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Abstract

This paper deals with the problem of classification of human activities from video. Our
approach uses motion features only that are computed very efficiently, and subsequently
projected into a lower dimensional space where matching is performed. Each action is rep-
resented as a manifold in this lower dimensional space and matching is done by compar-
ing these manifolds. To demonstrate the effectiveness of this approach, it was used on a
large data set of similar actions, each performed by many different actors. Classification
results were very accurate and show that this approach is robust to challenges such as vari-
ations in performers’ physical attributes, color of clothing, and style of motion. An impor-
tant result of this paper is that the recovery of the three-dimensional properties of a
moving person, or even the two-dimensional tracking of the person’s limbs need not pre-
cede action recognition.

Keywords: Motion recognition, human tracking, articulated motion.



1 Introduction

Recognition of human actions from video streams has many applications in the surveil-
lance, entertainment, user interfaces, sports and video annotation domains. Given a num-
ber of predefined actions, the problem can be stated as that of classifying a new action into
one of these actions. Normally, the set of actions has a meaning in a certain domain. In
sign language for example, the set of actions corresponds to the set of possible words and
letters that can be produced. In ballet, the actions are the step names in one of the ballet
notation languages.

In psychophysics, the study of human body motion perception by the human visual sys-
tem was made possible by the use of the so-called moving light displays (MLDs) first
introduced by Johansson in 1973 [22,23]. Johansson devised a method to isolate the
motion cue by constructing an image sequence where the only visible features are a set of
moving lights corresponding to joints of the human body. Figure 1 shows an example. He
found that when a subject was presented an MLD corresponding to an actor performing an
activity such as walking, running, or stair climbing, the subject had no problem recogniz-
ing the activity in under 200 milliseconds. The subjects were not able to identify humans
when the lights were stationary. Cutting and Kozlowski [11,25] demonstrated that the gen-
der of the walking person and the gait of a friend can be identified from MLDs. It was later
shown that subjects can identify more complex movements such as hammering, box lift-
ing, ball bouncing, dancing, greeting, and boxing [14]. Two theories on how people recog-
nize actions from MLDs have been suggested. In the first theory, the visual system
performs shape-from-motion reconstruction of the object and then use that to recognize
the action. In the second theory, the visual system utilizes motion information directly
without performing reconstruction.

In this paper, we present a general method for human activity classification. Our method

Figure 1 A moving light display with and without the human body outline.



uses motion information directly from the video sequence. The other alternative is to per-
form tracking in 2-D or in 3-D and then use the tracking information to do action classifi-
cation. Although there has been a few successful attempts to perform limb tracking in 2D
and 3D, tracking an articulated body like the human body remains a complex problem due
to issues of self-occlusion and the effects of clothing on appearance. Our work is moti-
vated by the need to investigate if it is possible to perform the task without having to per-
form limb tracking. It is also motivated by psychophysical evidence [12] where it was
demonstrated that our visual capabilities allow us to perceive actions with ease even when
presented with an extremely blurred image sequence of an action (see Figure 2). These
experiments suggest that using motion alone to recognize actions may be favorable to
reconstruction-based approaches.

Our method uses motion extracted directly from the image sequence. At each frame,
motion information is represented by a feature image. Motion information is calculated
efficiently using an Infinite Impulse Response (IIR) filter. A different method, though con-
ceptually similar, was used by Davis and Bobick [12]. Unlike [12], an action is repre-
sented by several feature images rather than just one image. Actions can be complex and

Figure 2 Snapshots from a motion sequence (of a person skipping) where the images have been
blurred. Humans have no difficulty perceiving the action when they watch the movie.



repetitive, making it difficult to capture motion details in one feature image. Motion fea-
tures were also used by Polana and Nelson [33]. In this case, several motion features were
extracted throughout the action duration. The features were based on normal flow and
were very small in size (a matrix). Our choice of IIR filtering is motivated by the
efficiency of this approach. The feature image used is not limited to a small size. Higher
representation resolution can provide discriminatory power when there is a similarity
among actions. Dimensionality reduction using principle component analysis (PCA) is
then utilized at the recognition stage.

Our method is view dependent in that it assumes the actions are performed in a fronto-
parallel fashion with respect to the camera. Some ways to overcome this limitation are dis-
cussed in Section 7. To evaluate our approach we perform classification experiments
involving eight different action classes, each performed by 28 different people for a total
of 232 samples, 168 of which were used as test samples.

The paper is organized as follows. Related work is presented in Section 2. After explain-
ing the details of the feature image representation in Section 3, the recognition process is
described in Section 4. The action data that was used for testing and its acquisition steps
are presented in Section 5. Finally, results and analysis follow in Section 6.

2 Related Work

Human tracking and, to a lesser extent, human action recognition have received consid-
erable attention in recent years. A good review can be found in [10,16]. The tracking prob-
lem was addressed as the problem of whole body tracking (e.g., [8,28]), limb tracking in
2D image space (e.g., [1,38]), and limb tracking in 3D space (e.g., [2,7,13,17,37]). Action
recognition was also addressed in several ways. We can classify the different approaches
into three categories based on the type of input used. The input can be either 2D tracking
data, 3D tracking data, or motion features extracted directly from the image. The next
three paragraphs describe some of the work done in these categories. The work described
in this paper belongs to the third category.

2D tracking data in the form of MLDs was used by Goddard [18]. Guo et al. [19] used
the parameters of 2D stick figures fitted to tracked silhouettes. Yacoob and Black [39]
used 2D tracking data in the form of parameterized models of the tracked legs. The recov-
ered parameters over the duration of the action were then compressed using PCA. Match-
ing took place in eigenspace. They reported a recognition rate of 82% using four action
classes. Pavlovic and Rehg [31] used tracked 2D limbs to learn motion dynamics using a
class of learned dynamic models. Bregler [6] used tracked features on the human at the
image level and propagated hypotheses probabilistically utilizing Hidden Markov Models
(HMMs). Rangarajan et al. [34] matched motion trajectories using scale space. They used
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speed and direction parameters rather than locations to achieve translation and rotation
invariance. The input was a set of manually tracked points on several parts of the body per-
forming the action. Given two speed signals, matching was performed by differencing the
scale space images of the signals.

The second category methods use 3D body tracking information. Upon successful 3D
tracking, motion recognition can make use of any of the recovered parameters such as
joint coordinates and joint angles. Although there has been a tremendous amount of work
in 3D limb tracking, work in action recognition that uses 3D tracking information been
limited to inputs in the form of MLDs obtained by placing markers on various body joints
which are tracked in 3D. The techniques by Campbell and Bobick [9] who used phase-
space, and Gavrila and Davis [17] who used dynamic time warping belong to this cate-
gory.

The third and final category of methods use image features directly. One such method is
by BenAbdelkader et al. [4]. Their method is similar to ours in that it uses PCA to repre-
sent features but they targeted the problem of gait recognition (identification of individuals
by the way they walk) as opposed to action classification. Foster et al. [15] and Huang et
al. [21] also tackled the problem of gait recognition. They used silhouettes and area fea-
tures and applied PCA techniques. Krahnstover et al. [26] described an interesting spatio-
temporal approach that can not only recognize the action but track it as well. The features
used were frame-to-frame differences. It would be interesting to see how their approach
performs on a large set of action classes. Yamato et al. [40] used HMMs to distinguish dif-
ferent tennis strokes. The feature vector was formed for every frame based on spatial mea-
surements of the foreground. Recognition was done simply by selecting the HMM that
was most likely to generate the given sequence of feature vectors. The main advantage of
such an approach is that adding a new action can be simply done by training a new HMM.
The approach, however, was sensitive to the shape of the person performing the stroke.
The use of motion features rather than spatial features may reduce this sensitivity. Davis
and Bobick [12] used what they called motion-history images (MHIs). An MHI represents
motion recency where locations of more recent motions are brighter than older motions. A
single MHI is used to represent an action. A pattern classification technique using seven
Hu moments of the image was then used for recognition. They presented results of recog-
nizing aerobic exercises performed by two actors, one for training and one for testing. The
choice of an appropriate duration parameter used in the MHI calculation is critical. Tem-
poral segmentation was done by trying all possible parameters. The system was able to
successfully classify three different actions: sitting, arm waving and crouching. Motion
information extracted directly from the image sequence was also utilized by Polana and
Nelson [33]. In their work, they used normal flow. The feature vector in this case was com-
puted by temporally dividing the action into six sections and finding the normal flow in
each. Furthermore, each division is spatially partitioned into 4 by 4 cells. The summation
of the magnitude of the normal flow at each cell was used to make up the feature vector.
Recognition was done by finding the most similar vector in the training set using the near-



est centroid algorithm. The duration of the action was determined by calculating a period-
icity measure [32], which helps in correcting for temporal scale but not temporal
translation (or phase). To overcome this problem, their technique matched the feature vec-
tor at every possible phase shift (six in this case). They tested their method using six dif-
ferent activities, each performed several times by the same person and one activity
performed by a toy frog. The method worked fairly well, which shows the discriminatory
power of the motion features used.

3 Feature Image Creation

An IIR filter is used to construct the feature image. In particular, we use the response of
the filter as a measure of motion in the image. A slightly different formulation of this mea-
surement has been used by Halevi and Weinshall [20]. The idea is to represent motion by
its recency: recent motion is represented as brighter than older motion. This technique,
also called recursive filtering, is simple and time-efficient. It is thus suitable for real-time
applications. A weighted average at time , , is computed as

, (1)

where , is the image at time , and is a scalar in the range 0 to 1. The feature image at

time , , is computed as follows: . Figure 3 is a plot of the filter response

to a step function with set to . can be described as an exponential decay function

similar to that of a capacitor discharge. The rate of decay is controlled by the parameter .

An equal to 0 causes the weighted average, , to remain constant (equal to the back-

ground) and therefore will be equal to the foreground. An equal to 1 causes to be

equal to the previous frame. In this case, becomes equivalent to image differencing.
Between these two extremes, the feature image captures temporal changes (features) in the
sequence. Moving objects produce in a fading trail behind them. The speed and direction
of motion are implicit in this representation. The spread of the trail indicates the speed
while the gradient of the region indicates direction. Figure 4 shows several frames from a
motion sequence along with the extracted motion features using this technique. Note that
it is the contrast of the gray level of the moving object which controls the magnitude of ,
not the actual gray level value.

With the assumption that the height, , of the person and his/her location in the image
are known, feature images are sized and located accordingly. The feature image is com-
puted in an box of dimensions by whose bottom is aligned with the base line
and centered around the midline of the person. This is illustrated in Figure 5. The extra
height is needed in case there are some actions that involve jumping. The width is large
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enough to accommodate motion of the legs and the motion trails behind them. Details
about how the person’s height and location can be estimated will be explained in Section
5.2.

The feature image values are normalized to be in the range . They are also thresh-

olded to remove noise and insignificant changes (a threshold of was found appropri-
ate). Finally, a low-pass filter is applied to remove additional noise.

4 Learning and Recognition

Our goal is to classify actions into one of several categories. We use the feature image
representation calculated throughout the action duration. The idea is to compare the fea-
ture images with reference feature images of different learned actions and look for the best
match. There are several issues to consider using this approach. Action duration is not nec-
essarily fixed for the same action. Also, the method should be able to handle small speed
increases or decreases. Even if we assume that actions are performed at constant speed, we
cannot assume temporal alignment and therefore a frame-by-frame matching starting from
the first frame should be avoided. The frame-to-frame matching process itself needs to be
invariant to the actor’s physical attributes such as height, size, color of clothing, etc. More-
over, since an action can be composed of a large number of frames, correlation-based
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methods for matching may not be appropriate due to their computationally intensive
nature.

All these issues have been considered in the development of our recognition method.
This section describes the details of our algorithm and addresses the issues mentioned
above.

4.1 Magnitude and Size Normalization

As actions are represented as sequences of feature images, two types of normalization
are performed on a feature image:
1. Magnitude normalization: Because of the way feature images are computed, a person

Figure 4 An example of a walking and a running motion sequence. (a) Original images. (b) Filtered

images (feature images) with .α 0.3=

(a)

(b)



wearing clothes similar to the background will produce low magnitude features. To
adjust for this, we normalize the feature image by the 2-norm of the vector formed by
concatenating all the values in all the feature images corresponding to the action. The
values are then multiplied by the square root of the number of frames to provide invari-
ance to action length (in number of frames).

2. Size normalization: The images are resized so that they are all of equal dimensions.
Not only does this type of normalization work across different people but, it also cor-
rects for changes in scale due to distance from the camera, for instance.

4.2 Principle Component Analysis

PCA has been successfully used in the field of face recognition [3,35,36]. It has also
been used in gait and action recognition. BenAbdelkader et al. [4] used PCA to compress
features for the purpose of gait recognition. Their features consisted of regions in a self-
similarity plot constructed by comparing every pair of frames in the action. Huang et al.
[21] also performed gait recognition and represented each person by the centroid of the
projected feature images into eigenspace. Krahnstover et al. [26] used PCA on feature
images computed by image differencing. The projected points were then used to train
HMMs. Of a particular relevance to our work is the work of Yacoob and Black [39]. In
their method, the features used were based on tracking five body parts using the work of Ju
et al. [24]. Each tracked part provided eight temporal measurements. Thus, in total, 40
temporal curves are used to represent an action. Training data is composed of these curves
for every example action. Each training sample is composed by concatenating all 40
curves. The training data is then compressed using a PCA technique. An action can now
be represented in terms of coefficients of a few basis vectors. Given a new action, recogni-
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Figure 5 Feature image size selection.



tion is done by a search process which involves calculating the distance between the coef-
ficients for this action and the coefficients of every example action and choosing the
minimum distance. Their method handles temporal variation (temporal shift and temporal
duration) by parameterizing this search process using an affine transformation.

Our method differs in that an action is not represented by a single point in eigenspace
but rather a manifold whose points correspond to the different feature images the action
goes through. This moves the burden of temporal alignment and duration adjustments
from searching in the measurement space to searching in eigenspace. We see two main
advantages for doing this:

1. Reduction in search complexity: Because the eigenspace has a much lower dimension
than the measurement space, a more exhaustive search can be afforded.

2. Increased robustness: PCA is based on linear mapping. Action measurements are
inherently nonlinear and this nonlinearity increases as these measurements are aggre-
gated across the whole action. PCA can provide better discrimination if the action is
not considered as one entity but a sequence of entities.

Nayar et al. [30] used parameterized eigenspace manifolds to recognize objects under dif-
ferent pose and lighting conditions.

In our method, the training set consists of actions each performed a certain number of

times, . For each of the samples, normalized feature images are computed throughout

the action duration. Let the sample of action consist of feature images:

. A corresponding set of column vectors is con-

structed where each is formed by stacking the columns of the corresponding feature

image. To avoid bias in the training process, we use a fixed number of ’s since the

number of feature images for a particular sample depends on the action and how the

action was performed. From every set of ’s, we select a subset consisting of evenly

spaced (in time) vectors . should be small enough to accommodate the

shortest action. To ensure that the selected feature images for the samples of one action
correspond to similar postures, the samples for each action are assumed to be temporally
aligned. This restriction is removed in the testing phase. The grand mean, , of these vec-

tors ( ’s) over all ’s and ’s is computed. The grand mean is subtracted from each one of

the ’s and the resultant vectors are the columns of the matrix ,

where is the total number of columns. The number of rows of is equal to the

size of the feature image. The first eigenvectors (corresponding to

the largest eigenvalues) are then computed. Each sample is first updated by sub-
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tracting from each column vector and then projected using these eigenvectors. Let

be such that . The projection into eigenspace is com-

puted as

(2)

Each is an column feature vector which represents a point in eigens-

pace (the values are coefficients of the eigenvectors). is therefore a manifold repre-

senting a sample action. We will refer to the set of all the ’s as the reference manifolds.
Recognition will be performed by comparing the manifold of the new action to the refer-
ence manifolds as will be explained in the next section.

4.3 Recognition

As mentioned earlier, recognition is done by comparing the manifold of the test action
in eigenspace to the reference manifolds. The manifold of the test action is computed in
the same way as described above using the computed eigenvectors at the training stage. In
this section, we describe the distance measure that was used for comparison and explain
how it is used for classification.

4.3.1 Distance Measure

The computed manifold depends on the duration and temporal shift of the action which
should not have an effect on the comparison. Our distance measure can handle changes in

duration and is invariant to temporal shifts. Given two manifolds and

, we define

(3)

as a measure of the mean minimum distance between every normalized point in and

every normalized point in . To ensure symmetry, the distance measure which we use is

. (4)

This distance measure is a variant of the Hausdorff metric (we use the mean of minima
rather than the maximum of minima) which still preserves metric properties. The invari-
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ance to shifts is clear from the expression. In fact, is invariant to any permutation of
points since there is no consideration for order at all. This flexibility comes at the cost of
allowing actions which are not similar, but somehow have similar feature images in a dif-
ferent order, to be considered similar. The likelihood of this happening, however, is quite
low. This approach is similar to phase space approaches where the time axis is collapsed
[9]. The temporal order in our case is not completely lost, however. The feature image rep-
resentation has an implicit locally temporal order specification. This measure also handles
changes in the number of points as long as the points are more or less uniformly distrib-
uted on the manifold. The normalization of points in equation (3) is effectively an intensity
normalization of feature images.

4.3.2 Classification

Using the distance measure equation (4), three different classifiers have been consid-
ered:
1. Minimum Distance (MD): The test manifold is classified as belonging to the same

action class the nearest manifold belongs to, over all reference manifolds. This
requires finding the distance to every reference manifold.

2. Minimum Average Distance (MAD): The mean distance to reference manifolds
belonging to each action class is calculated; and the shortest distance decides classifi-
cation. This also involves finding the distance to every reference manifold.

3. Minimum Distance to Average (MDA) (also called nearest centroid): For each action,
the centroid of all reference manifolds belonging to that action is computed. This is
also a manifold with a number of points equal to the average number of points in each
reference manifold belonging to the action. We do not interpolate to compute this
manifold. Instead, the nearest points (temporally) on the reference manifolds are aver-
aged to compute the corresponding point on the centroid manifold. A test manifold is
classified as belonging to the action class with the nearest centroid. Testing involves
calculating a number of distances equal to the number of action classes.

5 Action Data

5.1 Data Selection

To evaluate our recognition method, we recorded video sequences of eight actions each
performed by 29 different people. Several frames from one sample of each action are
shown in Figures 6 and 7. The actions are named as follows: Walk, Run, Skip, Line-walk,
Hop, March, Side-walk, Side-skip. There are several reasons for our choice of this particu-
lar data set:
1. Discrimination becomes more challenging when there is a high degree of similarity
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Figure 6 Several frames from Walk, Run, Skip, and March actions.



Figure 7 Several frames from Line-Walk, Hop, Side-walk, Side-skip actions.



among actions. Many of the actions we chose are very similar in the sense that the
limbs have similar motion paths.

2. Rather than having a single person perform actions several times, we chose to have
many different people. This provides more realistic data since, in addition to the fact
that people have different physical characteristics, they also perform actions differ-
ently both in form and speed. Thus, it tests the versatility of our approach. It can be
seen from Figures 6 and 7 that subject size and clothing are different. A few samples
also had more complex backgrounds. Table 1 shows the variation in action perfor-

mance speed throughout the data set. The table shows that the actions were performed
at significantly varying speeds (more than double the speed in the case of Hop, for
instance).

3. Another consideration for a more realistic data set was that we avoided the use of a
treadmill. Using a treadmill not only restricts speed variation but also simplifies the
problem since the background is static relative to the actor.

To our knowledge, this is one of the largest sets of action data ever used in terms of the
number of subjects performing the actions multiplied by the number of actions.

5.2 Acquisition

The video sequences were recorded using a single stationary monochrome CCD camera
mounted in such a way that the actions are performed parallel to the image plane.

Action
Minimum Duration Maximum Duration

sec. # frames sec. # frames

Walk 0.93 28 1.77 53

Run 0.70 21 0.93 27

Skip 1.10 33 1.73 51

March 1.13 33 1.93 57

Line-walk 1.47 44 2.20 66

Hop 0.70 21 1.67 50

Side-walk 1.06 31 1.80 54

Side-skip 0.57 17 0.93 27

Table 1. Variation in the duration of one cycle for the data set.
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In our approach, we assumed that the height (in the image plane) and location of the
person performing the action are known. Recovering location is necessary to ensure that
the person is in the center of the feature images. Height is used for scaling the feature
images to handle differences in subject size and distance from the camera. To attain the
recovery of these parameters, we tracked the subjects as they performed the action. Back-
ground subtraction was used to isolate the subject. A simple frame-to-frame correlation
was used to precisely locate the subject horizontally in every frame. A small template cor-
responding to the top third of the subject’s body (where little shape variation is expected)
was used. The height was recovered by calculating the maximum blob height across the
sequence. For the general case, our tracking method in [27,28] can be used to locate the
subject boundaries. Correlation can then be applied to find the exact displacement across
frames. The computation of feature images as explained in Section 3 deals with the raw
image data without any knowledge of the background. The information provided by the
acquisition step is the location of the person throughout the sequence and the person’s
height.

6 Experimental Results

6.1 Classification Experiment

In our experiments, we used the data for eight of the 29 subjects for training (64 video
sequences). This leaves a test data set of 168 video sequences performed by the remaining
21 subjects. The training instances were used to obtain the principle components. The
number of selected frames (parameter is described in Section 4.2) was arbitrarily set to
12. We will later show the effect of changing this parameter in further experiments. The
resolution of feature images was also arbitrarily set to 25 horizontal pixels by 31 vertical
pixels. Again, the effect of changing the resolution will be shown later. Decreasing the res-
olution has a computational advantage but reduces the amount of detail in the captured
motion.

The training samples were organized in a matrix as described in Section 4.2. The

number of columns is . The number of rows is equal to the

image size ( ). The eigenvectors are then computed for the covariance

matrix of . Most of the resulting eigenvectors do not contribute much to the varia-

tion of the data. The plot in Figure 8(a) illustrates the contribution of each

eigenvector. It can be seen that past the 50th eigenvector, the contribution is less than
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. Figure 8(b) shows the cumulative contribution . The curve

increases rapidly during the first eigenvectors. The first ten eigenvectors alone capture
more than of the variation. The first 50 capture more than . In Figure 9, the first

ten eigenvectors are shown. The gray region corresponds to the value of 0 while the darker
and brighter regions correspond to negative and positive values, respectively. It can be
seen from the figure that different eigenvectors are tuned to specific regions in the feature
image.

In our experiments, the choice of (the number of eigenvectors to be used) was varied

from 1 to 50. Using a small is computationally more efficient but may result in a low

recognition rate. As increases, the recognition rate is expected to improve and approach
a certain level. Recognition was done on the 168 test sequences as described in Section 4.3
using all three classifiers (MD, MAD, MDA). Recognition rate was computed as the per-
centage of the number of samples classified correctly with respect to the total number
samples. Figure 10 displays the recognition performance for the different classifiers as a
function of . It can be seen that the recognition rate rises rapidly during the first few val-

ues of . At , the rate using MDA reaches over 91.6%. At , the rate is
over 92.8% for MDA. MAD performance is slightly lower while MD is about 10% below.
One explanation for this behavior is that some clusters are close to each other so that a
point, which may be classified correctly using MDA, can be misclassified using MD. In
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Figure 9 The first ten eigenvectors.
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later experiments, only the MDA classifier will be shown.

Table 2 shows the confusion matrix for . Most actions had a perfect or near per-
fect classification except for the Skip action. Although the Skip action was classified cor-
rectly about 70% of the time, it was mistaken with Walk, March, and Hop actions
numerous times. The 12 misclassified actions are shown in Figure 11. One person (num-
ber 15) had two actions misclassified while the remaining people had at most one
misclassification. When the correct action class was allowed to be within the first
two choices, the number of misclassified actions became five. All these five actions
(mostly Skip actions) were either executed erroneously or had a very low color
contrast.

To give an indication of the quality of classification, Figure 12 shows a confusion plot
which represents the distance among test and reference actions averaged across all sub-
jects. The larger the box size, the smaller the distance it represents. The diagonal in the fig-
ure stands out and very few other boxes come near the sizes of the boxes at the diagonal.
However, it can be seen that there is mutual proximity in matching between Walk and Skip
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actions (a Walk action is close to a Skip action and vise-versa). This was expected due to
the high degree of similarity between these two actions.

6.2 Parameter Selection

6.2.1 Resolution

The resolution of feature images decides the amount of motion detail captured. In size
normalization of feature images, a certain resolution must be chosen. Figure 13 shows an
example feature image and feature images normalized at different resolutions. The classi-
fication experiment was run with different resolutions to see if there is a resolution beyond
which little or no improvement in performance is gained. Such a reduced resolution has
computational benefits. It also gives an indication of the smallest “useful” resolution
which can be used to decide the maximum distance from the camera at which action can
take place (assuming the camera parameters are known). In Figure 14, the classification
performance is shown for different resolutions. It can be seen from the figure that increas-
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ing the resolution beyond  does not produce any gain in performance.

6.2.2 Number of Training Images

The parameter is used in the training process to select the same number of feature
images from every training action sequence. Let us examine the effect of choosing differ-
ent values for on performance. Figure 15 shows the classification results for the values:
1, 2, 3, 4, 6, 12, 18, and 24. Values of 3 and above seem to have identical performance.
This suggests that three feature images from an action sequence capture most of the varia-
tion in the different postures.
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6.3 Complexity

Testing an action involves computing feature images, projecting them in eigenspace,
and comparing the resulting manifold with the reference manifolds. Computing feature
images requires low level image processing steps (addition and scaling of images) which
can be done efficiently. Let be the number of pixels in the scaled feature image accord-

ing to the selected resolution. Using eigenvectors, projecting a feature requires an inner

product operation with each eigenvector and thus, a complexity of . If the action
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Figure 13 Original frame and its feature images at different resolutions.
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has frames, the time needed to compute the manifold is . Manifold comparison
involves calculating the distance between every point on the action manifold and every
point on every reference manifold. Assuming there are action classes with samples of

each, and if the average length of the reference actions is , there will be distance

calculations in the case of MD and MAD, and calculations in the case of MDA. Cal-

culating a distance between two points in an eigenspace is . There-

fore, recognizing an action using MD or MAD is while in the case of MDA, it

is only . In our experiments, , , , , and

.

The total complexity for MDA is therefore, , or since the
remaining variables are constant. This demonstrates the efficiency of this method and its
suitability for a real-time implementation. On-line implementation is also possible where
the distance measure is updated upon receiving new frames, requiring a small number of
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comparisons per frame. This allows incremental recognition such that certainty increases
as more frames are available. The choice of the implementation approach depends on the
application at hand. We left the actual real-time implementation as future work.

6.4 Other Choices for Feature Images

We have experimented using feature images computed in a different way than recursive
filtering. Silhouettes, which are defined to be the binary mask of the foreground, were one
choice. Classification results using silhouettes were approximately 20% lower than recur-
sive filtering. When recursive filtering was applied to silhouettes, classification rates went
up by about 10%. Our explanation for this behavior is that silhouettes alone do not carry
any motion information, except for the spatial aspects of motion (e.g., the way a marching
person should look like when his/her knee is at a right angle with his/her body). Recu-
sively filtered silhouettes on the other hand encode some motion aspect but they miss oth-
ers (e.g., the motion of an arm swinging in front of one’s body). Our feature images do a
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better job than silhouettes because they encode even more motion specific information.
Optical flow could probably provide an even better representation but we left that as future
work.

7 Summary and Future Work

This paper describes an articulated motion recognition approach. The approach is based
on low level motion features which can be efficiently computed using an IIR filter. Once
computed, motion features at every frame, which we call feature images, are compressed
using PCA to form points in eigenspace. An action sequence is thus mapped to a manifold
in eigenspace. A distance measure was defined to test the similarity between two mani-
folds. Recognition is performed by calculating the distances to some reference manifolds
representing the learned actions. Experimental results for a large data set (168 test
sequences) were presented and recognition rates of over 92.8% have been achieved. Com-
plexity was also analyzed. The results demonstrate the promise and efficiency of the pro-
posed approach.

There are several possible future directions. One has to do with view independence. In
particular, the effect of deviation from fronto-parallel views on performance needs to be
tested. Our group is also investigating image-based rendering techniques to either produce
novel views for training or to produce fronto-parallel views for testing.

Another direction is concerned with the nature of actions. In this work, we only worked
with periodic actions. We plan to investigate the performance with non-periodic actions.

Action Walk Run Skip March
Line-
walk

Hop
Side-
walk

Side-
skip

Walk 20 0 0 0 1 0 0 0

Run 1 20 0 0 0 0 0 0

Skip 2 0 15 2 0 2 0 0

March 1 0 1 19 0 0 0 0

Line-walk 0 0 0 0 21 0 0 0

Hop 0 0 0 0 0 21 0 0

Side-walk 0 0 0 0 1 0 19 1

Side-skip 0 0 0 0 0 0 0 21

Table 2. Confusion matrix.



One difficulty with non-periodic actions is temporal segmentation. It is non-trivial to
decide the start and end of such actions. In the case of periodic actions, temporal segmen-
tation is possible [4] but temporal alignment (i.e., making sure that the extracted cycle
starts at a specific phase) is also non-trivial. In our experiments, we assumed that only
temporal segmentation is available (but not temporal alignment). For non-periodic actions,
temporal segmentation and alignment become the same problem since there is no longer a
concept of a cycle. One possible solution that will completely remove the temporal seg-
mentation requirement for non-periodic as well as periodic actions is online recognition.
Basically, at every time instant, we can consider the past frames where varies from 1

to some maximum number of frames. For every , we can try to find a match and when a
good match (above some threshold) is found, the system will output that match for that
time instant. This is closely related to our interest in utilizing the efficiency of this
approach to develop a real-time system that will classify actions as they are captured.
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