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Abstract

We propose a unified strategy for estimator construction, selection, and performance
assessment in the presence of censoring. This approach is entirely driven by the choice of a loss
function for the full (uncensored) data structure and can be stated in terms of the following
three main steps. (1) First, define the parameter of interest as the minimizer of the expected
loss, or risk, for a full data loss function chosen to represent the desired measure of
performance. Map the full data loss function into an observed (censored) data loss function
having the same expected value and leading to an efficient estimator of this risk. (2) Next,
construct candidate estimators based on the loss function for the observed data. (3) Then,
apply cross-validation to estimate risk based on the observed data loss function and to select
an optimal estimator among the candidates. A number of common estimation procedures
follow this approach in the full data situation, but depart from it when faced with the obstacle
of evaluating the loss function for censored observations. Here, we argue that one can, and
should, also adhere to this estimation road map in censored data situations.

Tree-based methods, where the candidate estimators in Step 2 are generated by recursive
binary partitioning of a suitably defined covariate space, provide a striking example of the
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chasm between estimation procedures for full data and censored data (e.g., regression trees as
in CART for uncensored data and adaptations to censored data). Common approaches for
regression trees bypass the risk estimation problem for censored outcomes by altering the node
splitting and tree pruning criteria in manners that are specific to right-censored data. This
article describes an application of our unified methodology to tree-based estimation with
censored data. The approach encompasses univariate outcome prediction, multivariate
outcome prediction, and density estimation, simply by defining a suitable loss function for
each of these problems. The proposed method for tree-based estimation with censoring is
evaluated using a simulation study and the analysis of CGH copy number and survival data
from breast cancer patients.

© 2004 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Estimation road map for censored data

Our general strategy for estimator construction, selection, and performance
assessment is entirely driven by the choice of a loss function for the full, uncensored
data structure. Censored data can be handled simply by replacing the full data loss
function by an observed data loss function with the same expectation. Our proposed
estimation road map for censored data can be stated in terms of the following three
main steps:

(1) Definition of the parameter of interest in terms of a loss function for the observed
data. For the full data structure, define the parameter of interest as the minimizer
of the expected loss, or risk, for a loss function chosen to represent the desired
measure of performance (e.g., squared error loss in regression trees). Apply the
general estimating function methodology of van der Laan and Robins [28] to map
the full, uncensored data loss function into an observed, censored data loss function
having the same expected value and leading to an efficient estimator of this risk.

(2) Construction of candidate estimators based on a loss function for the observed data.
Define a finite collection of candidate estimators for the parameter of interest
based on a sieve of increasing dimension approximating the complete parameter
space (e.g., recursive binary partitioning of the covariate space as in regression
trees). For each element of the sieve, the candidate estimator is defined as a
minimizer of empirical risk for the observed data loss function (e.g., within-node
sample mean for the squared error loss).

(3) Cross-validation for estimator selection and performance assessment based on a
loss function for the observed data. Use cross-validation to estimate risk based on
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the observed data loss function and to select an optimal estimator among
the candidates in Step 2. This step relies on the unified cross-validation
methodology of van der Laan and Dudoit [25] and their finite sample and
asymptotic optimality results concerning cross-validation estimator selection
for general data generating distributions, loss functions (possibly depending
on a nuisance parameter), estimators (e.g., from linear regression, regression
trees), and cross-validation procedures (e.g., V-fold, Monte-Carlo cross-
validation).

As described below, a number of common estimation procedures follow this
approach in the full data situation, but depart from it when faced with the obstacle
of evaluating the loss function in the presence of censoring. Tree-based methods,
where the candidate estimators in Step 2 are generated by recursive binary
partitioning of a suitably defined covariate space, provide a striking example of the
chasm between estimation procedures for full data and censored data: regression
trees for uncensored data [4] vs. adaptations to censored data [1,2,5,6,10,16,22].
Here, we argue that one can, and should, also adhere to the above estimation road
map in censored data situations. All that is required is to replace the full
(uncensored) data loss function by an observed (censored) data loss function with
the same expected value, i.e., the same risk. This key step can be achieved using the
general estimating function methodology of van der Laan and Robins [28]. Note that
we use the term estimation in a broad sense, to provide a unified treatment of
multivariate outcome prediction and density estimation based on censored data.
Each of these problems can be dealt with according to the road map by the choice of
a suitable loss function.

The present article introduces a general loss-based methodology for estimator
construction, selection, and performance assessment with cross-validation, in
the context of tree-structured estimation with censored data. We focus on the
choice of a loss function (i.e., Step 1 of the road map) and refer to van der Laan
and Dudoit [25] for details on the general methodology for generating candidates
and for cross-validation selection (i.e., Steps 2 and 3, respectively). The remainder
of this section reviews the literature on survival trees. Our proposed methodology
for tree-based multivariate regression and density estimation with censored
data is described in Section 2. The approach is evaluated in Section 3 via a
simulation study and the analysis of CGH copy number and survival data from
breast cancer patients. Finally, Section 4 summarizes our findings and discusses
ongoing work.

Our unified loss-based estimation methodology with cross-validation is discussed
in detail in van der Laan and Dudoit [25]. A less technical and shorter overview is
given in Dudoit et al. [8]. Special cases and applications are described in a collection
of related articles: estimator selection and performance assessment based on
uncensored data [7]; estimator selection with censored data [14]; likelihood-based
cross-validation [26]; deletion/substitution/addition (or D/S/A) algorithms for
generating candidate estimators [18,23]; supervised detection of regulatory motifs
in DNA sequences [15].
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1.2. Review of tree-based estimation

Tremendous amounts of clinical and genomic data are currently being collected in
the hopes of finding significant diagnostic and prognostic factors for diseases such as
cancer. A common scenario in medical studies is that in which hundreds, possibly
thousands, of covariates are recorded for each patient along with a time to event.
Examples of the event of interest can be recurrence of chronic illness, death from
disease, or drop in a bodily measurement (e.g., white blood cell count). In addition to
clinical, epidemiological, and histological variables, the covariates may include
microarray measurements of transcript (i.e., mRINA) levels for thousands of genes or
of DNA copy number for thousands of chromosomal regions. By the completion of
a study, some patients may have dropped out, been lost to follow-up, or not had the
particular event. In this situation, the last date of follow-up is recorded and referred
to as the censored time to event. One objective in these studies is to build predictors
for the time to event based on the measured covariates and identify which of the
covariates are integral in affecting this outcome.

Over the past three decades, numerous non-parametric and semi-parametric
approaches have been suggested to deal with censored data. In tree-based estimation
procedures, candidate estimators are generated by recursive binary partitioning
of a suitably defined covariate space into nodes and an estimator is returned for
each set in the final partition, i.e., each terminal node or leaf. Regression trees
were first introduced by Morgan and Sonquist [19] in their automatic interaction
detection (AID) program. The methodology was then generalized and formalized
in the monograph on classification and regression trees (CART) by Breiman et al. [4].
There are three main aspects to tree-structured estimation: (i) the node splitting
rule for generating partitions of the covariate space, i.e., generating the candidate
estimators (cf. Step 2 of the road map); (ii) the selection of a ‘right-sized’ tree, by
tree pruning with cross-validation (cf. Step 3 of the road map); (iii) estimation
of the parameter of interest within each node (cf. Step 1 of the road map).
Solutions to each of these problems typically involve optimization of a loss-based
criterion.

As suggested above, the CART methodology of Breiman et al. [4] can be
formulated in terms of the three main steps of our general road map. In the special
case of regression trees for continuous outcomes, the loss function is the squared
error loss, or quadratic loss, and the parameter of interest is the conditional expected
value of an outcome given covariates. The loss function enters at two key stages of
the tree building process: node splitting and tree pruning with cross-validation,
corresponding to Steps 2 and 3 of the road map, respectively. Specifically, the CART
candidate estimators are generated by recursive binary partitioning of the covariate
space using a splitting rule based on the decrease of within-node mean squared error
(MSE). The result is a collection of candidate estimators, starting with a single-node
tree and running up to a tree with numerous terminal nodes (i.e., maximal
exploratory tree). After growing a large tree, the loss function is used again for
pruning and for selecting a right-sized tree among the generated sequence of trees
using cross-validation risk estimation. The survival trees discussed in Breiman [1,2]
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can also be viewed within this framework. In this context, the outcome is a right-
censored survival time and parameters of interest may include the conditional
expected value and median of the (log) survival time given covariates and the
conditional survival function given covariates. Corresponding full data loss
functions are the squared error, absolute error, and negative log-likelihood loss
functions, respectively. However, an immediate difficulty arises with censored data
when evaluating the loss function at the splitting and pruning stages. Common
approaches for tree-based regression and density estimation bypass the risk
estimation problem for censored outcomes by altering the splitting and pruning
criteria in manners that are specific to right-censored survival times. As described
next, some of these proposals deviate from the estimation road map in essential
ways.

Previously proposed modifications to regression trees, often referred to as survival
trees, fall into two categories based on their use of within-node homogeneity
or between-node heterogeneity measures. Included in the first category are: Breiman
[1,2], Davis and Anderson [6], Gordon and Olshen [10], and LeBlanc and
Crowley [16]. These approaches inherit the fundamental basis of CART, in the
sense that they rely on splitting rules which optimize a loss-based within-node
homogeneity criterion and use cost-complexity pruning and cross-validation to
select a right-sized tree from the sequence of candidate trees. However, they each
propose a different loss function to accommodate censored survival data. Davis
and Anderson [6] base their split function on the negative log-likelihood of an
exponential model; Gordon and Olshen [10] use L”, L? Wasserstein, and Hellinger
distances for within-node Kaplan—Meir estimates of the survival distribution; and
LeBlanc and Crowley [16] use the first step of a full likelihood estimation procedure
for a Cox proportional hazards model with the same baseline hazard for each node
implied by the partition of the covariate space. In the recent work of Breiman [1,2]
on survival trees and survival forests, the time-covariate space is partitioned by
seeking splits that maximize the increase in the observed data log-likelihood for a
constant hazards model within each node. In the case of random forests, maximal
trees are grown until only one uncensored observation is left in each node and
aggregated over bootstrap samples. The effects of covariates over time are traced by
monitoring correlations of the conditional cumulative hazard function with
individual covariates, based on only uncensored observations. Most of the
methods described above thus rely on a negative log-likelihood loss function, with
the explicit or implicit goal of estimating the conditional survival function given
covariates, and differ mainly in their choice of model for the observed data
likelihood within nodes. By partitioning the time-covariate space, rather than only
the covariate space, the survival trees of Breiman [1,2] seem to provide the least
parametric estimation procedure. The choice of loss function is discussed further in
Section 2.2, below.

In the second class of survival trees, Ciampi et al. [5] and Segal [22] employ two-
sample log-rank test statistics as between-node heterogeneity measures. This
approach leads to alternative methods for splitting and pruning and thus deviates
markedly from standard tree methodology and our proposed road map.
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Hothorn et al. [12] consider bagging the survival trees produced by the
aforementioned procedures, with the aim of generating improved estimators of the
conditional survival function. Given bootstrap partitions of the covariate space, a
Kaplan—Meier estimator of the survival function is produced for each learning set
observation based on bootstrap-aggregated nodes, i.e., based on the union, over
bootstrap survival trees, of nodes containing the given observation. Performance is
assessed using the Brier score, which relies on the assumption of independent
survival and censoring times [11].

In essence, existing survival tree methods all have in common that they bypass
direct evaluation of the loss function in splitting and pruning, by replacing the full
data loss-based criteria inherent in regression trees with alternatives specific to
censored outcomes. In general, the splitting and pruning criteria seem to be chosen
based on convenience for handling censored data and do not reduce to the preferred
choice for uncensored data. That is, rather than specifying a loss function based on a
parameter of interest as in the uncensored data case (e.g., squared error loss for
conditional expected value of survival time), the choice of a loss function seems to be
dictated by the ability to evaluate it on censored observations. In principle, one could
be interested in other parameters than the conditional survival density (correspond-
ing to the negative log-likelihood loss function used in the above approaches), such
as the conditional mean or median survival times, or the conditional survival
function evaluated at a single point. In such cases, one should employ a different
loss function, which is specific to the parameter of interest. Finally, existing methods
do not provide adequate means for evaluating the overall performance of the
resulting estimators: due to the inability to evaluate arbitrary loss functions for
censored observations, risk estimates are often based on only uncensored data.
Discarding censored observations could potentially lead to serious biases in
performance assessment (the implications of omitting censored data in risk
estimation are discussed in Section 2.2). This general difficulty in evaluating risk
for censored observations results in a discontinuity between the full and observed
data worlds.

It is our intention to follow the loss-based estimation road map of Section 1.1 and
derive estimators that link the full and censored data worlds with the following two
requirements. First, when applied to uncensored observations, the censored data
methodology should reduce to the full data methodology for estimator construction,
selection, and performance assessment. Second, in order to allow for informative
censoring and a gain in efficiency, we wish to have the ability to build estimators
using other covariates than (possibly in addition to) those used to define the
parameter of interest. Neither of these two requirements nor this methodology have
been adopted by the aforementioned approaches. In contrast to these modifications,
which depart from the standard tree building framework and the estimation road
map, we propose to use the general estimating function methodology of van der
Laan and Robins [28] to map the full data loss function into an observed, censored
data loss function having the same expected value and leading naturally to an
efficient estimator of this risk. This observed data loss function is then used for tree
building and performance assessment.
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2. Tree-based estimation with right-censored data

This section elaborates on the main steps of our general approach to loss-based
estimator construction, selection, and performance assessment with cross-validation.
We emphasize the choice of a loss function and illustrate the methodology in the
context of tree-structured estimators for censored data. In tree-based estimation
procedures such as CART [4], the candidate estimators in Step 2 of the road map are
generated by recursive binary partitioning of a suitably defined covariate space.
Univariate outcome prediction, multivariate outcome prediction, and density
estimation can be handled within the same framework simply by specifying a
suitable full data loss function for each of these problems. The estimating function
methodology of van der Laan and Robins [28] is applied to yield observed data loss
functions for node splitting, tree pruning, and cross-validation performance
assessment in the presence of censoring. The rest of the tree building procedure is
retained and the reader is referred to Breiman et al. [4] for details.

2.1. Model

2.1.1. Full data structure

In the full data world, let {X(z) : te R"} be a multivariate stochastic process,
indexed by time z. Let T denote either a fixed endpoint of this stochastic process or a
random survival time, and let Z =log T. The full data structure is defined as X =
X(T) ={X(t) = (R(2),L(¢)) : 0<t< T}, where R(t) = (T <1), L(¢) is the covariate
process, and 7T is now a function of X. Denote the distribution of the full data
structure X by Fy,. The covariate process L(f) may contain time-dependent and
time-independent covariates. Denote the time-independent, or baseline, covariates
by L(0). If T is fixed, then let Z(¢), te{t) =0, ..., t,,—1 = T}, be an m-dimensional
outcome process of interest included in X (7).

2.1.2. Observed data structure

In the observed data world, one rarely sees all of the relevant variables in the
process X = X(T) = {X(7) : 0<s<T}. Rather, one observes the full data process
X(#) only up to the minimum, 7'=min(T,C), of the survival time T and a
univariate censoring variable C. This missing, or censored, survival data situation can
be due to drop out or the end of follow-up. The observed data structure can be
written as O = (T, 4, X(T)), where 4 = I(T < C) is the censoring indicator, equal to
one for uncensored observations and to zero for censored observations. The
censoring process is denoted by A(z) = I(C<t). By convention, if T occurs prior to
C, set C = o0; thus, C is always observed and one can rewrite the observed data
structure as O = (C, X(C)). The random variable O has a distribution Py = Pr,, 6,
indexed by the full data distribution, Fy o, and the conditional distribution, Gy(- |X),
of the censoring variable C given X. Because what one observes about X is
determined by C, Gy(-|X) is referred to as the censoring or coarsening mechanism.
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The survivor function for the censoring mechanism is denoted by Gy(c|X) =
Pro(C>c| X) and referred to as censoring survivor function.

We assume that for ¢< T, the Lebesgue hazard function, 1y, corresponding to the
censoring mechanism given the full data X, satisfies

Jo(c|X) = Pro(C=c|C=c,X) =m(c, X(c)) = m(o) (1)

for some measurable function, m. This assumption on the censoring mechanism,
referred to as coarsening at random (CAR), holds if the censoring distribution only
depends on the observed process X(c). If X does not include time-dependent
covariates (i.e., L = L(0)), then, under CAR, the censoring time C is conditionally
independent of the survival time 7', given baseline covariates L(0). An important
consequence of CAR is that it implies the following factorization for the density of
the observed data O = (C, X(C)) (with respect to a dominating measure satisfying
CAR itself), into an Fy-part and a G-part, pp, ¢(0) = pr, (0)h(0), where h(0) is the
density gc|y(c|x) and pg,(0) = fr, (X(1))|,_, only depends on the measure Fy.
Denote by 4(CAR) the set of all conditional distributions G of C given X satisfying
CAR. Gill et al. [9], van der Laan and Robins [28] (Section 1.2.3, in particular), and
Robins and Rotnitzky [20] provide further, thorough explanations of CAR.

2.2. Definition of parameter of interest in terms of loss function

2.2.1. Full data loss function

In the full data world, assume that we have a sample, or learning set, of n
independent and identically distributed (i.i.d.) observations, X, ..., X,, from the
distribution Fyg. The parameter of interest, ¥, is a mapping ¥ : ¥ - R, from a
covariate space . into the real line R. The space % is typically a subset of RY,
corresponding to a d-dimensional vector W< L(0) of covariates measured at
baseline; . could also refer to other variables, such as the survival time 7" in survival
function estimation or a time index 7 in multivariate outcome prediction. Denote the
parameter space by W. The parameter , is defined in terms of a loss function,
L(X,y), as (one of) the minimizer(s) of the expected loss, or risk. That is, y, is such
that

EFX.()[L(XalpO)] = /L(X;%) dFX,O(x)

= min / L(x,y)dFxo(x) =min Er, [L(X,¥)]. (2)
yeV¥ VeV

Note that we do not require uniqueness of the risk minimizer, rather, we simply
assume that there is a loss function whose risk is minimized by the parameter of
interest 1. To simplify notation, we use the subscript 0 to refer to parameters of the
underlying data generating distributions Fy y and Gy, that is, write Ep,  [L(X,¥)] =
Ey[L(X,¥)]. The purpose of the loss function L is to quantify performance. Thus,
depending on the parameter of interest, there could be numerous loss functions from
which to choose. When the parameter of interest is the conditional mean, (W) =
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Ey[Z| W], a common choice of loss function is the squared error loss, L(X,y) =

(Z —y(W))*. As described in Sections 2.2.3-2.2.5 below, we focus on three types of
full data loss functions, for the purposes of univariate outcome prediction,
multivariate outcome prediction, and density estimation, respectively.

2.2.2. Observed data loss function

In the observed data world, one has a learning set of n i.i.d. observations,
Oy, ...,0,, from the right-censored data structure, O;~ Py = Pp,,,- Let the
empirical distribution of Oy, ..., O, be denoted by P,. The goal remains to find an
estimator for a parameter , defined in terms of the risk for a full data loss function
L(X,y), e.g., a predictor of the log survival time Z based on covariates W. An
immediate problem is that a loss function such as the quadratic loss, L(X,{) =
(Z —y(W))?, cannot be evaluated for an observation O with censored survival time
(i.e., Z = log T is unobserved for 4 = 0). Risk estimators based on only uncensored
observations, such as %ZZL(X,-, W)A;, are biased for Ey[L(X,y)] and, in particular,
estimate the quantity Eo[L(X,y)Go(T | X)] which is not minimized by the parameter
of interest .

Our proposed general solution is to replace the full (uncensored) data loss function
by an observed (censored) data loss function with the same expected value, i.c., the
same risk. The general estimating function methodology of van der Laan and Robins
[28] can be used to link the observed data world to the full data world. Specifically,
the methodology allows full data estimating functions, D(X), to be mapped into
observed data estimating functions, IC(O | G, Q, D), indexed by nuisance parameter
G and, possibly, Q = Q(Fyx). The abbreviation IC stands for influence curve, as in
[28]. The estimating functions satisfy

Ep[IC(O| G, Q,D)] = Er,, [D(X)] if G =Gy or Q= Qo= Q(Fxo)

In our specific application, the full data estimating function is the loss function,
D(X) = L(X,¥), and the risk for a given estimator ¥ is viewed as the full data
parameter of interest, 0y = Eo[D(X)] = Eo[L(X,)]. Observed data loss functions
are obtained from the estimating functions IC, that is, L(O,y|n,) =
IC(O| Gy, Qo, L(-,y)) is an observed data loss function with the same risk as the
full data loss function L(X, ), where , denotes the nuisance parameters (Gy, Qp),

/ Lo, 1) dPo(0) = / L, ) dFy o(x). (3)

Inverse probability of censoring weighted loss function: The inverse probability of
censoring weighted (IPCW) estimating function was introduced by Robins and
Rotnitzky [20]. Its name derives from the fact that the full data function D(X) is
weighted by the inverse of a censoring probability. This estimating function is
defined as

A

IC(0|G,D) = D(X)W, (4)
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where G is a conditional survivor function for the censoring time C given full data X
and 4 = I(T<C) is the censoring indicator. Given that

Eo[A|X] = Pr()(CZ T|X) = GQ(T|X)>O, Fx_’()-a.e.,
one has

“{g3]-sleld

'|GoTix || = mipco

"Go(TIx
This suggests the IPCW observed data loss function, L(O,y|n,) =
IC(O]| Gy, L(-,¥)), with nuisance parameter 1, = Gyp. The corresponding risk
estimator is the empirical mean

i1 : =
0,=5 > L0y In,) _EZ ey )

i—1 =1

where 1, represents G, an estimator of the nuisance parameter Gy derived under the
CAR assumption for the censoring mechanism, i.e., by considering censoring
mechanisms Ge%(CAR). For such models, the estimator G,(7|X) is a function of

O = (C, X(C)) and thus the resulting risk estimator 6, depends only on the observed
data structure, Oy, ..., O,. If a Cox proportional hazards model is assumed for the
censoring mechanism G, then A(¢| X) = Ay (¢ )exp(ﬁTJ( 1)), where J(t) = f(L(t)) is a
set of covariates extracted from the process L(7) = {L(s) : 0<s<t} for some given
R¥-valued function f. Standard software can then be employed to obtain maximum
(partial) likelihood estimators of the baseline hazard function and the regression
coefficients f§ (e.g., coxph function in R).

The IPCW estimating function provides a consistent risk estimator under the
following conditions: (i) Go(7T|X)>35>0, Fy-a.e., for some >0, and (ii) G, is a
consistent estimator for Gy. When there are no time-dependent covariates (i.e.,
L = L(0)), let o denote the right endpoint of the support of the distribution
Fri (- | L), of the survival time 7 given time-independent covariates L. Then, under
CAR, condition (i) holds if Gy(«f|L)>0, a.e. in L.

An alternative to the IPCW estimating function is the doubly robust inverse
probability of censoring weighted (DR-IPCW) estimating function. Under an
identifiability condition, the DR-IPCW loss function ensures consistent risk
estimation if at least one of the two nuisance parameters, G or Q, are consistently
estimated and asymptotic efficiency if both are consistently estimated [28]. This
double robustness property thus allows misspecification of either the censoring
mechanism or of part of the full data generating distribution. The DR-IPCW
observed data loss function is further discussed in [17]. A third, more parametric
approach for estimating the full data risk of a given estimator could be based on the
Fy-part of the observed data likelihood. For example, one could assume a
parametric model for Fy and estimate the full data risk by maximum likelihood. The
three estimation approaches (IPCW, DR-IPCW, and maximum likelihood) are
contrasted in Section 1.2 of [28].
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We stress that in the absence of censoring, i.e., when 4 = 1 and C = oo, both the
IPCW and DR-IPCW observed data loss functions reduce to the full data loss
function, L(O,¥ |n,) = L(X,¥). This ensures that the censored and full data
estimators coincide when there is no censoring. In addition, to allow for informative
censoring and a gain in efficiency, one may estimate the nuisance parameter Gy in the
IPCW and DR-IPCW loss functions using other covariates than those defining the
parameter . The methodology is illustrated below for three types of loss functions
using the simple IPCW estimating function; one can proceed similarly for the
DR-IPCW estimating function.

2.2.3. Univariate outcome prediction

One is concerned with predicting a univariate outcome Z, such as the log survival
time Z = log T', based on a vector of covariates W = L(0). The parameter of interest
in regression trees (continuous outcome Z) is typically the conditional expectation,
Wo(W) = Eo[Z | W], corresponding to the squared error (i.e., quadratic or L?) loss

function, L(X,y) = (Z —y(W))*. Another parameter of interest could be the
conditional median, ¥ (W) = Mediany[Z | W], corresponding to the absolute error
(i-e., L") loss function, L(X, ) = |Z — y(W).

The IPCW observed data loss function for the quadratic loss is

L0 1) = (Z = W(W) 55

GTIx) 2

where 4 = I(T<C) is the censoring indicator and #, = G, is an estimator of the
nuisance parameter 1, = Gy, corresponding to the conditional survivor function Gj
for the censoring time C given full data X. Under the coarsening at random (CAR)
assumption and when there are no time-dependent covariates (i.e., L = L(0)), one
can estimate Gy(-|X) by G,(-|L(0)), a function only of the observed data structure O.
As described in Section 3, survival trees can be grown using the IPCW observed data
loss function by specifying suitable weights for individual observations.

In classification trees (polychotomous outcome Z), the parameter of interest
involves the class conditional probabilities, Pro(z| W). For the indicator loss function,
L(X,y) =1(Z#y(W)), the optimal parameter is y,( W) = argmax, Pro(z | W), the
class with maximum probability given covariates W. One could also use a loss
function which incorporates differential misclassification costs. Note that in the
standard CART methodology, Breiman et al. [4] favor replacing the indicator loss
function in the splitting rule by measures of node impurity, such as the entropy, Gini,
or twoing indices [4, Chapter 4]. The indicator loss function is still used for pruning
and performance assessment. It turns out that the entropy criterion corresponds to
the negative log-likelihood loss function, L(X, ) = —logy¥(X), and parameter of
interest Y, (X) = Pro(Z|W). Likewise, the Gini criterion corresponds to the loss
function L(X,y)=1—-y(X), with parameter of interest y,(X)=1(Z=
argmax. Pro(z | W)). These modifications thus fall within our framework and
amount to using different loss functions for the same parameter at different stages of
the tree building process.
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2.2.4. Multivariate outcome prediction

Consider an m-variate outcome, such as the time-dependent outcome process Z(¢)
included in X (¢), with te{t) =0, ..., t,,-1 = T} and T fixed. Here, the parameter of
interest is the m x | conditional mean vector, (-, W) = Eyo[Z(-) | W]. A corre-
sponding loss function can be defined as L(X,y) = (Z(-) — (-, W)) " Q(W)(Z(-) —
Y(-, W)), for a symmetric matrix function Q(W),,. .- A natural choice for Q(W) is
the inverse of the conditional covariance matrix, (W), of the outcome process Z(#)
given covariates W, Z(W) = E[(Z(-) — Eo[Z(-) | W) (Z(-) — Eo[Z(-) | W])" | W].
Such a loss function takes into account the dependence structure among responses.
As in the univariate outcome case, the corresponding IPCW observed data loss
function is

L0 | ) = (Z() = . W) W)ZC) = W) ™)

Note that using this type of loss function for regression trees amounts to creating

partitions of the time-covariate space using transformed outcomes Q(W)l/ ’Z(),
where different choices of Q(W) correspond to different notions of distance.
Although risk is minimized by the conditional mean vector ¥, (-, W) = Ey[Z(-) | W]
for arbitrary Q(W), different choices of Q(W) lead to estimators with different
properties. In practice, one may work with a matrix Q( W) that is diagonal, constant
in W, or has a particular parametric representation. Previous approaches for
multivariate outcome prediction in the context of linear regression have relied on
canonical analysis to perform regression on transformed versions of the outcome [3].

2.2.5. Density estimation

The parameter of interest is the joint density, yo(W,T) = fo(W, T), and the loss
function is the negative log-likelihood, L(X,y) = —logy(W,T) (cf. Kullback—
Leibler divergence). Again, the corresponding IPCW observed data loss function is
simply

A
L(O, Y |n,) = —logy(W, T)m‘ (8)

The resulting joint density estimator can then be used to obtain the conditional
survivor or hazard functions given covariates .

As in previously proposed survival tree methods, one could also use as loss
function the negative log-likelihood for the observed data

L(0.f) = —logps(0), ©)

where ps(0) = pr,(0) = fr, (X(?)) |,_. is the Fy-part of the observed data likelihood
under CAR and f denotes the joint density corresponding to Fy (Section 2.1.2).
Indeed, the risk Ey[L(O,f)] is minimized at the true underlying density f = fo.
Different procedures consider different models for f within each node [1,2,6,16].
One should keep in mind the following issues when choosing between the IPCW
loss function L(O, f | n,) and the observed data negative log-likelihood loss function
L(O,f). Firstly, the choice L(O, f) corresponds to minimizing the risk Ey[L(O,f)] =
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— [ log ps(0) dPy(0), which involves the underlying data generating distribution
Py = Pp,,q,, while we might only be concerned with the risk Ey[L(X,f)] =
— [ logf(x) dFx o(x), which does not depend on Gy. Secondly, unlike the IPCW or
DR-IPCW loss functions, the L(O,f) choice has the advantage that it does not
require estimating the nuisance parameter #,. Thirdly, in order to handle censored
observations in likelihood calculations, methods based on the observed data loss
function L(0, f) assume coarsening at random, i.e., independence of the survival and
censoring times given covariates. For example, for a within-node Cox proportional
hazards model, consistent parameter estimation relies on independence of the
survival and censoring times given covariates in the model. The implications of the
coarsening at random assumption depend on the complexity of the model under
consideration and should be most problematic in the early stages of procedures
based on forward selection, such as tree estimators. However, such modeling
assumptions are made for the purpose of generating candidate estimators and the
final selected estimator may still be a good estimator of the density fy.

2.3. Constructing piecewise constant candidate estimators based on censored data

In general, it is not feasible to consider all possible candidate estimators ¥/ in the
parameter space W and, in Step 2 of the road map, one generates a sequence of
candidates according to some search procedure. Tree-based estimators correspond to
one such procedure, analogous to forward selection (node splitting) followed by
backward deletion (tree pruning). Define a sieve, {¥}, of subspaces Wy =¥ of
increasing dimension approximating the complete parameter space ¥

¥ = {%.ﬁ(') = Bii() BT, lllék}, (10)
jel
where I =N denote finite index sets and = (], B ‘)GR‘ T are corresponding

regression coefficients. The basis functions ¢; are set indicators, ¢,(s) = I(seS;), and
the subsets S;=.%, jel, of the covariate space & are disjoint (S;nS; =0, j#/) and
exhaustive (& = U;¢.S;). The goal is to identify for each k the parameter Y, € ¥
with minimum  risk, o, = argming gy, Eo[L(X, )] = argmin, .y, Eo[L(O,V [n,)].
In practice, one seeks the empirical analogue, lﬁk, which minimizes the empirical risk,
i.e., the resubstitution error,

Je = argming o, / L(o,¥ | n,) dPa(0), ()

where #, represents an estimator of the nuisance parameter 7, derived under the
CAR assumption for the censoring mechanism.

Tree-structured estimators such as CART [4] do not search over all index sets /
with | I | <k, but rather approximate the minimum by recursive binary partitioning
of the covariate space .% according to a loss-based node splitting rule. In this setting,
the S; correspond to terminal nodes and k indexes the ‘size’ of the tree, measured by
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the number of terminal nodes |I|=k (or by the complexity parameter o, as
described in Section 2.4, below); in particular, for £k =1, S| is the root node, .%.
Thus, as detailed next, trees tackle the optimization problem in Eq. (11) in two steps:
generation of the index sets / by a forward partitioning algorithm and minimization
over coefficients f§ for a given index set I.

2.3.1. Within-node estimation: minimizing risk over coefficients f for a given index
set 1

Given an index set 1, the node coefficients § are defined as the minimizers f; of the
empirical risk

f1 = argmin, / L(o,y5| ) dP(0)

A;

=argminy Z (X1, Y1 p) Go(THIX)

This generally involves solving the following estimating equation:

A4;
0= g Ty

The resulting estimator is denoted by lﬁI. Below are solutions for each of the three
loss functions defined in Sections 2.2.3-2.2.5.

Univariate outcome prediction: For the quadratic loss function, L(X;,;g) =
(Zi =, 5(Wi)* = (Z; — B;)*, if W;€S;. Hence
A;

ﬁlfargmmﬁ Z ZI (WieS)(Z; — ,BJ) G (TIX)

jel i=1

and

. 1
ﬁ[ﬁ i = - W € S s jEI.
R STy e s Z &
Thus, the coefficients [3 1 are weighted means of the outcome in nodes S;, je/. In the
absence of censoring (4; = 1,C; = ), ﬁ, ; reduces to the standard regression tree
prediction, that is, to the average outcome in node ;.

Multivariate outcome prediction: In this setting, 1//”;([ Wi) = B;if (1, W;) € S;, thus,
the same observation O; can contribute to different nodes depending on time 7. For
the quadratic loss function, L(X;,¥;p) = (Zi(-) = 4(-, W) QW) (Zi() -
Wy p(-s Wi)) and Wy 4(-, Wi) can be rewritten as

Vgl Wi) =D (- W) eS)p; = Wil)B
jel
for an m x k matrix of indicators, W;(I), with (z,j)th entry equal to I((z, W;)eS))
and row sums of one. Thus, the k x 1 vector ﬁl has the form of a generalized
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least squares estimator

p - & T ~ A;
| = argmi Zi(-) — WD) T QW) Zi(-) — WiI)f) =t
i argmmp;( () (1)B) QW) (Zi(") ()ﬂ)Gn(T[IX,»)
-1
" A s N
= = Wil) QW))W
(Z Gty e “)
n A; . .
= Will) QW:)Z(:) ]
x (Z ATATO LR ())
To see this, one can define a stacked nm x 1 outcome vector, Z = [Z,(-), ..., Z,(*)] i

a stacked mm x k design matrix of indicators, W(I) = [W\(I), ..., W,(I)]", and
an nm X nm block diagonal matrix Q(W) based on the Q(W;) and the IPCW
weights. The risk criterion then becomes the standard generalized least squares
criterion

B = argming(Z — W(DR) " QW)(Z - WDP).
Density estimation: For the negative log-likelihood loss function, L(X:, ;) =
—log iy, s(W;, T;) = —log B, if (Wi, T:) €S}, hence

n

A;
—Z Z ((W;T)GS)WIOEX/’)}

f; = argmin
{ﬁ:ﬁ/’zovzjﬂj:l} jel =1

and

it (Wi, Ti) €S))4i/ Gu(Ti| X))

P = S o ST (Wi, T e8)) 4/ Gu( T X

jel.

The coefficients ,31 are simply weighted proportions of observations falling in each
node §;, jel. Details on within-node likelihood calculations for other types of
observed data log-likelihood loss functions are given in [1,2,6,16].

2.3.2. Node splitting: minimizing risk over index sets I

In tree-based estimation, the index sets I are obtained by recursive binary
partitioning of the covariate space #. Specifically, a new index set I’ is obtained
from the current / by considering all possible binary splits of each mother node
S; into a left and a right daughter node, Sy and Sg), respectively. The split
which results in the maximal decrease in empirical risk yields the new index set I,
that is, one seeks I’ that maximizes the empirical risk difference between Cdndlddtes

‘&1 and lﬁr

/ Lo.§1 | n,) dP,(0) - / Lo, [ 1,) dPy (o).
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In the univariate outcome prediction problem with the squared error loss, the risk
difference for the split of node S; into nodes Sy (;) and Sg(;) simplifies to

/ L(o,1 | n,) dPa(0) / L(o.§ | 1) dPu(0)

:—Z (Wies)) (m,)(z Br.;)?

A;
——ZI (WieSL )W(z Br 1)’

1 & A;
- ; I(WiESR(/))W (Zi - Brrg))’s

where 31 and ﬁp are weighted node averages as derived in Section 2.3.1. Similarly,
for density estimation, the risk difference only depends on observations in the
mother node S;. For multivariate outcome prediction, however, the same
observation can contribute to different nodes. In basic CART, candidate splits of
a node S; into daughter nodes Sy (;) and Sg(; are generated based on the values of
individual covariates. For example, in the case of an ordered variable W, one
considers binary partitions of S; according to whether or not W <a, where the cut-
offs a are chosen to be halfway between consecutive, distinct values of W in the
learning set. For polychotomous variables, possible subsets of the categories are
considered. Details and extensions (e.g., splits based on linear combinations and
Boolean combinations of explanatory variables) are discussed in Chapters 4 and 5 of
Breiman et al. [4].

2.4. Cross-validation for estimator selection and performance assessment with
censored data

The approaches described in Section 2.3 can be used to construct a sequence of
candidate tree estimators, Y, ke {1, ...,K(n)}, up to a maximal tree, ¥,,,. = Y
Here, k indexes the size of the tree, measured by the number of terminal nodes. The
size K(n) of the maximal tree is typically determined by criteria such as minimal
terminal node size for continuous outcomes or terminal node homogeneity (purity)
for polychotomous outcomes. Cross-validation can then be applied to estimate risk
for the candidates xﬁk, based on the observed data loss function, and to select an
optimal estimator among these.

In the standard CART methodology, once a maximal tree is grown, a minimal
cost-complexity pruning algorithm is applied to generate a new sequence of candidate
estimators indexed by a complexity parameter o. Specifically, a cost-complexity
measure R, () is defined for each candidate tree ¥ as

R(y) = / L(o, v/ |n,) dPy(0) + ||, (13)



170 A.M. Molinaro et al. | Journal of Multivariate Analysis 90 (2004) 154-177

where || denotes the number of terminal nodes in the tree. Minimal cost-
complexity pruning is applied to yield a nested decreasing sequence of subtrees
{,} as candidate estimators and cross-validation is used to select the
complexity parameter o which minimizes risk [4, Chapter 3]. Note that CART’s
approach for generating candidate estimators can be viewed as forward selection
(splitting) all the way to a maximal tree, followed by backward elimination
(pruning), where the stopping rule in backward elimination is determined by
cross-validation.

The unified cross-validation methodology of van der Laan and Dudoit [25] can be
readily applied to extend the CART framework for pruning and performance
assessment to multivariate outcome prediction and density estimation with censored
data. All that is required is to replace the full data loss function used in CART
by one of the observed (censored) data loss functions described in Section 2.2.
van der Laan and Dudoit [25] derive finite sample and asymptotic optimality
results concerning the cross-validation selector for general data generating
distributions, loss functions (possibly depending on a nuisance parameter, 1),
estimators, and cross-validation procedures (e.g., V-fold, Monte-Carlo cross-
validation). The asymptotic optimality result states that the cross-validation
selector k performs asymptotically as well as an optimal benchmark selector, k =

argmin,, [ L0,k | o) dPo(0), based on the unknown data generating distribution
Py. That is,

J L(0, Y | no) dPo(0) = [ L(0, g | ) dPo(0)
J Lo, ‘&k| ny) dPo(0) — [ L(0, | n9) dPo(0)
S LGx ) dFx o(x) = [ L(x, o) dFy o(x)
L) dFxo(x) = [ L(x, 1) dFxo(x)

N N

—1 in probability,

provided that, as n— o0,p,—0, log(K(n))/np, and [(G,— Go)*(T| X)dFy,

both converge to zero faster than the rate at which the estimator i converges

to the parameter y, in risk distance, ie., faster than [ L(x, 1/;,5) dFy o(x) —
J L(x,4) dFx(x)—0, where p, denotes the proportion of observations in the
validation sets (see van der Laan and Dudoit [25] for full statements and proofs of
the results).

3. Simulation study and data analysis

To evaluate our proposed data-adaptive loss-based estimation methodology and
demonstrate its application to tree-structured estimation with censored data, we
present the following results from a simulation study (Section 3.1) and analysis of
breast cancer survival and CGH copy number data (Section 3.2).
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3.1. Simulation study

The proposed survival tree approach based on the IPCW loss function was
compared to that of LeBlanc and Crowley [16], which is implemented as a default for
censored data in the R rpart function [13,24]. The loss function for the survival trees
of LeBlanc and Crowley [16] is based on the observed data negative log-likelihood
for a Cox proportional hazards model with the same baseline hazard for each node.
Risk estimates used in splitting and pruning are based on the first step of a full
likelihood estimation procedure. Trees based on the IPCW loss function can be
grown using the rpart function, by setting the method argument to ““anova’ and by
providing the IPCW weights for individual observations through the weights
argument. Tree selection by cross-validation requires minor modifications to rpart
(see details in [17]). The censoring survivor function, Gy, used in the IPCW loss
function, is estimated separately for each training set. In what follows, Method 1 and
2 refer, respectively, to the survival trees of LeBlanc and Crowley [16] and to trees
grown using the proposed IPCW loss function. The two approaches differ in the
choice of loss function for node splitting and tree pruning and thus lead to two
different partitions of the covariate space, i.e., to different assignments of
observations to terminal nodes. Given such a final partition, we consider two
survival estimation methods for the terminal nodes: the IPCW mean survival and the
Kaplan—Meier (KM) median survival approach. These two types of estimators
correspond to full data parameters defined in terms of the squared and absolute
error loss functions, respectively. The two different loss functions and the two
different within-node estimation methods thus produce four different predictors of
survival (namely, Method 1 with IPCW mean, Method 1 with KM median, Method
2 with IPCW mean, Method 2 with KM median), which were compared by
simulation as described below.

Simulation model for full and observed data structures: The following model was
considered for the full data structure: Z =log T = W? +¢, where W and ¢ are
independent random variables with W~ U(0,1), e~N(0,0?), and ¢ = 0.25. Thus,
Ey[Z|W] = Mediany[Z|W] = W? and the conditional survival function is given by
So(z| W) =Pro(Z>z| W) =1—®((z— W?)/s), where &(-) denotes the standard
normal cumulative distribution function. Censoring times C were simulated using a
mixture  of  three  uniform  distributions:  Cens; ~ U(min(Z), cut.dat),
Cens, ~ U(cut.dat,max(Z)), and Censz~ U(max(Z),max(Z) +2), where min(Z)
and max(Z) refer, respectively, to the minimum and maximum of a random sample
of Z’s. The mixing proportions for Cens; and Cens, were fine-tuned to achieve the
desired level of censoring, Pro(4 =0)= Pro(C<Z), while Cens; ensured that
Pro(Go(Z|W)>0.1) = 1, a condition for the IPCW method (Section 2.2.2). The
censoring survivor function, Gy, used in the IPCW loss function, was estimated
separately for each training set, by fitting a Cox proportional hazards model to the
survival time 7 and covariate W.

Simulation study design: The simulation study consisted of the following five steps,
repeated B = 100 times for each of four sample sizes, n = 250, 600, 1250, and 6000.
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First step: A learning set was generated from the above model with 20% censoring.
Second step: Both Method 1 and 2 were applied to the learning set, resulting in
two partitions of the covariate space. For each method, five-fold cross-validation
was employed to select the ‘best’ tree (for Method 1, the default 1 — SE rule in
rpart was used). Third step: For each terminal node in Method 1 and 2 trees,
two survival estimators, the IPCW mean survival time and the KM median
survival time, were computed. Fourth step: A large, independent test set, of size
N = 5000, was generated from the full data distribution and partitioned according to
both ‘best’ trees. Fifth step: For each test set observation, in each of the two trees,
predicted survival times were obtained using the two different within-node
estimation methods (resulting in a total of four predicted survival times for each
test case).

Test set risk estimates were computed for each of the four predictors, using the L2
loss function for the IPCW mean within-node estimation method and the L' loss
function for the KM median estimation method. Within each sample size, the four
test set risk estimates were averaged over the B = 100 repetitions. Method 1 and 2
were compared by forming the ratio of Method 2’s average risk to that of Method 1,
separately for each of the two within-node estimation methods. Ratios of average
test set risk are displayed in Table 1 for both the KM median and IPCW mean
estimation methods; ratios less than one correspond to improved accuracy for
Method 2, i.e., for trees based on the new IPCW loss function. The results illustrate
the impact on accuracy of the choice of loss function used for node splitting and tree
pruning. As expected, when the parameter of interest is the conditional mean
survival, the risk is smaller for partitions generated by Method 2 (“IPCW Mean”
column). The IPCW loss function also corresponds to lower risk when interest is in
estimating the median survival. The difference in risk decreases with increasing
sample size.

Table 1
Simulation study
Sample size, n Ratios of average risk
KM median IPCW mean
250 0.9422 0.8838
600 0.9524 0.9062
1250 0.9629 0.9244
6000 0.9767 0.9533

Comparison of survival trees grown with Method 1 (rpart’s default) and Method 2 (proposed IPCW loss
function). Ratios of average risk for Method 2 to 1 are displayed for the KM median and IPCW mean
within-node estimation methods for four sample sizes, n. Individual entries of the table are ratios of
average test set risk, (1/ B)Zle J L(x, l/;ﬁ) dP%,(x), where P? and P} denote, respectively, the learning set
and test set empirical distributions in the bth simulation, 1//2 refers to one of the four survival predictors
based on the hth simulated learning set Pﬁ, N = 5000, and B = 100. For the KM median within-node
estimation method (column 2), L is the absolute error loss, and for the IPCW mean within-node estimation
method (column 3), L is the squared error loss.
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3.2. Breast cancer survival and CGH copy number data analysis

Our censored regression tree method was also applied to a dataset from a
comparative genomic hybridization (CGH) study of breast cancer patients. Data were
collected on 152 patients, all with initial occurrences of breast cancer; 52
subsequently recurred. Time to event (in years) was defined as time to recurrence.
Patients with no recurrence at the time of death or of final follow-up are censored.
According to these definitions, the censoring percentage is 66%. Explanatory
variables include epidemiological variables (e.g., age at diagnosis, race), histopatho-
logical variables (e.g., tumor stage, grade), and DNA copy number measures from a
CGH microarray with 2254 bacterial artificial chromosomes (BACs). Details on
CGH and on the particular dataset are described in a forthcoming manuscript by
members of the UCSF Comprehensive Cancer Center (Waldman et al., in
preparation).

The 152 observations were split at random into a learning set and a test set of 128
and 24 (i.e., five sixths and one sixth) observations, respectively, while retaining the
appropriate level of censoring. Trees were grown using the learning set and their
overall performance assessed on the test set. Five-fold cross-validation of the
learning set was used to select the ‘best’ tree (again, retaining the appropriate level of
censoring). The censoring survivor function, Gy, used in the IPCW loss function, was
estimated separately for each of the five training sets in the cross-validation, by
fitting a Cox proportional hazards model to the epidemiological and histopatho-
logical variables. For each training set, a maximal exploratory tree was grown using
the R rpart function with the weights argument set to the IPCW estimates
corresponding to the particular training observations and with cp=0 [24]. The
training set estimate of Gy was maintained in the IPCW loss function and used on the
validation set to evaluate the candidate subtrees. The risk for each subtree was then
averaged over the five validation sets. The minimum cross-validated risk was
achieved for a two-node tree, i.e., with only one split.

A tree was then grown with the entire learning set and the resulting predictor was
assessed using the independent test set. The possible numbers of splits for this tree
were 0, 2, 3, or 4, with corresponding test set IPCW mean squared error 2.530699,
2.349634, 2.535852, and 2.701512. Since cost complexity pruning does not always
return a sequence of trees corresponding to all possible numbers of splits, one
needs to choose between zero and two splits. This could be done in principle by
testing whether the risk difference between the two trees is equal to 0 using a
standard ¢-statistic. The full learning set tree is shown in Fig. 1, with filled circles
for the two-split subtree. Each terminal node is described by the ITPCW mean
log survival time (in years) and the number of observations. The legend in the
bottom left corner indicates the chromosomal location of each BAC. The first two
splits are based on BACs that fall in chromosomal regions known to contain genes
related to breast cancer (personal communication with Joe Gray and Fred
Waldman). The default rpart method selected only the root node; the rpart
maximal tree was based on different variables (BACs) than those used in the IPCW
loss function trees.
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Fig. 1. Breast cancer survival and CGH copy number data analysis. Survival tree built from the learning set
of 128 patients, using the IPCW squared error loss function. Each terminal node is described by the IPCW
mean log survival time (in years) and the number of observations.

4. Discussion

We have described an application of our general loss-based estimation
methodology with cross-validation [25] to tree-structured estimation with censored
data. The approach encompasses univariate outcome prediction, multivariate
outcome prediction, and density estimation, simply by defining a suitable loss
function for each of these problems. Censored data are handled by mapping the full,
uncensored data loss function into an observed, censored data loss function having
the same expected value [28]. This approach reconciles censored and full data
estimation methods, in the sense that standard full data estimators are recovered as
special cases of censored data estimators. In addition, the IPCW and DR-IPCW loss
functions allow for informative censoring and can be used for any type of prediction
problem, including standard linear regression, logic regression, and bagging and
boosting procedures [14,21]. Previously proposed survival tree methods, such as
those of Breiman [1,2], Davis and Anderson [6], and LeBlanc and Crowley [16],
correspond to different choices for the observed data negative log-likelihood loss
function.

The simulation study of Section 3 illustrated that the choice of loss function
used for node splitting and tree pruning can have a significant impact on accuracy.
It also showed that gains in accuracy can be obtained by using a loss function
that is specific to the parameter of interest. Analysis of a breast cancer survival
and CGH dataset using trees built with the IPCW squared error loss function
identified two BACs known to be implicated in breast cancer. However,
this preliminary analysis also highlighted limitations of single trees based on
microarray measures: they typically involve a very small number of splits
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and therefore only provide limited biological insight. Improved prediction
accuracy and more information on chromosomal regions related to breast
cancer survival may be obtained from aggregation methods such as bagging
and boosting. We are also exploring more aggressive procedures for generating
candidate estimators (see below), that include “OR” statements, in addition
to the “AND” statements of tree estimators, and that are more specific to CGH
data [18].

Tree-structured estimators correspond to one particular approach for generating
the candidates in Step 2 of the road map, analogous to forward selection (node
splitting) followed by backward elimination (tree pruning). Current problems
in genomics (e.g., DNA microarray experiments, genetic mapping using SNPs)
involve the analysis of high-dimensional datasets with complex interactions
among variables. In this setting, it is particularly important to perform an
efficient search of the parameter space to generate a good sequence of candidate
estimators. Dudoit et al. [8], van der Laan and Dudoit [25], van der Laan et al. [27],
Molinaro and van der Laan [18], and Sinisi and van der Laan [23] discuss
more general sieves and more aggressive search strategies based on deletion/
substitution/addition (or D/S/A) algorithms capable of revealing high-order
interactions among variables. Other ongoing efforts include deriving loss-based
measures of variable importance and the development of software implementing the
new methodology.

Section 2.2 alluded to the fact that a given parameter of interest, i, can arise as
the risk minimizer for a number of different loss functions, say L, ..., L, (e.g.,
different loss functions for classification trees in Section 2.2.3; different choices of
quadratic loss function for multivariate outcome prediction in Section 2.2.4;
different models for the negative log-likelihood loss function in density estimation
in Section 2.2.5). Natural questions then include: choosing suitable full data
loss functions for generating candidate estimators and for overall perfor-
mance assessment and, given a particular choice of loss function, obtaining an
efficient estimator of the corresponding risk. While the later question was discussed
in Sections 2.2.2 and 2.4, the former deserves further study. Although risk is
minimized by the same parameter y, for each L;, ie., [L;(x,¥)dFxo(x)=
mingey [ Li(x,¥) dFxo(x), ¥j =1, ...,m, different choices for the loss function
lead to estimators of i, with different properties. In particular, minimizing
the empirical risk for a loss function L; could yield an estimator with lower risk
for a second loss function L,, than the empirical risk minimizer for L,, i.e., one can

have [ Ly(x,y1) dFy(x)< [ La(x,2) dFy (x), where y; = argminy y [ L;(x, )
dP,(x),j = 1,2 (cf. generalized least squares estimation). In other words, it may be
advantageous to use a different loss function for generating candidate estimators and
for overall performance assessment. One could envisage employing a collection of
loss functions, Li,...,L,, to generate candidate estimators and then applying
cross-validation to select among these candidates using another loss function L* for
overall performance assessment. We are further investigating the loss function
selection issue.
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Software

The new tree-based estimation methods for censored data will be implemented in
an R software package to be released on CRAN (cran.r-project.org/). In the
meantime, sample R code for growing trees using the IPCW loss function can be
found in the appendix of Molinaro et al. [17] (www.bepress.com/ucbbiostat/
paper135/) and downloaded from www.stat.berkeley.edu/ molinaro.
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