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Abstract

The aim of this paper is to report the design and use of a controller for the world’s largest polypropylene reactor. This is the first

industrial process-controller to use the so-called flatness property of the system, which is presented here in a concise and application
oriented manner. Industrial results are given and the control strategy is presented in the context of today’s fast and competitive
market of polymers. # 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Polypropylene; Continuous stirred tank reactor; Control; Flatness; Industrial application

1. Introduction

The aim of this paper is to report the design and use
of a unique controller in an industrial framework. This
controller is worth mentioning because it is the first
application of flatness in industrial process control and
also because the system under consideration is the lar-
gest propylene polymerization plant in the world [15].
Originally studied for mechanical systems [3,4], flat-

ness exposes important issues in nonlinear control the-
ory such as interpretations of controllability and
feedback linearization [4,5,7,11]. Flatness implies a one-
to-one correspondence between the trajectories of the
system and those of a reduced set of variables called flat
outputs. Many of the problems that are known to be
very difficult to solve for nonlinear systems such as tra-
jectory generation and tracking are thus transposed into
a lower dimensional space, where they become straight-
forward. This is the methodology followed in this paper.
Two quantities are of particular interest when produ-

cing polypropylene in this plant located in Lavéra
(south of France): the amount of production and the
melt-index of the polymer. The melt-index indicates
some of the mechanical properties of the polymer and is
critical for injection and thermoforming transforma-

tions [2] (see also the http://www.appryl.fr). These two
quantities depend in a nonlinear way on the amount of
catalyst and hydrogen that are present in the reactor.
The amount of production and the melt-index are
planned with respect to economical considerations (i.e.
the market of polymers). This induces frequent changes
in the setpoints that must be met fast and with precision
to optimize profit. This critical issue arises in different
polymerization processes, see for instance [9] and [16].
Thus, the main challenge is to control the system for a

wide range of setpoints with high accuracy and dyna-
mical performance. These requirements suggest that
controllers based on linear approximations of the sys-
tem are unlikely to be very successful.
This system is very complex. Precise simulations

models of this continuous stirred tank reactor involve
thousands of variables. Yet, for control purpose, we
concentrate on a reduced set of 4 differential equations
and 2 nonlinear mappings, originating from balance
equations and statistical studies. From a mathematical
point of view, this can be seen as a two input two output
model with a delay on one input. This model is both
compact and rich enough to represent with accuracy the
behaviour of the reactor.
The controller designed here takes into account these

nonlinearities and the delay. It is capable of doing fast
and precise transients, fulfilling the requirements above.
The paper is organized as follows. In Section 1 we

give a model of the process. In Section 2 we recall the
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definition of the flatness property and show that this
model is flat. We use this property to design control
strategies. In Section 3, we present industrial results of
our controller and discuss comparisons with other
possible approaches. In conclusion we underline the
tradeoff between the difficulty of building up a relevant
nonlinear model and the simplicity of the resulting
controller.

2. Modeling

The polymerization process is depicted in Fig. 1. The
hydrogen enters the reactor directly while the catalyst
enters the reactor after a delay due to activation pre-
processing. Roughly speaking, the catalyst acts upon
the amount of production, while the hydrogen acts
upon the melt-index of the polymer. using the following
nomenclature it is possible to write a nonlinear model.

2.1. Model

The process depicted in Fig. 1 can be represented by

d

dt
Qað Þ ¼ u t� �ð Þ �

Qa

�
ð1Þ

d

dt
Xð Þ ¼ Qa �Xþ �ð Þ � �Xþ �

X

1� X
ð2Þ

y1 ¼ Prod ¼ ’
X

1� X
ð3Þ

d

dt
CH2ð Þ ¼ v� g CH2

;Qa

� �
ð4Þ

d

dt
logMIð Þ ¼

alogCH2
þ b� logMI

�
ð5Þ

y2 ¼ MI ð6Þ

where a, b are constant dimensionless coefficients, �, �
(both in s�1 kg�1) and �, �, (both in s�1) and ’ (in kg
s�1) are combinations of densities and other known
operating parameters (omitted here for sake of clarity),
� (in s) is a constant delay. As mentioned before the
effect of u is primarily on the amount of production.
Still, one can clearly see the interaction of u on MI that
appears through g(CH2

,Qa). Finally, the residence time �
is assumed to be a constant thanks to a low level reg-
ulatory loop acting upon the level of the reactor.
Eq. (1) is a dilution equation with a constant delay �

on the input. Eq. (2) is a mass balance equation. Eq. (4)
is a balance equation and includes a nonlinear inference.
Eq. (5) is a mixing equation where the source term arises
from theoretical chemical studies of polymer growth,
(see [8] for a similar study).
This model captures the essential elements of the

dynamics. It is quite precise: we represent in Fig. 2 a
comparison between real-time measurements of the
production Prod and simulation results obtained with
this model. These results were obtained for a one day
period and are representative.

3. Flatness of the model

The flatness property of a (nonlinear) dynamical sys-
tem x

:
=f(x, u) with x 2 Rn, u 2 Rm, (n, m) 2 N is

described as follows [3,4]

Nomenclature

Qa (in kg) is the amount of catalyst in the
reactor

X (dimensionless) is the rate of solid
(04X41) (ratio between the mass of solid
and the mass of solid+the mass of liquid
particles)

Prod (in kg s�1) is the instantaneous amount of
produced polymer

CH2
(in mol m�3) is the hydrogen concentration

MI (dimensionless) is the melt-index of the
polymer in the reactor

u (in kg s�1) is the amount of catalyst com-
ing in the reactor per unit of time

v (in mol m�3 s�1) is the amount of hydro-
gen coming in the reactor per unit of time
per unit of volume

� (in s) is the residence time. It is a constant.
Fig. 1. The polymerization process: 2 inputs (u, v), 2 outputs (melt-

index and amount of production).
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Definition 1. ([3,4]). The system x
:
=f(x, u), y=h(x) with

x 2 Rn, u 2 Rm, (n, m) 2 N, is flat if and only if there
exists a variable z called the flat output such that

x ¼ A z; z
:
; . . . z n�1ð Þ

� �
y ¼ B z; z

:
; . . . z n�1ð Þ

� �
u ¼ C z; z

:
; . . . z nð Þ

� �

where A, B and C are three mappings (depending on f
and h), and z(i) denotes the ith derivative of the output z.1

In the previous definition the equations mean that
there exists a quantity z that summarizes the behaviour
of the whole system via the mappings A and B. The
trajectories of the system, i.e. (x, u), are easily computed
by the trajectories of z and its derivatives without inte-
grating any differential equation.
To see how this property appears in our particular

problem, one may write the previous equations in this
form

x
:
1 ¼ u t� �ð Þ �

x1
�

ð7Þ

x
:
2 ¼ x1f x2ð Þ þ h x2ð Þ ð8Þ

x
:
3 ¼ v� g x3; x1ð Þ ð9Þ

x
:
4 ¼

a log x3ð Þ þ b� x4
�

ð10Þ

y1 ¼ k x2ð Þ ð11Þ

y2 ¼ exp x4ð Þ ð12Þ

where f is a strictly positive function (on its interval of
definition [0, 1]). It is easy to see that this system is flat:2

all the variables are parameterized by the flat outputs
x2=X, x4=MI and their derivatives.
More precisely

x3 ¼ exp
�x
:
4 þ x4 � b

a

� �
ð13Þ

x1 ¼
x
:
2 � h x2ð Þ

f x2ð Þ
ð14Þ

y1 ¼ k x2ð Þ ð15Þ

y2 ¼ exp x4ð Þ ð16Þ

Fig. 2. Accuracy of the model. Comparison between real-time measurements of the production (Prod) and simulation results obtained with the

model (1, 2, 3, 4, 5, 6). Time period=1 day.

1 This definition is very general. In particular the order of the flat

output need not be n in the multi input multi output case.

2 �-Flatness is the precise definition. This notion introduced in [11],

see also [12], addresses the particular case of delay systems.
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and

u t� �ð Þ ¼
x€2 � x

:
2h

0 x2ð Þ

f x2ð Þ
� x

:
2 � h x2ð Þð Þ

x
:
2f

0 x2ð Þ

f 2 x2ð Þ

þ
x
:
2 � h x2ð Þ

�f x2ð Þ
ð17Þ

v ¼ exp
x
:
4� � bþ x4

a

� �
x€4� þ x

:
4

a

þ g x4; x
:
4; x2; x

:
2ð Þ: ð18Þ

3.1. Open-loop control strategy

A general property of flat systems [3,4] is that it suf-
fices to control the flat outputs to control the whole
system. In our case once x2 and x4 are controlled, so are
x3, x1, y1, y2 because of Eqs. (13)–(16). The open loop
controls are given by Eqs. (17) and (18).

Example. We detail here an example of an open-loop
control calculation. Assume that the operator wishes to
increase the setpoint for the amount of production from
Prodinitial to Prodobjective while keeping the melt-index
MIinitial constant.
The trajectory of the amount of production is trans-

formed to the flat outputs: x2 must go from Xinitial to
Xobjective where

Prodinitial ¼ ’
Xinitial

1� Xinitial

� �
;

Prodobjective ¼ ’
Xobjective

1� Xobjective

� �
;

while x4 will remain constant. A transition in finite time
T between Xinitial and Xobjective is prescribed by any
function joining these two setpoints, e.g. a polynomial,
denoted by [0, T ] 3 t 7! xref2 (t). Then the open-loop
control is computed via (17) and (18) as

uol tð Þ ¼
x€ref2 tþ �ð Þ � x

: ref
2 tþ �ð Þh0 xref2 tþ �ð Þ

� �
f xref2 tþ �ð Þ
� �

� x
: ref
2 tþ �ð Þ � h xref2 tþ �ð Þ

� �� � x: ref2 tþ �ð Þf0 xref2 tþ �ð Þ
� �

f 2 xref2 tþ �ð Þ
� �

þ
x
: ref
2 tþ �ð Þ � h xref2 tþ �ð Þ

� �
�f xref2 tþ �ð Þ
� �

vol tð Þ ¼ g log MIinitialð Þ; 0; x2 tð Þ; x
:
2 tð Þð Þ:

ð19Þ

In Fig. 3 one can see an example of such a calculation.
Given a polynomial transition function for the flat out-
put x2 we compute the control u via (17). One can

clearly see the effect of the advance in formula (19): the
control starts increasing before one can expect the flat
output to increase (with exactly a � advance). The
(input) overshoot occurs while the output is still far
from the setpoints.

3.2. Closing the loop

In fact the open-loop strategy must be complemented
by a feedback control law.
As mentioned before, once the flat outputs are stabi-

lized, the whole system is stabilized because all the
variables of the system are expressed in terms of the flat
outputs via Eqs. (13)–(16).
The dynamics of the flat outputs are given by (17) and

(18) We can stabilize them. To satisfy the following
stable closed loop equations for the flat output

x€2 � x€ref2

� �
¼ �k1 x

:
2 � x

: ref
2

� �
� k2 x2 � xref2

� �
x€4 � x€ref4

� �
¼ �k3 x

:
4 � x

: ref
4

� �
� k4 x4 � xref4

� �

where k1, k2, k3, k4 are constants, it suffices to substitute
these desired x€2 and x€4 in Eqs. (17) and (18). This gives
the closed loop controller

u t� �ð Þ ¼ uol t� �ð Þ þ h1 x2 � xref2 ; x
:
2 � x

: ref
2 ; x2; x

:
2

� �

ð20Þ

v ¼ vol þ h2 x4 � xref4 ; x
:
4 � x

: ref
4 ; x4; x

:
4

� �
: ð21Þ

Some required variables in Eqs. (20) and (21) are not
available: x2 is not measured and x4 is measured at dis-
crete times (with a delay due to the necessary laboratory
analysis). To overcome this we use estimators based on

Fig. 3. Open-loop control strategy. The operator’s request is expres-

sed in terms of a transition for the flat output X and the open-loop

control is computed via (17).
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classical least-squares methods, predictors, and Luen-
berger-style observer. These observers give naturally
stable dynamics that do not interfere with the stability
of the closed-loop controller. The derivatives were
approximated by passive low-pass filters.

4. Industrial results

Our controller has been in full service since July 1999
and allows optimization of profit. As one can see in
Fig. 4, the controller allows very fast and precise tran-
sients. On the same figure one can clearly see the effect
of the delay compensation by a ‘‘time advance’’ in the
controller design [see Eq. (19)]. Before the system meets
the setpoints, the controller stops changing the value of
the input (catalyst), preventing the overshoot in the
production rate. These results are representative of the
overall behavior of our controller.
We give industrial results for melt-index transitions

on Fig. 5. The controller is capable of simultaneous
transitions for the amount of production Prod and for
the melt-index MI.

4.1. Comparisons with other techniques

Of course it is not possible to compare these results
with every possible controller. Yet, we tried to tune
some basic linear controllers (PI and LQR) for various
simulations. Unfortunately we did not experience good
results on the real plant when dealing with large changes
in the setpoints and then decided to shift to another
solution (the flatness approach presented here): it was
difficult to combine good dynamical performances and
robustness to perturbations. It is possible to sketch that
with a linear controller the system may take about twice
as long to converge as with the flatness controller, and

that the overshoots would be very difficult to prevent
without any serious deterioration of the dynamical per-
formances. We represent in Fig. 6 a comparison
between such a LQR controller acting on a simulator
(using the model presented before under similar condi-
tions, i.e. using real data for the coefficients �, � and ’)
and the real-time results of our controller on the plant.
Another question of relevance is: how does it compare

to the well established model predictive controller
(MPC) approach (see again [9] for instance)? First it
should be noted that here the control objective does not
really express in terms of a well-defined cost function:
the main goal is to get transitions as repeatable as pos-
sible. In other terms, provided that the starting and
ending setpoints are the same, a transition should
always take the same time and be as accurate. Yet, as
usual with flat systems, see again [3,4], the flatness Eqs,
namely (13)–(18) express all the trajectories of the sys-
tem. Should the control objective be expressed as a cost,
it would have been possible, and computationally prof-
itable as it has been pointed out in other applications
[1,6,10,14], to solve the optimal control problem
through these flatness equations. The unknown would
be the shapes of the transition functions for the flat
outputs [0, T ] 3 t 7! xref2 (t) and [0, T ] 3 t 7! xref4 (t).
This would have been a flatness-based implementation
of an MPC controller. But here, it seemed more suitable
to take advantage of years of practice of the operators
and to mimic some of their reactions: we translated
these in terms of the flat output via the flatness equa-
tions and ended up with an arbitrary choice of transi-
tion functions for the flat outputs. In the end we have a
controller with a predictable behavior. It should be
noted also that the computational effort required of the
flatness based controller is extremely light compared to
an MPC optimization-based technique: here the control
is computed through two analytic expressions. Besides it

Fig. 4. Industrial results over 2 days (tests) with production (Prod) transients. The transients are fast and precise. Precise scales are omitted for

confidentiality reasons.
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is possible to satisfy some min–max constraints on the
inputs by saturating them without compromising the
stability of the closed-loop system. On the other hand,
this flatness based controller can not, as-is, handle
stringent constraints of general forms. The MPC tech-
niques would definitely be better suited for such cases.

5. Conclusion

The flatness of the system allows us to take into
account the nonlinearities and the delay of the system.
Though there is a tradeoff. On one hand we had to build
a nonlinear model of the process which is time consum-
ing and requires a good knowledge of the unit, on the
other hand this allowed us to design an efficient con-
troller in a relatively simple way. For such an accuracy
demanding application we believe that this methodol-
ogy is relevant and recommend it. A first order approx-
imation of the unit would be less appropriate.

The key to our approach is the use of the flat outputs
of the system. We found them easily thanks to the
compactness of our model. It is true that there does not
exist any ‘‘algorithm’’ to find the flat outputs. In the
field of process control, at least, this is often not a big
deal (see [13] for flat plug-flow reactor, flat mixing sys-
tems). As in mechanical engineering (see the flat pendu-
lum [3]) the flat outputs always seem to have a strong
physical meaning. In the present case this is also true:
they are the rate of solid and the melt-index. Currently
we are investigating different processes, trying to build
relevant models and find their flat outputs.
More details about this particular application and

other industrial control realizations in process control
using flatness can be found in [13].
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Mines de Paris, 2000.

[14] N. Petit, Y. Creff, P. Rouchon, Minimum time constrained con-

trol of acid strength on a sulfuric acid alkylation unit, Chemical

Engineering Science 56/8 (2001) 2767–2774.

[15] M. Roberson, APPRYL investments worth 1 billion french

francs, Hydrocarbon Processing 77 (6) (June 1998).

[16] K. Wang, T. Loehl, M. Stobbe, S. Engell. A genetic algorithm for

online scheduling of a mutiproduct polymer batch plant, in: 7th

International Symposium on Process System Engineering, Com-

puter and Chemical Engineering 24, 2000, pp. 393–400.

N. Petit et al. / Journal of Process Control 12 (2002) 659–665 665


