Our methods are widely applicable to network
applications following the client-server paradigm. For each
such application, only the probing client would have to be
altered. The results could be used to track the prevalence and
growth of a network application or the rate of adoption of a
new protocol. Similarly, if probes employ some form ofecho
requestthe size of the entire public Internet may be measured.
Perhaps, most importantly, we believe that our methods are able
to keep up with the continued explosive growth of the Internet.
Since importance-sampling allows us to focus measurements
on the most relevant part of the address space, we anticipate
that measurement methods based on importance sampling will
scale with the size of the address space.

This paper principally proposes and investigates novel, effi-
cient and effective methods based on importance sampling for
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measuring the size of the Internet. Consequently, we first pro-
vide some preliminaries on Monte Carlo and importance sam-
pling for measuring the size of the Internet. Next, the optimal
unbiased measurement strategy based on importance sampling
is introduced. We demonstrate in Section IV that even better
strategies are possible if the restriction ofabsolutely continuous
biasing strategies is dropped. Measurement results for our im-
portance sampling approaches are presented and compared with
Monte Carlo sampling. In Section VI, we describe some of our
measurement results for the size and growth of the Internet.

II. PRELIMINARIES

A naive way to accomplish our objective of measuring the
prevalence of a given information service on the Internet would
be to probe the entire IP address space and count the number

of information servers thus found. We could express this
procedure mathematically by the equation

(1)

where the upper limit of the sum reflects the size of the IP ad-
dress space and indicates the result of probing address

. To evaluate , a probe is sent to the IP address
and if the response to the probe is positive (e.g., indicates the
presence of a server at address) assumes the value
1. Otherwise, . For measuring the number of World
Wide Web (WWW) servers on the public Internet, we would
send a HTTP request to address and count a success

if we receive a message with a response status
code of . Clearly, it can be argued that any other response
code would also indicate the presence of a server at that address,
but we restricted ourselves to “Success” codes in this work.

We will find it convenient to formulate our results in terms of
the quantity defined as

(2)

The quantity can be interpreted as the probability that an in-
formation (WWW) server will be found at an arbitrarily chosen
IP address . In the sequel, we will refer to as the infor-
mation server density.

The procedure outlined above is impractical because it re-
quires probing approximately four billion addresses. Nev-
ertheless, it is a useful starting point for our discussion and is
easily made practical in the form of Monte Carlo sampling.

A. Monte Carlo Sampling

In the Monte Carlo approach, we sample only a randomly
chosen subset of the Internet Protocol Version 4 (IPv4) address
space. Specifically, a subset of IP addresses is chosen uni-
formly from the space of all addresses. Then each of the
selected addresses , is probed to obtain the
value of the indicator function . The Monte Carlo esti-
mator for the probability is given by

(3)

The Monte Carlo estimator is well known and easily shown
to be unbiased, i.e., . Its variance equals

var (4)

It is robust and easy to implement. However, it requires large
set of samples for a reliable estimate of low-probability events.
It is well known that the number of samples required to achieve
a given confidence interval and a given confidence level is in-
versely proportional to . For example, in the current Internet,

is approximately equal to 0.2% (for the WWW service).
That implies, the Monte Carlo approach requires approximately
210 000 trials to estimate with a 95% confidence interval of

.
For IPv6, the next-generation Internet protocol, this problem

becomes much worse. Internet Protocol Version 6 (IPv6) fixes
the problem of the limited number of available IPv4 addresses
by introducing 128 bit addresses. Consequently,will be on
the order of 10 , and in excess of 10 trials are required for
reliable estimates, which makes Monte Carlo sampling com-
pletely impractical.

B. Importance Sampling

For measuring the size of the current Internet more efficiently,
we propose an approach based on importance sampling to re-
duce significantly the sample size for a given estimation accu-
racy. Importance sampling is a well-known variance-reduction
technique for accurately estimating the probability of rare events
[3]–[5]. The principle of importance sampling is to make “in-
teresting” events occur more frequently. This is achieved by
biasing the underlying sampling density so that the events of
interest have increased probability while others have reduced
probability. An unbiased estimate is obtained by weighting the
outcomes appropriately.

Research to date has most widely developed importance
sampling for problems with continuous random variables
such as the application to the estimation of error probabilities
for high-performance digital communications or detection
system [6]–[9], but rarely for discrete event system as in our
case. Also, importance sampling has been used traditionally
for simulations where all relevant statistics are known and
controllable [10]. However, in our problem the underlying
statistics are unknown.

Specifically, instead of uniformly selecting IP addresses as in
Monte Carlo sampling, we draw independent IP addresses
to be probed from a nonuniform biasing distribution .
The choice of this biasing distribution is central to our approach
and will be discussed in detail in the next section. As we will
see, this biasing distribution depends on the unknown (and not
practically obtainable)true probability distribution , i.e.,
the probability that .

In order to obtain an unbiased estimate, a weighting function
is applied to the estimator. Specifically

(5)

where is the number of addresses probed. As long as
we choose a biasing distribution that is absolutely



924 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 6, AUGUST 2003

continuous with respect to thetrue distribution , i.e.,
whenever , then the weighting function

, guarantees that the estimator
is unbiased. Here, denotes the uniform distribution
( for all addresses in the address space).
Recall that samples are drawn from this uniform distribution
for the Monte Carlo sampling approach.

The variance of the importance sampling estimator is given
by

var (6)

where the average weight .
Throughout, the notation denotes that the expecta-
tion is to be taken with respect to the biasing distribution

.
Importance sampling is intended to reduce the variance of the

estimator. This decreases the sampling time for a given level of
accuracy, or improves the estimator accuracy for a given limited
number of samples. The performance of the importance sam-
pling estimator depends on the choice of the biasing distribu-
tion and is measured by the gain, defined as the ratio
of the “cost” of the Monte Carlo sampling estimator to that of
the importance sampling estimator. Specifically, the gain is ex-
pressed as the ratio of the number of trials for a given variance
or, equivalently, as the ratio of the variances for a fixed number
of probes and can be expressed as

Var Var

Var
Var

(7)

(8)

Note that the gain will be greater than one if the average weight
is less than the probability .

Let us turn our attention now to the problem of choosing good
biasing strategies, i.e., the search for biasing densities that max-
imize the gain .

III. OPTIMAL ABSOLUTELY CONTINUOUSBIASING STRATEGY

The improvement provided by importance sampling is
strongly influenced by the choice of the biasing distribution

. Using Jensen’s inequality, it can be shown that the
unconstrained optimal biasing density is given by

(9)

It is easily verified that this biasing density results in a per-
fect “estimate” of the density even with only a single probe

. Unfortunately, this solution is trivial and not practical
because it assumes knowledge of that we wish to estimate
anda priori knowledge of the function .

However, (9) provides some useful insights. One interpreta-
tion of suggests that a good biasing strategy is to con-
centrate the probability mass in areas that are “promising” in
the sense that they are more likely to yield a “hit.” This obser-
vation leads us to introduce the thresholded biasing strategy for
our probing system discussed in Section IV.

More importantly, we can interpret as the afore-
mentioned true distribution , i.e., the probability of
finding a web server at address . To be concrete, is
given by

if
if

(10)

This probability distribution is unknown and cannot be obtained
without probing the entire IP address space. In the sequel, we
will seek to approximate marginals of this distribution to guide
us in the design of good importance sampling strategies; these
marginals will be referred to as empirical distributions.

A. Empirical Distributions

The true probability distribution plays an important
role in the design of importance sampling strategies. We have
already seen that the (impractical) optimal biasing density is
equal to , and we will demonstrate shortly that the gain
of any importance sampling strategy depends on . Since
we cannot obtain the complete probability distribution
itself, we will instead obtain marginals of this distribution.

These marginals capture the statistics of groups of addresses
rather than individual addresses. A number of approaches exist
to form such groups of addresses. We could take clues from the
topology of the Internet by grouping sets of IP prefixes asso-
ciated with autonomous systems. Alternatively, we could try to
extract relevant groups from the way IP addresses are allocated.
Instead, for this paper, we will group IP address using the con-
ventional 4-byte description of IP addresses. It is well conceiv-
able that one of the other approaches would lead to even better
importance sampling strategies than our partitioning of the IP
address space, and we feel that this is a promising area for fu-
ture research. Given the paper’s emphasis on the use of impor-
tance sampling, however, we believe that the use of the 4-byte
description is adequate and simple.

In essence, we are aiming to bootstrap the importance sam-
pling procedure by finding marginals of thetrue distribution of
server addresses. Deriving optimal biasing strategies from these
marginals is the subject of the next sections. First, let us discuss
briefly how we obtained the required marginal distributions.

Let us begin by making explicit how our marginal distribu-
tions are defined. Let , and
denote the probability of getting a positive response given that
an address was probed whoseth byte equals. Then,
is related to via

(11)

Similarly, we can form joint probabilities for the
event that the th byte equals and the th byte equals .
We still cannot obtain the needed marginals from (11); instead,
we must estimate the marginal distributions to bootstrap our
procedures.

Again, we have several choices. An obvious possibility is to
use uniform random (Monte Carlo) sampling to estimate the
marginals. This would defeat the purpose, however, as it would
require a significant number of probes before we could even
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Fig. 1. Empirical distributions of each byte for number of web server
addresses.

start to use importance sampling. A better approach would be to
exploit some knowledge of either the IP address space topology
or the mechanisms used to assign IP addresses. We opted to
estimate the marginal probabilities from a large collection
of known web server addresses.

Specifically, we collected several thousand IP addresses of
web servers provided by the random URL service provided by
Web Crawler (http://www.webcrawler.com). These addresses
were then used to form the following probability distributions,
which we call empirical distributions

number of addresses withth byte equal to
total number of collected addresses

(12)

The results are depicted in Fig. 1. Patterns are discernible in
particular for bytes 1 and 4. The first byte captures the conse-
quences of how IP addresses are allocated. There are large num-
bers of web servers in the relatively small “class C” address
range. Significantly fewer servers are present in the “class B”
and “class A” ranges. Obviously, no servers are found in the
reserved address ranges. The fourth bytes reflects patterns that
arise from common network administration practices. For ex-
ample, web servers are more likely to be assigned a forth byte
with a relatively small value. No strong patterns are apparent for
bytes 2 and 3.

These observations allow two conclusions. First, the fact
that these patterns are explainable makes it plausible that
other methods may be just as effective (or perhaps even more
effective) for estimating the marginal distributions. Second, the
fact that these distributions (in particular bytes 1 and 4) are not
uniform will allow us to design effective importance sampling
strategies.

We have conducted fairly extensive statistical analysis on the
collected addresses [11]. Beyond the first-order distributions,
we have focused on the question if bytes may be modeled as
independent. For this purpose, we computed the mutual infor-
mation , a measure of the amount of information that

TABLE I
MUTUAL INFORMATION I(b ; b ) FOR BYTE PAIR (b , b ).

NUMBER OF SAMPLES = 440 000

one random variable contains about another random variable
[12] for all byte pairs . The mutual information is given

by

(13)

where are the joint empirical distributions for the byte pair
. Small values of the mutual information indicate a low

degree of dependence.
Table I lists the values for all pairs of bytes. As a

reference, we also measured the “self-information” (entropy)
, given by

(14)

These are listed on the diagonal in Table I.
We observe that the off-diagonal terms in Table I are generally

much smaller than those on the diagonal. The possible exception
to this statement is the pair which may be explainable by
the way IP addresses are assigned. Also, noticeable is relatively
small entropy of byte 1, which reflects the strongly nonuniform
distribution of that byte. We conclude that different bytes in our
collected addresses show little dependence, and we will proceed
to model them as independent. The slight inaccuracy of this as-
sumption is not critical for the performance of our importance
sampling strategy and this assumption simplifies our exposition
and analysis greatly.

Let us return now to the problem of estimating (or approx-
imating) the distributions . The empirical distributions

can be expected to accurately reflect the relative distri-
bution of the number of web servers as a function of the byte
values. Hence, we will approximate

(15)

and proceed as if this approximation holds with equality.
Furthermore, since we have determined that the empirical

distributions are approximately independent across byte bound-
aries, we will assume that thetrue distributions are also in-
dependent for pairs of bytes. Hence, we will focus on biasing
distributions with independent bytes, i.e., on biasing distribu-
tions of the form

(16)
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Thus, the importance sampling weights become

(17)

(18)

We are now in position to derive optimal biasing strategies
for importance sampling.

B. Optimal Biasing Density

Recall that our objective is to maximize the gain of the im-
portance sampling strategy. From (8), it is apparent that the only
term in the expression for the gainis the average weight .
In other words, the impact of choosing a particular biasing den-
sity is completely represented by the functional. Hence,
the optimal biasing strategy that maximizes the gain can be ob-
tained by minimizing via an appropriate choice of .

We can compute the average weightas follows:

(19)

Now, since equals [see (9)], it follows
that

(20)

In order to replace thetruedistribution with the empir-
ical distribution , we invoke (15) and the independence
across bytes, which leads to

(21)

Inserting the last expression in (20) yields

(22)

The procedure reflected in this expression is calledmultibyte
biasing.

If we only bias the th byte of the IP address distribution,
and keep the other byte distributions uniform, i.e., and

for , then (22) specializes to

(23)

This is calledsingle-byte biasing.

Note, the division by is uncritical as we have confined
our attention to biasing strategies which are absolutely contin-
uous with . Hence, can only be zero if is also zero.
In that case, the ratio of the two probabilities is taken to equal
zero.

Expressions (22) and (23) make explicit the dependence of
the average weight on the biasing density. They form the
starting point for the design of an optimal biasing strategy. The
optimal single byte biasing strategy can be found by Lagrangian
optimization of as shown in the following theorem.

Theorem 1: Among all possible biasing strategies leading to
an unbiased estimate of , the biasing density

(24)

is the single byte biasing strategy that maximizes the gain.
Proof: The optimal biasing strategy can be found by min-

imizing . Let the Lagrangian objective function be

For each address, differentiating with respect to and

setting the result equal to zero yields .

The constraint requires , which gives

and (24) results. Since ,
is the optimal biasing density forth byte.

An unbiased estimate is obtained since the underlying sample
distribution is absolutely continuous with respect to this con-
strained optimal biasing distribution.

For multibyte biasing, (22) and (23) yield

(25)

which implies that applying the optimal single byte biasing
strategy to each byte individually will lead to optimal multibyte
biasing. Further gain can be realized from this strategy, since

(26)

where is the gain obtained by biasing the distribution of the
th byte.

C. Experiments

We experimented with the optimal single byte strategy and
found that this biasing scheme is nearly seven times more effi-
cient than Monte Carlo sampling for an unbiased estimate of the
web server density . More specifically, to obtain a reliable es-
timate of , Monte Carlo sampling needs to probe more than
200 000 IP addresses (refer to Section II-A). Put differently, if
Monte Carlo sampling would require a week to complete, we
could obtain an estimate with the same accuracy in a single day
using importance sampling.

The results of a sampling run are illustrated in Fig. 2. The
curves in the top figure show the “running” estimates using both
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Fig. 2. Optimal byte 1 biasing importance sampling versus Monte Carlo
estimation of web server density. Top: density of web servers. Bottom: gain of
the estimator. Test date: December 11, 2000.

Monte Carlo and importance sampling. After each probe, the
respective estimates are updated and plotted. The importance
sampling estimate settles clearly faster than the Monte Carlo
estimate reflecting the reduced variance. The experiment was
conducted on December 11, 2000, and estimatesto equal
0.2% which corresponds to approximately 8.3 million publicly
accessible web servers. An estimate of the gain of the impor-
tance sampling estimator over Monte Carlo sampling is shown
in the bottom figure.

We conclude this section by noting that the savings achieved
by our constrained optimal importance sampling strategy over
the Monte Carlo approach are modest. This limited gain results
from the absolute continuity condition applied to biasing dis-
tributions . No parametric statistic models for the distri-
bution of web servers over the IP address space are available.
This makes the entire distribution (rather than only a few pa-
rameters for a parametric system) candidates for modification
toward a global optimum. Hence, the optimal importance sam-
pling strategy for our system depends highly on the underlying
distribution. Therefore, it is extremely difficult to obtain high
gain without relaxing the absolute continuity condition in the
“nonpromising” regions which result in a low “hit” rate.

Furthermore, for our problem, the effectiveness of the biasing
strategy depends on . It can be shown that the importance
sampling approach with single byte biasing is most effective if

for some
for all other s

(27)

which leads to the minimum average weight
and maximum gain .

Hence, it implies that the importance sampling strategy, in
general, is more effective if there are many zeros in thetrue
distribution of server IP address. This observation leads us to
devise more efficient estimators as shown in the next section. It
also indicates that we may expect much higher gains with IPv6,
as the occupation of addresses will be much sparser in the IPv6
address space.

Fig. 3. Empirical versus biasing distribution for byte 1 of the IP addresses of
web servers based on threshold approach. Left: original. Right: thresholded.

IV. HIGHER GAIN VIA THRESHOLDING

The gain for unbiased estimates is limited by the absolute
continuity condition for the biasing distribution . To speedup
the convergence of the estimate and increase the gain further,
we consider biasing schemes that introduce some known or es-
timable bias. This strategy aims to increase the gain by drawing
more samples from “important areas” as discussed for the
unconstrained optimal biasing strategy [(9)] or, equivalently,
creating more zeros in the biasing distribution as discussed in
Section III-C.

One possible approach is to shrink the “promising” sample
set by setting an appropriate thresholdin the empirical distri-
bution for IP addresses of information servers [13]. Specifically,
for the th byte of an IP address, define

if
otherwise

(28)

for . Then, the biasing distribution is given by

(29)

Fig. 3 illustrates the transformation from the original em-
pirical distribution into the thresholded biasing distribution for
byte 1 of IP addresses of web servers. The samples of IP ad-
dresses with probability less than the threshold will be no longer
probed, while more samples in “important areas” indicated by a
high probability will be drawn. The primary intuition behind this
approach is that more positive responses will be created during
the probing of information servers. Hence, the importance sam-
pling strategy is more effective and an increase of the estimator
gain follows.

A. Underestimation and Correction

As we mentioned in the beginning of this section, the thresh-
olded biasing strategy introduces a biased estimate, since the
threshold biasing distribution will not be absolutely continuous
with respect to underlying sample distribution. However, the
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bias is quantifiable as shown in the following theorem and we
will propose below means for estimating the bias.

Theorem 2: Let us denote by the bias factor
, where

(30)

is the bias factor for theth byte of IP addresses. The expecta-
tion of the estimator for estimating obtained with the
thresholded biasing density is given by

(31)

Proof: The th byte weighting function for the threshold
approach is if and

, otherwise, for . Then

(32)

where the last equation follows from (21) and indepen-
dence. Equation (31) follows from this argument. Since

, the relative bias resulting from the
cumulative probability of discarded samples, can be shown to
equal

(33)

(34)

(35)

It follows immediately that underestimation occurs as the
threshold estimator is always biased to a smaller value than the
true value due to the omitted addresses with small “hit” rates.
However, an unbiased estimate can be obtained if the

relative bias or, equivalently, the bias factor is known or es-
timable via (31), i.e.,

(36)

Hence, an implementable threshold biasing strategy depends on
estimating the bias factor .

Equation (30) provides the basis for estimating the bias factor
via the empirical data. For measuring the density of web

servers, for example, we may calculateindependently from
the empirical distributions for the IP addresses extracted from
several thousand random URLs introduced in Section III-A.
However, there are no such databases available for services
other than WWW, such as telnet, FTP, sendmail, etc. It may
be possible to obtain equivalent expressions when marginal
distributions are obtained by other methods. An alternative
approach for estimating will be proposed later in Section V.

B. Effectiveness of Thresholded Biasing

The resulting variance of the thresholded estimator is

var (37)

where the average weight .
Then, the estimator gain will be

(38)

Clearly, the gain for the threshold estimator is mostly deter-
mined by . Let us denote by Q the number of IP addresses
for which the empirical distribution of the th byte is
greater than threshold . Then, for single byte biasing, by (23)

and (29), will be

(39)

A significant gain is achieved with single byte thresholding,
given approximately by

(40)

since (nonuniform empirical distributions), and
.
If , i.e., the th byte biasing density is chosen to be the

empirical distributions , then , and a gain
is still obtained with an unbiased estimate.
Further, the higher the threshold, the more zeros the biasing

distributions will have. Hence, has a much smaller value,
resulting in a much smaller variance of the biased estimator. It
can be shown easily that the thresholded importance sampling
estimator with single byte biasing is most effective if

for

for all other
(41)
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Fig. 4. Predicted biased/unbiased gain versus threshold for the biasing
distribution of byte 1 of web server IP addresses.P = 0:001764,
Number of trials= 150000. Top: biased gain. Bottom: unbiased gain.

For multibyte biasing, an appropriate threshold will be set for
each empirical byte distribution. Then, the gain is significant
since , where is the gain for biasing
the th byte.

C. Choosing the Threshold

Biasing via thresholding achieves a significantly improved
estimate over the absolutely continuous biasing strategies. This
is achieved by additional work due to the need to correct the bias.
Note that the bias factor is a random variable. The variance
of must be reflected in the variance of the unbiased estimate,
var , which can be derived as

var var var

var

var (42)

In the case that the empirical data is available, the expectation
and variance of random variable may be calculated via the
collected IP addresses of information servers. And, the variance
of can be reduced by averaging a larger collection of em-
pirical samples.

From (42), we see that var is greater than
var since . However, a very high unbiased
gain can still be achieved. The predicted biased and unbiased
gain versus threshold for the biasing distribution for the first
byte of IP addresses of web servers is shown in Fig. 4, which
provides a basis for the considerable tradeoff between the bias
and the unbiased gain.

Fig. 4 shows that the reduction in trials is almost exponen-
tial over the threshold. The flat part in the curves indicates no
distribution of server address falls into that threshold interval,
giving a consistent biased and unbiased gain. The notches in the
unbiased gain curve result from the jump in the variance of bias
in that threshold interval, which implies that for those empirical

Fig. 5. Threshold importance sampling versus Monte Carlo estimation of web
server density.� = 0:048. Top: density of web servers. Bottom: logarithmic
gain of the estimator. Test date: November 30, 2000.

distribution values around the threshold, called “sensitive distri-
butions,” their variance has a significant effect on the variance
of the bias, thus, increasing the entire variance of the unbiased
estimate.

Hence, a near-optimal threshold should be set to avoid those
“sensitive distributions” and correspond to an estimator whose
unbiased gain is high and both the biased and unbiased gain fall
in the flat region of the pattern for a robust estimate.

Fig. 5 illustrates the results of our experiments comparing im-
portance sampling and Monte Carlo sampling estimate to the
web server density for a threshold of 0.048 in the empirical dis-
tribution of byte 1 of the IP address. We can see that a biased
threshold estimate achieves a biased gain of 200. However, the
unbiased estimate result is corrected and a unbiased gain of 25
is obtained.

V. ESTIMATING THE BIAS WITHOUT EMPIRICAL DISTRIBUTIONS

The threshold estimator is a special case of the general
biased estimator for estimating the density of an
information server. For biasing theth byte of an IP address

(43)

The biasing distribution of is given by

otherwise
(44)

Here, is a collection of promising samples which lead
to “hits” frequently, hence resulting in a high-perfor-
mance biased estimator. For the threshold approach,

, where is the
threshold set for theth byte, and is given by (29).

An unbiased estimate of is obtained by correcting the bias
, i.e., , where

. The advantage of the biased estimator is
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its high performance and generality. It can be applied to a wide
range of discrete systems to achieve an unbiased estimate, if, the
bias factor of interest is known or estimable.

As mentioned before, empirical data for web server addresses
are available. Thus, may be easily estimated via the collected
IP addresses of web servers. However, there are many cases
where no such databases are available for services other than
WWW, such as FTP, sendmail, etc. In these cases, we must esti-
mate both the information server density and the bias factor

via probing.

A. Estimating the Bias via Importance Sampling

A possible approach for evaluating is the Monte Carlo
approach. Let us denote by the set of IP address resulting in
hits during Monte Carlo trials. Then

(45)
The Monte Carlo estimator of the bias is defined as

(46)

where and are the number of hits corresponding to the
address set and , respectively.

The Monte Carlo method provides a way to estimate the bias
from the trials in the case that the offline empirical distribution

of information servers is not available. However, it is an in-
efficient estimate since a large number of hits is required for
a reliable estimate of , which will be equally computationally
expensive as finding itself.

To alleviate this problem, we propose to use an importance
sampling-based technique that combines the biased estimator

and the Monte Carlo method. This approach enjoys the
advantage of yielding a larger number of hits corresponding to

via , hence providing faster convergence to than
Monte Carlo method and providing hits corresponding to the set

via Monte Carlo sampling for a computable estimate of.
The resulting single-byte biasing density over the entire ad-

dress space of theth byte will be

(47)

where the biasing density corresponds to a promising IP ad-
dress set of the th byte. A more efficient estimate is achieved
by the mixture factor . Then, an unbiased esti-
mate of the bias based on this approach is obtained and given
by

(48)
where the weighting function , for

, and we can expect that for a given level of
accuracy for estimating .

It should be pointed out that there is noa priori knowledge
of the probed information servers (e.g., FTP servers) before the
trials. Hence, the biasing density may be generated ini-

tially from a known empirical data set such as the empirical dis-
tributions of web servers via thresholding. This is based on the
observation that the difference between the underlying statistics
of two information services, such as FTP and WWW, should not
be very significant.

B. Choosing the Mixture Factor

Clearly, the performance of our proposed importance sam-
pling-based approach for estimating bias is strongly influ-
enced by the choice of . Note that this approach will also
provide an unbiased estimate of the information server density

. Hence, should be chosen to obtain the maximum gain
of the estimator .

Consider that must also be composed of estimates
obtained respectively from Monte Carlo trials and the biased
approach with a fraction . Then

(49)

where and are Monte Carlo and biased es-
timator with trials, respectively.

The optimal value of which minimizes the variance of the
estimator can be easily found by Lagrangian optimiza-
tion of , which leads to the following result:

(50)

where

var

(51)

and

var

var var

var

var (52)

Thus, the gain for is given by

var

var
(53)

In (52), and var can be obtained
via (31) and (37), respectively. Hence, a remaining problem for
evaluating is how to estimate the moments of random vari-
able .

Recall that , where and are the
number of hits corresponding to the address setand , re-
spectively. Then, the conditional moments of given that

will be and
var .
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Fig. 6. Predicted gain versus� for FTP servers.M = 140000, P =
0:0023,Q = 5, andB = 0:28.

Consider that is a binomial random variable with pa-
rameters and . It is reasonable to approximate by a
Poisson arrival process for large and small . Furthermore,
similar to the probability density function which describes the
time required to observe arrivals from a Poisson process [14],
the conditional probability mass function (pmf) of given
that can be expressed by discretized Erlang-like dis-
tributions, given by

(54)

Then, the conditional moments and are
obtained straightforwardly by the pmf , and a com-
putable solution of the moments of results under the con-
dition .

Fig. 6 illustrates the predicted gain of the estimator
for FTP servers. The curve shows versus for

several given values of . It provides a basis for selecting
a proper mixture factor for our importance sampling-based
approach.

C. Evaluating the Bias and the Information Server Density

Note that the gain for estimating on the proposed im-
portance sampling-based approach is modest. Hence, it is not
efficient to perform a long run based on this approach to obtain
a reliable estimate of . However, a large hit set corresponding
to the promising address setis generated through a short set
of trials, resulting in a smaller variance of than the vari-

ance of .
An experiment for evaluating for estimating FTP server

density via the importance sampling-based approach is shown
in Fig. 7. The Monte Carlo method is also shown in the figure for
comparison. Each point in the figure represents an estimate ob-
tained by probing the remote host’s TCP well-known port 21 for
as many times as indicated on theaxis. Responses with status
code are counted as a successful request. The promising

Fig. 7. Bias factorB for estimating the FTP server density. Promising address
setF = [64 207 209 212 216], � = 0:1. Test date: November 13, 2001.

address set is determined by thresholding a known empirical
distributions of web servers. We see that the importance sam-
pling-based approach provides more stable estimate of the bias

and faster convergence than the Monte Carlo method.
Hence, the importance sampling-based approach provides an

alternative method for estimating the bias factorwithout em-
pirical distributions. Although this approach will provide simul-
taneously an unbiased estimate of after a long set of trials,
it will be made more efficient by performing a second biased
importance sampling for estimating only after obtaining the
estimation of based on a short run using this approach. It will
reduce the total sampling time for estimating bothand .
Thus, an algorithm designed for estimating without a prior
empirical distributions of probed information servers proceeds
as follows.

1) Initialize by finding a promising address setand ,
which can result from thresholding known empirical
distributions of some information servers, such as web
servers.

2) Probe with a short run by using the biasing density com-
bined by and uniform density (Monte Carlo) [(47)].

Calculate for the address set .
3) Run a second short set of probes with biasing density

based on the biased importance sampling approach

[(43) and (44)]. Calculate via .
It should be pointed out that the second step will stop imme-

diately once a large hit set corresponding tois achieved for
estimating and the procedure will then switch to the third
step.

Fig. 8 illustrates the third step of an experiment for estimating
the FTP server density . The biasing density in this
short run is generated by thresholding a known empirical distri-
butions of web servers. A biased estimate of is introduced
with a gain as high as 160 in comparison with the Monte Carlo
method. An unbiased estimate is achieved by cor-
recting the bias which is obtained by a early short run using
the proposed importance sampling-based approach.
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Fig. 8. Biased importance sampling versus Monte Carlo estimation of FTP
server density.F = [64 207 209 212 216],B = 0:305. Top: density of FTP
servers. Bottom: logarithmic gain of the estimator. Test date: January 5, 2002.

Fig. 9. Number of IP addresses with publicly accessible web servers from
November 2001 to August 2002. Top: density of web servers as measured via
Monte Carlo and importance sampling. Bottom: number of web servers.

VI. M EASUREMENTRESULTS

Based on the approaches presented above, we have made pe-
riodic measurements of the prevalence of WWW services on the
Internet to map the growth of the current Internet. Fig. 9 illus-
trates the development of the size of the Internet as measured by
the number of IP addresses with publicly accessible web servers
from November 2001 to August 2002. Each data point is the re-
sult of probing nearly 60 000 IP addresses. The larger variance
of the results obtained through Monte Carlo sampling are clearly
evident.

Surprisingly, Fig. 9 shows a nearly constant number of IP ad-
dresses with publicly accessible web servers. This observation
is in stark contrast to measurements provided by, e.g., Netcraft
[2] which demonstrates continued growth of the number ofdo-

mainsproviding web servers. Explanations for the observed dif-
ference are not immediately obvious. One observation we have
made is that if we include “negative” responses (in particular,

responses) in our tallies, then the number of IP addresses
providing web services is growing. We have not been able to
shed further light on this observations. Second, the difference
in these measurements might be explained (at least in part) by
an increasing number of web sites provided on the same host (IP
address); such sites are generally referred to asvirtual hosts. At
this time, our methods do not provide means to detect multiple
WWW domains operating on the same IP address.

VII. CONCLUSION

The Internet has been growing rapidly and substantially. Mea-
suring the size of Internet is an important open problem and has
attracted more attention recently. In this paper, an optimal im-
portance sampling strategy has been presented, which is nearly
seven times more efficient than Monte Carlo sampling for an un-
biased estimate of the web server density. In order to speedup the
convergence of the estimate and increase the gain more signifi-
cantly, we allow biasing densities that are not absolutely con-
tinuous with respect to the actual distribution of information
servers over the IP address space. The biasing densities result
from thresholding empirically observed address distributions
and result in very high gains. They also result in a biased esti-
mator. The advantage of thresholded biasing strategy is its gen-
erality and applicability to a wide range of discrete systems to
achieve unbiased estimate, if, the bias is known or estimable. For
measuring the density of web servers, we may calculate the bias
by the empirical distributions for IP addresses extracted from
several thousand random URLs provided by the web crawler. In
most cases such as for estimating the density of FTP or telnet
servers, however, the empirical data is not available.

To combat this problem, we proposed an importance sam-
pling-based approach which combines the estimates from
Monte Carlo and biased importance sampling to estimate the
bias. An algorithm designed for estimating the density of an
information server without a prior empirical distributions of
that server is presented. An estimate for FTP server density and
the bias based on this algorithm was obtained with a significant
reduction of the total sampling time.

In summary, this paper has introduced novel efficient and
effective statistical methods for measuring the size of IPv4
Internet based on importance sampling. Specifically, a thor-
ough analysis of our importance sampling scheme is performed
and compared with the Monte Carlo sampling technique. An
accurate estimate for the current size of the Internet has been
obtained as measured by the number of publicly accessible web
servers and FTP servers. This framework will be applied in the
future to measure the growth dynamics of the Internet.
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