
Virtual FPGAs: Some Steps Behind the Physical Barriers

William Fornaciari, Vincenzo Piuri

Department of Electronics and Information, Politecnico di Milano
Piazza L. da Vinci 32, 20133 Milano, Italy

Phone +39-2-2399-3623, Fax +39-2-2399-3411, Email: {fornacia,piuri}@elet.polimi.it

Abstract. Recent advances in FPGA technologies allow to configure the RAM-based
FPGA devices in a reduced time as an effective support for real-time applications. The
physical dimensions of FPGAs (pinout and gate count) limit the complexity of circuits that
can be implemented. In many applications, very large circuits should be realized without
requiring either a very large FPGA or many FPGAs; in some real-time systems as well as in
multitasking and time-shared environments, it could be valuable to change dynamically the
implemented circuit so as to support different applications competing for the FPGA
resource. This paper introduces and discusses the concept of Virtual FPGA as an extension
of the physical FPGA device: applications have a virtual view of the FPGA that is then
mapped on the available physical device by the operating system, in a way similar to the
virtual memory.

1 Introduction
The FPGA technologies [1, 2, 3] have been recently developed to provide an efficient
computational support for highly demanding applications whenever the use of general purpose
microprocessors cannot satisfy performance requirements or the ASIC solution is either far too
expensive, or the time-to-market must be short, or the application specification are evolving.
Several programmable devices have been developed, e.g., the Programmable Logic Devices
(including the Programmable Logic Arrays and the Programmable Array Logic), the Mask-
Programmable Gate Arrays, and the Field-Programmable Gate Arrays. Nowadays, FPGA seems
the most efficient and effective solution to implement complex circuits with a standard structure
that can be easily adapted to the specific application by soft programming based on switch
configuration. However, some physical limitations exist in the use of FPGAs. In fact, the circuits
that can be implemented with this technology are restricted both in the number of input and
outputs and in the circuit complexity (typically, at the moment, FPGAs are available up to 250
K gates and with some hundreds of input and output pins). Even if the largest FPGAs are able to
accommodate most of the current largest applications, their cost may be not acceptable in the
envisioned market as well as the applications are increasingly demanding for larger devices to
incorporate new functionalities, sometimes behind the capabilities of the integration technologies
at reasonable costs. On the other hand, in many applications, all circuits realized with the FPGAs
are not used all the time: often, some - or even each - of them are used only for a limited time.
Therefore, implementing all desired functionalities with dedicated circuits in the FPGAs may lead
to a relevant underusing of many parts of the FPGAs themselves. The ideal solution should
consists of considering the FPGA as an ensemble of limited physical resources (namely, the input
and out pins and the functional blocks) that need to be shared and viewed at a higher abstraction
level by the applications running on the computing system containing the FPGA itself. This is the
same basic problem occurring in any traditional general-purpose multitasking (possibly time-
shared) system to assign the use of shared resources (e.g., processor, memory, input/output
devices) in a way that simplifies the use of such resources for each concurrent task as well as
provides enhanced features with respect to the ones physically available. In these cases, the
operating system [4] is in charge of simulating the high-level view and realizing the dynamic
assignment of the resources to the tasks so as to minimize the waiting time preserving the
correctness of the operations.



This paper introduces the concept of Virtual FPGA (VFPGA) as an effective and efficient
technique to solve the problems mentioned above for the use of FPGAs implementing large
circuits or to reduce the costs by adopting smaller FPGAs when the application performance can
still be satisfied. The basic idea concerning the FPGA functional blocks reproduce the approaches
adopted in the operating systems to support the virtual memory, namely, dynamic loading,
partitioning, overlaying, segmentation, and pagination. Similarly, sharing of the input and output
pins resembles the management of shared input/output devices.

2 FPGA virtualization
FPGAs are programmable devices composed of a number of functional blocks suitably
interconnected [1, 2, 3]. On the market, different kinds of FPGAs are available: symmetrical-array
FPGAs (e.g., Xilinx, QuickLogic), row-based FPGAs (e.g., by Actel), Sea-of-Gates FPGAs (e.g.,
by Algotronix), and hierarchical PLDs (e.g., Altera). The analysis here presented has been
focused on the symmetrical-array FPGAs. They are arrays of functional combinatorial logic
blocks, possibly containing memory elements to realize sequential functions. Operation of each
logic block is selected in look-up tables or in multiplexed devices by suitable setting the
corresponding configuration signals. Blocks are interconnected either by using switched busses or
multiplexers; long-distance interconnection busses are available to reduce the propagation time in
large devices by limiting the number of switches traversed by a signal. The basic results and the
approach discussed in this paper can be straightforwardly extended to deal with the other classes.
On the market, are nowadays available also FPGA-based boards for standard personal computers
as well as for some workstations: frequently-executed algorithm can be downloaded on these
boards to speed up the computation on the main processor. The FPGA board implements a
flexible co-processing unit for the standard computing architectures. This introduces the concept
of virtual computer: some operations required by the application are mapped on dedicated
configurable hardware components (namely, the FPGA) so that the hardware devices of the
general-purpose computer becomes specialized. A higher-abstraction level could be envisioned
by realizing a computing system composed only of FPGA-based boards so that the whole system
operation can be virtualized and downloaded at the beginning of the activities.
In this paper, we afford the problems related to the physical limits of the FPGA devices, namely
the number of input and output pins and the number of functional logic blocks. Our goal is to
create a Virtual FPGA, i.e., a virtual device having abstract and better characteristics from the
point of view of the applications than the physical device. As operating systems [4] do with the
virtual memory of general-purpose time-shared multitasking computing systems, the FPGA is
virtualized by multiplexing its physical components for all application tasks that need to realize
part of their computation in hardware by downloading the corresponding configuration on the
FPGA itself. The FPGA can be therefore treated as any other shared hardware resource in the
general-purpose multitasking system. Besides, to simplify the application programming, each task
concurrently running on the host computer should view the whole FPGA as completely dedicated
to itself. In this way, the necessary synchronization among tasks to use the shared FPGA do not
need to be included in each application task, but are managed and enforced directly by the
operating system as it is accomplished for all other shared resources. The application designer and
programmer can therefore focus only on the application aspects of the specific task they are
working on, without taking care of all other tasks as well as problems not related to the
application but only to the architecture running the application itself.
In brief, for the FPGA components, we are directed to achieve the two typical goals of any
operating system for any shared resource: a high-level abstract view of the hardware component
(usually with better features than the physical one) and a virtual view of the hardware component
itself as completely dedicated to each individual application task.
This paper introduces some basic concepts, which are well-known in the literature on operating
systems, into the FPGA-based systems. In particular, the following strategies will be pursued to
realize VFPGAs:
• dynamic loading is directed to load the FPGA configuration as required by the running

application task, either explicitly upon system call or implicitly when the task is started or
reactivated by the operating system;



• partitioning divides the functional logic blocks of the FPGA in groups so that the operating
system can download, independently, a configuration in each of them as required by the
corresponding groups of tasks;

• overlaying configures part of the FPGA to compute common functions which are frequently
used, while the remaining part is used to download specific functions which are typically
rarely used or mutually exclusive;

• segmentation decomposes the function to be downloaded in the FPGA into smaller parts
computing a self-contained sub-function and, as a consequence, having variable size;

• pagination partitions the function to be downloaded into smaller portions of fixed size;
• input and output multiplexing is used to assign the current inputs and outputs to the logical

function associated to the running task or to increase the number of inputs and outputs when
there are not enough physically available.

Feasibility of the Virtual FPGA and their effective use in real applications is strictly related to the
configuration time. To implement VFPGA, we must consider therefore only the FPGA
architectures in which configuration is obtained by programming the interconnection switches or
multiplexers in a static RAM (e.g., Xilinx, Altera, and AT&T). Also in this case, the efficiency of
the approach when frequent reconfiguration is envisioned is limited by the configuration mode
and time, i.e., by the way and time the configuration can be written in the RAM. For example, in
the Xilinx X4000 FPGAs, the configuration can be downloaded only serially and completely in
no more than 200 ms. Therefore, programmability is restricted in the practice to initial
configuration or occasional reconfiguration. In some Xilinx FPGAs families, the connectivity is
partially reconfigurable. In these cases, frequent reprogramming of the FPGA is feasible since it
may take only a limited percentage of the time dedicated to the other system activities.
In the following, the different virtualization techniques are introduced by taking into account the
practical usability as well as the increase of functionalities and performance which provide to the
applications competing for the FPGA support. Due to space limitation, only dynamic loading and
partitioning are addressed in this paper, a wider analysis can be found in [5].
3 Dynamic loading
In multitasking systems, concurrent tasks may need to use the FPGA to perform specific (usually,
independent and unrelated) algorithms in hardware so as to achieve the performance required by
the corresponding applications. In some cases, an application may benefit from the speed-up
granted by the FPGA execution of different independent algorithms at different points of the task
itself. In other cases, it is interesting to be able to run a service algorithm in hardware for all tasks
in the system, by selecting the desired algorithm among a given pool; this is typically the case of a
device driver when different management options are available (e.g., encoding/decoding,
compression/decompression, networking devices).
The common requirement of the above cases is the ability of selecting an algorithm and
downloading the corresponding definition on the FPGA whenever the application running on the
processor needs it. If the FPGA is large enough to accommodate contemporaneously all circuits
required by all applications, a trivial solution is to merge all circuits into only one: each task will
use the part of the merged circuit in which it is interested and ignore all other outputs.
The general solution is indeed dynamic loading the desired configuration in the FPGA. The basic
idea consists of modifying the FPGA configuration as required by the concurrent tasks. Each task
in the system must state the algorithms it likes to have executed in the FPGA and provide the
suitable description for the FPGA (in terms of RAM configuration). The task designer must take
into account these requirements in the design steps and provide the necessary information to the
operating system in order to manage the FPGA devices, exactly in the same way as the operating
system does for all the other shared resources. To perform these operations, the configuration
desired by the task must be declared and stored in the operating system tables at the beginning of
the task life, when the task itself is loaded into the system. This can be accomplished either by
means of a specific operating system call or a call to the operating system call “fopen” for files
and devices management, provided that the implementation of this latter procedure stores the
information about the FPGA configuration in the operating system tables when it is called upon
an FPGA device with the configuration specified by the programmer as one of the parameters
(equivalent to the open mode for regular files and devices).



As for any other task, when a task needing the FPGA is selected by the operating system to
become running during the task scheduling for processor virtualization, the operating system sets
up the operating environment as desired by the task itself. The virtual machine on which the task
assume to be running is activated or reactivated by the operating system so that it was an
hardware machine completely and uniquely dedicated only to such a task and all the other
concurrent tasks never exist. For the FPGA, this means that the operating system downloads the
desired FPGA configuration into the FPGA RAM, by using the information received at task
loading and stored in the operating system tables as discussed above. Then, the operating system
can put running the task by updating the processor registers accordingly.
If a multitasking possibly time-shared system is envisioned, the control of the computing system
cannot be released at any time by the running task to the operating system for task rescheduling
until the operation in the FPGA has been completed and the results fully produced; otherwise,
intermediate results are lost and the final ones will never be produced. If the FPGA is
implementing a combinatorial circuit, this means that the operating system simply needs to wait
the complete propagation of the computation along the whole data path within the FPGA. This
time can be estimated a priori by the compiler of the FPGA configuration by simulation as used
as one of the parameters for the initialization procedure of the FPGA device. Alternatively, a
suitable service logic circuits can be introduced in the FPGA itself to generate a control signal
which becomes active only after the completion of the algorithm mapped on the FPGA; the
operating system is thus able to determine the completion of the algorithm in the FPGA by
checking the status of this control signal.
Conversely, if the operating system is allowed to interrupt the execution of the algorithm in the
FPGA before its completion due to the preemption of the task running on the processor in time-
shared systems, it must store all information which are necessary to roll-back the computation in
the FPGA from the beginning by presenting the initial data. In the case of FPGA implementing
sequential circuits, all the above becomes much more complex and difficult to be dealt with since
the final results depend not only on the current inputs, but also on the state of the circuit, i.e., on
the historical sequence of inputs. This means that the operating system must store also the
information about the state of the algorithm in the FPGA, i.e., the value stored in all memory
elements within the sequential circuit mapped on the FPGA. This can be accomplished only if
accurate design and implementation both of the algorithm and its mapping on the FPGA are taken
into account from the initial design stages. First of all, the internal state of the sequential circuit
must be observable (i.e., all memory elements must be readable at the FPGA outputs, either
directly or indirectly through a sequence of operations) in order to guarantee that the operating
system is able to read and store the current state. Then, the state must be controllable (i.e., there
must be a sequence of inputs that stores the desired values in the state memory elements) in order
to allow the operating system to restart the computation from the exact point at which it was
interrupted. In both cases, the state reading and loading operations should be as simple and fast as
possible in order to minimize the reactivation time.
If a single task requires more algorithms are mapped onto the FPGA, a behavior similar to the one
discussed above is expected from the operating system. The task needs to specify through an
operating system call which is the currently desired configuration each time it likes to change it;
otherwise, the most recently configuration used by the task is adopted by the operating system.
If a single algorithm needs to be downloaded in the FPGA for all tasks running on the system, the
downloading mechanism is basically the same, but it is not usually performed by an application
task since it is more related to the configuration of the overall computing system than to a specific
application task or set of tasks. As a consequence, the FPGA configuration downloading must be
implemented as the execution of a suitable device driver, that is specified and selected - once for
all tasks - in the configuration parameters of the operating system. Even if the FPGA
configuration is usually not changed during system operation except upon explicit request of the
system manager, we still can refer to this kind of downloading as a dynamic loading since it is not
strictly embedded in the operating system itself.
The applicability of dynamic loading is limited by the time required to physically download the
FPGA configuration and, possibly, the information about the state of the computation. The last
case considered above can always be applied since it is equivalent to a typical initialization
procedure executed once. Changing the configuration upon explicit request is feasible if it is



required not too often with respect to the time left to the other application activities, or the time
slice in time-shared systems.

4 FPGA partitioning
Very frequent dynamic loading of FPGA configuration may become a management activity too
time consuming for the operating system. If the circuit to be mapped in the FPGA is large, the
configuration time may be not acceptable with respect to the actual use of the circuit itself.
Whenever the management overhead is relevant, other approaches should be envisioned or even
software programming of the algorithm should be considered.
The more drastic solution to reduce the management overhead induced by multitasking is
preventing the shared FPGA use. This resource will be considered non-preemptable, i.e., it cannot
be released for subsequent reassignment to other tasks until the task holding it has not completed
the algorithm that it required and mapped on such FPGA. Any other task needing an already
assigned FPGA will enter in the waiting state as long as the reassignment will not grant the
mutually exclusive use of the FPGA itself and move the task back into the ready-to-run state.
Parallelism of the execution of application tasks may be greatly reduced, even implicitly forcing
the scheduling to a strictly FIFO policy.
If two or more circuits are required by the application tasks and they can be accommodated at the
same time in the FPGAs available in the computing system, partitioning is an effective technique
to reduce the number of loading and, possibly, storing operations and increase the overall time
available for computation without impairing the parallelism in a relevant way.
The basic idea consists of dividing the resources of the FPGA into disjoint sets, one for each
partition of the FPGA. Each partition must be usable, independently from the others, by the
operating system to load one of the circuits required by the applications. Each partition
corresponds to a group of memory elements in the FPGA configuration RAM, being each
element associated to the control line defining either the operation of each functional logic block
or the routing direction of each interconnection.
Partitions may have the same or different sizes as well as fixed or variable size. In the first case,
partitions are created by the operating system at the initialization by taking the corresponding
sizes from system configuration file; creation consists of storing the partition identifier of each
memory element in internal tables of the operating system for future downloading of FPGA
configurations. This assignment will never be changed unless the system is rebooted with another
partition configuration file.
In the case of variable-size partitioning, the boundaries of the partitions can be changed
dynamically, as long as this does not affect the execution of the algorithms currently loaded in the
FPGA. At system bootstrap, one standard partition is created covering the whole FPGA. Then,
new partitions are created upon request of the application tasks by the operating system. At each
request, one of the unused partitions having size large enough is selected and split in two parts; a
new entry is created into the system table for one of the two partitions and the assignment of
memory elements in the two partitions is updated. If no idle splittable partition exists, the request
should be delayed and the requiring task suspended until a suitable partition becomes available. A
task could remain indefinitely waiting for completing the partitioning request if none of the
existing partition is large enough. This can be tolerated if existing partitions remain in use by
other tasks: however, this is definitely not acceptable that a task is waiting for enough room in a
single partition while such a space may be actually available even if split in more idle existing
partitions. In such a case, a garbage-collecting procedure must be introduced to merge - when
necessary - the idle existing partitions to create continuous large ones. Relocation on partitions is
a time-consuming operation since implies downloading of the circuits implementing such
algorithms; therefore, relocation for garbage collection cannot be frequently applied in order to
limit the management overhead.
Loading of the circuit, associated to an application algorithm that must be mapped onto the
FPGA, can be performed in a way similar to the cases discussed for dynamic loading. When a
task requires the FPGA configuration loading, it can also specify the desired partition. If it is idle,
the operating system assign the partition to the task; otherwise, the task is suspended until the
partition becomes available. In the case of fixed partitions, the tasks can be statically pre-assigned
to partitions so that each task does not need to specify the desired one. In general, if the partition



is not specified, the operating system takes care of selecting a suitable one among the currently
idle partitions; if none exists, the task is suspended until one becomes available. Eventually, in the
case of dynamic partitions, garbage collection is started. Creation of partitions in the dynamic case
can be realized without an explicit system call, but implicitly by the loading system call that may
invoke the partition creation whenever a too large partition is assigned for downloading.
Then, physical loading of the circuit onto the FPGA is executed exactly as in the case of dynamic
loading: the operating system stores the circuit configuration in the FPGA configuration RAM
corresponding to the partition itself. Note that the configuration to be downloaded may be not
completely independent from the selected partition. In fact, the position and the structure (i.e., the
physical location of functional logic blocks, input/output blocks, and interconnections) of the
selected partition may impose specific constraints on the use of the individual FPGA resources in
the partition (e.g., some interconnection paths cannot be implemented). As a consequence, a
particular care must be given in the design of the algorithm to be downloaded and in the
generation of the corresponding circuit configuration in order to include these constraints. In the
case of fixed partitions, the circuits can be easily created since the size and position of the
partition may be known in advance; at most, a recompilation step is required whenever a new
partitioning is adopted. Unfortunately, this is not the case of the variable partitions and this
problem becomes more critical when garbage collection is taken into account: a solution consists
of creating a relocatable circuit to be loaded virtually in any location of the FPGA, if resources
provided for its configuration are enough and connectable as specified by the computational data
flow graph. However, circuit relocation is more difficult to be formalized and standardized than
classical code relocation. An assigned partition remain in use to its task until it is released
voluntarily or, as in dynamic loading, the operating system rotates it assignment among tasks,
possibly, by preempting it and storing the internal state of the circuit currently mapped.

5 Conclusions
The concept of Virtual FPGA has been introduced to overcome the limits of a physical FPGA,
allowing to map larger circuits on smaller FPGAs and, as a consequence, to reduce the cost of
using these components by avoiding underused components. Several techniques have been
proposed to realize VFPGAs, by resembling the approaches available for virtual memories in
operating systems. The proposed strategies can be incorporated in any operating system to
manage the FPGA devices in a general-purpose multitasking architecture.
Different applications can be envisioned in the future for the VFPGAs since the cost reduction
allows to further expand their market. For example, multimedia systems can benefit from the use
of VFPGA implementing different voice and image compression/decompression algorithms in
order to accommodate different standards efficiently on a limited-size FPGA. Similarly, in
telecommunication, modems, faxes, switching systems, satellites, and cellular phones can adapt
their operating mode changing the compression and encoding algorithms according to the
partners involved in the communication. Besides, high-performance programmable interfaces for
networking and complex disk arrays for high-volume fault-tolerant memory storage can be
realized with different protocols and standards activated according to the task running on the
processor. In embedded control systems, execution of different non-frequent functions (e.g.,
periodic system testing and diagnosis as well as tuning of the operating parameters) can benefit
from the performance achieved by FPGAs with respect to microprocessors.
Some experiments are in progress to design and develop a prototype system incorporating some
of the proposed features. The system is composed of a standard personal computer equipped with
a board SIGLA by Virtual Computer Inc. .

References
1. S. Brown and J. Rose, FPGA and CLPD architectures: a tutorial, IEEE Design & Test of Computers,

vol. 13, 1996.
2. D.E. Van den Bout, J.N. Morris, D. Thomae, S. Labrozzi, S. Wingo, and D. Hallman, Anyboard: an

FPGA-based, reconfigurable system, IEEE Design & Test of Computers, vol. 9, 1992.
3. M.J.S. Smith, Application-Specific Integrated Circuits, Addison-Wesley, 1997.
4. A.S. Tanenbaum, Modern Operating Systems, Prentice Hall, 1992.
5. W. Fornaciari, V. Piuri, Virtual FPGA, Politecnico di Milano, D.E.I., Internal Report, 1997.


