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ABSTRACT 
A distributed virtual environment (DVE) is a software system that 
allows users on a network to interact with each other by sharing a 
common view of their states. As users are geographically 
distributed over large networks like the Internet and the number 
of users increases, scalability is a key aspect to consider for real-
time interaction. Various solutions have been proposed to 
improve the scalability in DVE systems but they are either 
focused on only specific aspects or customized to a target 
application. In this paper, we classify the approaches for 
improving scalability of DVE into four categories: 
communication architecture, interest management, concurrency 
control, and data replication. We then propose a scalable network 
framework for DVEs, ATLAS. Incorporated with our various 
scalable schemes, ATLAS meets the scalability of a system as a 
whole. By providing system developers with a set of APIs as a 
network infrastructure, ATLAS intends to support various 
applications The integration experiences of ATLAS with several 
virtual reality systems ensures the versatility of the proposed 
solution. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – client/server, distributed applications. 

General Terms 
Design, Management. 

Keywords 
DVE, scalability, network framework. 

1. INTRODUCTION 
A distributed virtual environment (DVE) is a software system that 
allows real-time interaction among geographically distributed 
users by providing various levels of sharing in terms of space, 
presence, time, etc [23]. A shared context among users is 

achieved by sharing each user’s activities to the rest of users and 
often enhanced by replicating the information at each user’s site. 
However, as users are geographically distributed over large 
networks like the Internet and the number of users increases, 
scalability is a key aspect to consider for supporting real-time 
interaction [17]. 
Various attempts have been made to improve scalability in DVEs. 
A key design issue in them is to reduce message exchange as 
much as possible in terms of number and size without harming the 
shared context and interactive performance. A most typical 
approach is filtering unnecessary messages by dividing a virtual 
world into several regions [1,18] or localizing the area of interest 
of users [2,7,9]. However, if the filtering is solely done by a 
server, it burdens the server with a flood of messages and thus 
increases network delay. To avoid this, peer/peer or peer/server 
models are adopted with multicast support [1,2,9,18]. Another 
way to reduce message exchange is to replicate virtual world data 
at the client from the server.  A key concern here is how to 
efficiently reduce transmission delay of the virtual world data 
[3,5]. However, replication requires synchronization among 
replicas in the presence of multiple concurrent updates, which 
eventually lead to inconsistent views among users. This results in 
the need of concurrency control. It should provide acceptable 
interactive performance and consistency [21]. In summary, key 
considerations for scalability improvement in DVEs are interest 
management, communication architecture, data replication, and 
concurrency control. 
Existing systems have proposed various solutions to the 
scalability problem but their approaches are limited to specific 
applications and/or do not cover all four aspects of scalability 
considerations. NPSNET [18], which is primarily aimed to 
military simulations, attempts to increase scalability not only by 
using spatial filtering mechanism but also by adopting the peer-to-
peer communication architecture. However, it pays little 
consideration on data replication or concurrency control schemes. 
MASSIVE systems [2], which are designed for teleconferencing, 
reduce communication overheads by leveraging spatial 
relationship among participants or by providing aggregated group 
of view. They also do not consider world data replication or 
concurrency control mechanisms. Both approaches assume that a 
whole world data is replicated at each client and a pessimistic 
concurrency control is used. DIVE [9], which is designed to 
support 3D teleconference, introduces the aura concept to support 
natural user interaction and to reduce the communication cost, 
and supports heterogeneous network requirements based on 
DiveBone [6]. However, it overlooks scalable concurrency 
control and data replication. PaRADE [21] is an exemplary 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
CVE’02, September 30–October 2, 2002, Bonn, Germany. 
Copyright 2002 ACM 1-58113-489-4/02/0009…$5.00. 



system which attemps to improve interactive performance in 
concurrency control by using a prediction-based scheme. It, 
however, does not provide scalable message filtering and data 
replication. QUICK [3] framework takes into account dynamic 
objects distribution to participants without considering 
concurrency control or interest management. Bamboo [24], 
provides interfaces for device management, networking, graphical 
user interface, and extensibility using callbacks to application 
designer. It, however, delegates to application developers the 
mechanisms for interest management, data replication, and 
concurrency control.  
Advances in network and 3D graphics technologies have led to 
growing demands for various DVE applications such as virtual 
community, collaborative engineering, network game, and so on. 
In this paper, we propose a scalable network framework for DVEs, 
ATLAS. It provides various scalable schemes in all four 
scalability aspects described above, not restricted to specific ones. 
For meeting various DVE application requirements, these 
schemes are provided to system developers as APIs. Intending to 
support various applications, ATLAS introduces an intermediate 
layer playing a role of routing and transforming messages 
between ATLAS and applications. We have succeeded to 
integrate ATLAS with several applications, which ensures the 
versatility of the proposed solution. 
The rest of the paper is organized as follows. In section 2, we 
discuss four scalability considerations in large DVE systems. 
Section 3 introduces the proposed network framework for DVEs, 
ATLAS, and its internal modules in detail. Section 4 illustrates 
our integration experiences of ATLAS with various applications. 
Conclusion with future work follows in Section 5. 

2. SCALABILITY CONSIDERATIONS 
In this section, we discuss the four key design issues that should 
be considered for scalability of DVEs. 

2.1 Communication Architecture 
Since a DVE provides users with a shared context by exchanging 
their states with each other, how to reduce communication 
overhead is a key design consideration. Depending on how the 
communication is coordinated, the communication architecture 
can be characterized as follows: client/server model, peer/peer 
model, and peer/server model. 
In the client/server model, all the messages are sent to a server 
and then the server distributes them to all or some of users 
according to synchronization requirements. Apparently it is not 
scalable as the number of participants in a virtual world increases 
since the server becomes a bottleneck. Even if additional servers 
are used [7], the delay due to additional communication overhead 
in servers is inevitable. To avoid this, the peer/peer model is 
introduced. It allows users to directly exchange messages. 
However, each user has to assume all the responsibility of 
message filtering and synchronization. The peer/server model 
exploits the benefits of two models described above such that 
consistency management is done by a server and communication 
among users is performed directly by themselves using multicast.  

2.2 Interest Management 
Though the computing powers and rendering speed are rapidly 
increasing, network resources still remain very expensive 
compared with computational resources. To overcome the 

limitations of the network resources, various relevance-filtering 
mechanisms should be considered. Since users need not receive 
all update messages related to the whole world, they instead 
receive only messages which they are interested in [8,23]. The 
interest management is divided into two methods according to the 
fidelity of capability of message filtering: dividing a virtual world 
into several regions and localizing the area of interest of the 
participants [16]. 

2.3 Concurrency Control 
Shared information in DVEs is often replicated at each user’s site 
to provide acceptable interactive performance, especially where 
users are geographically distributed over large networks like the 
Internet. Replication enables users to locally access and update 
the data. On the other hand, the cost of replication is to maintain 
synchronization among replicas in the presence of multiple 
concurrent updates, which eventually lead to inconsistent views 
among users. As communication delay increases, the probability 
of conflicts between operations does as much. Therefore, 
concurrency control is required to maintain synchronization 
among replicas. Approaches to concurrency control have been 
broadly categorized into pessimistic, optimistic and prediction 
scheme [25]. 
The pessimistic scheme blocks a user until a lock request for an 
object is granted and then allows him to manipulate the object. It 
is simple and guarantees absolute consistency. However, when 
communication delay becomes high due to increase of the number 
of users, they suffer from the long response time, which in turn 
deteriorates the interactive performance. 
The optimistic scheme allows users to update objects without 
conflict checks with others and thus to interact with objects more 
naturally. However, when conflicts occur, a repair must be done. 
This not only makes systems complex but also perplexes users 
with undoing and redoing of previous actions on user interfaces. 
The prediction based concurrency control is to allow users to lie 
in the optimistic scheme as well as to eliminate the need for 
repairs like the pessimistic scheme to support real time interaction. 
The owner of an object predicts the next owner before users 
request ownership of the object based on the position, orientation, 
and navigation speed of the users. The key to the prediction based 
concurrency control is to accurately predict a correct one among 
several users requesting an ownership and grant the ownership to 
it in time. 

2.4 Data Replication 
For supporting real time interaction in DVEs, it is common to 
replicate virtual world data from the server at the client. Each 
client then updates its replicated data by local changes or 
notification of remote changes. As the size of the virtual world 
increases, it becomes significant transmission overhead increasing 
initial download delay of the virtual world data, especially when 
to replicate a whole virtual world to the client. To reduce the 
overhead, several on-demand transmission (partial-replication) 
techniques are devised [3,5]. In these techniques, instead of 
downloading the whole virtual world objects into the clients’ 
machines, copied are only objects that the user needs [17]. A key 
aspect in partial replication is how to efficiently replicate the 
required data lest that user’s immersion in virtual world be 
disturbed for the loss of data. For efficient replication, two 



schemes are used together in general – prioritized transfer of 
objects, and a caching and prefetching techniques [19]. 

3. ATLAS 
In this section, we describe how each scalability issue discussed 
in the previous section has been dealt in ATLAS and its detailed 
architecture. 

3.1 Scalability Support 
3.1.1 Communication Architecture 
ATLAS supports the peer/server model as a primary 
communication architecture. A server joins several multicast 
addresses assigned to regions and maintains the membership of 
users and the states of a virtual world. Each participant multicasts 
its update messages directly to other participants in its region and 
its neighboring regions as well. ATLAS also supports the 
client/server model for versatility. This model is useful when 
web-based DVE applications and multicast is not available. 

3.1.2 Interest Management 
We assume that a whole virtual world is divided into several 
logical regions and that each participant can communicate with 
other participants in a region to which he belongs and those in 
neighboring regions. We support the interest management scheme 
based on user interests and spatial distance [10]. We leverage 
human heuristic such that, for instance, in a virtual shopping mall, 
users often tend to move to and crowd specific places with their 
own interests and to interact with those who have similar interests. 
In our interest group based filtering scheme, the users of the same 
interests dynamically form a group when they get close. Each 
user in the group multicasts update messages to the rest of the 
group whenever he moves or interact with the world. On the other 
hand, when the group is included or collided with the interest area 
of a user who is not a member of the group, that is, not sharing the 
same interests, the representative of the group sends the 
aggregated update information of the group with low frequency to 
the user. It can enhance the interactive performance as the number 
of users in DVE increases and crowds in a specific place. 
We also support inter-region interactions with a more scalable 
manner [16]. While a few systems [1,2,18] support inter-region 
interactions, users have to pay the price: they must be always 
informed of the status of all the users in neighboring regions some 
of whom they are not interested in. This imposes communications 
overhead on the users who wish to pursue interactions with other 
users across regions and thus makes the system less scalable. The 
region manager selects only a subset of users from the 
neighboring region whose members have high possibility of 
interaction with users in the current region. This subset of users 
forms another multicast group. This enables users in the region 
not to receive all the update messages from the neighboring 
region. They receive the update messages regarding only the users 
in whom they are interested in the neighboring region. 

3.1.3 Concurrency Control 
The prediction based concurrency control is to allow users to lie 
in the optimistic scheme as well as to eliminate the need for 
repairs like the pessimistic scheme to support real time interaction. 
It is suitable to allow real time interactions for users. In the 
existing approach [21], users wishing to obtain an ownership 

multicast the ownership requests with their predicted collision 
time to all the potential owners for distributed control. The owner 
of an object collects only the requests sent to it and performs 
prediction for determining the next owner based on the predicted 
collision times. However, as the number of users and objects in a 
virtual world increases, the owners and the network may become 
overwhelmed. This causes the owner to fail to transfer the 
ownership to the next owner in time because of the delayed 
request processing time. 
We developed the entity-centric prediction based concurrency 
control scheme [25] that satisfies the needs for scalability in terms 
of interactive performance as the number of users increases. Only 
the users surrounding a target entity multicast the ownership 
requests by using the multicast group address assigned to the 
entity. The number of messages per owner decreases drastically 
since the owner receives only from users joining the entity 
multicast group instead of from all users in the same region. This 
reduces network bandwidth consumption. Therefore, an owner 
makes prediction with the reduced number of messages, which, in 
turn, results in a short request processing time. It allows the owner 
to determine the next owner and pass the ownership in time. 
Our scheme improves performance by grouping closely gathered 
entities into one entity group and sharing a multicast address 
among group member entities [13]. This reduces the number of 
frequent join and leave operations, and maintains enough 
interactive performance. Another enhancement supports users 
with various navigation speeds [14]. It allows as many Entity 
Radii as the number of different speed and allocates a separate 
queue for users of each speed. Each queue is examined in parallel 
to predict the next owner candidate and among the selected 
candidates is chosen the final candidate, which contributes to the 
timely advanced transfer of ownership by using appropriate Entity 
Radius based on a user’s speed. 

3.1.4 Data Replication 
Several data replication schemes [3,5] using partial replication do 
not handle a scalability problem efficiently. The spatial 
relationship used in the existing approaches just guesses the user’s 
behavior from proximity between the user and objects. This 
makes it difficult to determine which types of objects are more 
important to an individual user, not reflecting the user’s interests 
– a significant factor affecting the user’s behavior. Since the 
diverse types of objects become existent as the number of objects 
in a virtual world increases, it is more difficult to correctly predict 
the user’s behavioral pattern according to the types of objects. 
For efficient data management of a virtual world, we have 
proposed a scheme using user-based caching and prefetching 
exploiting the object’s access priority generated from spatial 
distance and individual user’s interest in objects in DVEs [19]. 
The scheme leverages the locality obtained from interactions 
between a user and objects during user’s navigation in a virtual 
world, so called “user-based” data management. We assume that 
the behavioral pattern of a user is explained using the user’s 
interest in objects in the world. To incorporate the user’s interest 
into the access priority of objects, we leverage the fact that a user 
tends to repeatedly visit objects interesting to it or highly popular 
objects likely attracting it. To enumerate the level of interest and 
popularity of an object, we introduce two values, interest score 
and popularity score of an object, respectively. The interest score 
of an object is set per user and represents how much the user 



expresses its interest to the object. The popularity score of an 
object is set per world and represents how many people in the 
world express their interest to the object. By combining these two 
values with the spatial relationship, we improve the performance 
of caching and prefetching since the interaction locality between 
the user and objects are reflected in addition to spatial locality. 
Interest and popularity scores are determined by the number of 
access times for a given object. For further improvement of cache 
hit rate, we incorporate user’s navigation behavior into the spatial 
relationship between a user and the objects in the cache. We 
observe that a user usually alternates a navigation mode between 
wandering and moving. An object residing at user’s moving 
direction should have the same priority as an object residing at the 
opposite side of the user’s moving direction in case of a 
wandering mode since it implies the possibility of rapid rotation. 
Apparently the former object should have higher priority than the 
latter object in case of a moving mode. This provides more 

accurate information for caching and prefetching.  

3.2 System Architecture 
ATLAS provides modules for server and peer parts as illustrated 
in Figure 1. Each part consists of several major modules such as 
communication manager, event manager, session manager, and 
region manager. The communication manager is used for 
communication channel management. With selective 
communication types, ATLAS can be organized as the 
client/server model or the peer/server model. The event manager 
mediates messages between local events sent to remote peer and 
remote events processed by proper manager modules. The session 
manager manages membership in a session and the region 
managers in it. The region manager has a role of keeping a 
consistent state in a logical region.  

3.2.1 ATLAS Events 
Peers or servers communicate with each other via ATLAS events. 
There are six types of an event: session event, region event, data 
event, interest event, concurrency event, and dummy event. Each 
event type has its own purpose. For instance, a session event is 

defined for session-related events such as user-login and logout. 
The type of an event also implies which modules will handle the 
event. For instance, a session event is processed in the session 
manager. Each event type has several different event IDs 
depending on the purpose of the event. For instance, interest event 
has more than ten event IDs such as USER_MOVED, 
USER_LEAVED, etc. Each event class provides the interfaces for 
marshalling or unmarshalling the message. The event manager 
dispatches events to a proper handler. The detailed information on 
each event type is described in [15]. 

3.2.2 Communication Manager 
The communication manager is responsible for creation and 
deletion of communication channels, and message transmission. 
For channel management, the manager owns a channel list which 
holds channels currently being open. It supports polling and 
threaded socket group to receive incoming messages. To send 
outgoing messages, the communication manager provides several 
communication methods such as unicast, multicast, and broadcast. 
Since we abstract a raw socket interface to facilitate easy 
communication channel management, it is possible to extend 
ATLAS basic socket classes for providing various communication 
protocols such as reliable multicast. In addition, the 
communication manager strictly handles communication 
exceptions to provide robust and stable communication channels. 

3.2.3 Event Manager 
The event manager mediates events between the communication 
manager and high-level components, such as the session manager, 
the region manager, the interest manager, the concurrency 
manager and the data distribution manager. It extracts the event 
information from the message delivered by the communication 
manager. It then checks the type and event ID field of the event to 
find an appropriate handler. The event is delivered to the chosen 
handler which has been registered to the event manager to handle 
the event. The structure of the event manager is illustrated in 

Figure 2. 

Figure 1. ATLAS architecture. 
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Figure 2. Structure of the event manager.

All the ATLAS managers inherit CAtlasHandler class to receive 
and process events from the event manager or other components. 
A manager that wishes to receive specific type of events must 
register its reference to the components from which the manager 
is to receive events. The event manager has another role of 
meditating outgoing event to other remote peers or server. High-
level managers such as the session and region managers send 
their events via the event manager. Then it selects channels 



corresponding to the destinations of the events and passes them to 
the communication manager. 

3.2.4 Session Manager 
A session in ATLAS implies a basic unit which is an independent 
virtual world. The session manager provides users with the 
interfaces for entering or leaving its virtual world and 
membership management, and defines specific rules applied to 
the session. Since we assume that a virtual world is divided into 
several logical regions, the session manager holds the references 
to the region managers that manage logical regions. It inherits 
CAtlasHandler class in order to handle incoming events and to 
send session specific events to remote peers or server. 
ATLAS also supports multiple sessions. For dynamic 
management of sessions, the multi-session manager holding 
reference list of session managers provides users with the 
interfaces for initiation, termination, selection, join, leave, 
creation and deletion of sessions. To enter a virtual world, users 
query the multi-session manager about information on available 
sessions, and select a session among several sessions maintained 
by the ATLAS server. Receiving a login request from a user, the 
session manager verifies the user with his/her name and password. 
It then informs the user of regions in it, among which the user 
enters a default region. After receiving information on other users 
and objects in the region, the user can interact with them. 

3.2.5 Region Manager 
The region manager plays a major role of keeping a consistent 
state or view among users who participate in a virtual world. For 
this, it keeps track of all states information including dynamic 

objects and users in a region or partial information of neighboring 
regions. Figure 3 illustrates a basic structure and event flows in 
the region manager. 
The region manager has modules each of which contributes to the 
scalability described in Section 3.1: concurrency manager, 
interest manager, and data manager. 
The concurrency manager resolves conflicts of concurrent access 
to an object in a region. It provides users with the entity-centric 
prediction based scheme [25] and the optimistic scheme as well as 
the simple locking based scheme. Whenever an object moves or a 
user wishes to manipulate an object, the concurrency manager 

can adopt the registered scheme as its concurrency control 
mechanism. 
The interest manager manages users’ interest in other users and 
objects and keeps track of information on the users who 
participate in a region and its neighboring regions. Whenever a 
user’s state changes, the interest manager updates the user table. 
It provides several filtering mechanisms including not only the 
basic region-based filtering but also the inter-region interaction 
scheme [16] and the user interest group-based filtering scheme 
[10]. Whenever a user moves in a region, the interest manager 
selects an appropriate destination according to the specific interest 
management scheme, which prevents unnecessary event from 
being propagated to other users who are not interested in the event. 
When a user joins a region, the data manager in the server sends 
him the region state information including user and dynamic 
object states to make the system consistent. It then notifies other 
users in the region of the new user. The data manager 
incorporates the mechanism described in 3.1.4. 

4. INTEGRATION EXPERIENCES 
In this section, we describe our experiences that we have obtained 
from the integration of ATLAS with various applications.  
ATLAS is designed to provide a network framework for DVE 
applications. While ATLAS provides no graphics and UI support, 
it does a veneer layer which intermediates between ATLAS and 
applications based on various graphics and UI models. The veneer 
layer mainly performs transformation between application events 
and ATLAS events. It also provides applications with a set of 
interfaces for interaction with ATLAS.  
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ATLAS is implemented in C++ and Java. It has a set of classes, 
and the detailed implementation of the classes is described in [15]. 

4.1 ATLAS + Kitten 
Kitten [12], developed by VR lab at KAIST, is a graphic library 
to implement a single user virtual reality system. It consists of a 
rendering module, a simulator module, and a user interface 
module each of which runs as an independent thread. We 
integrated ATLAS with Kitten for a collaborative engineering 
application. Integration is done with help of the intermediate 
veneer layer composed of ATLAS-Kitten Integrator and ATLAS 
Stub. Figure 4 shows the integration architecture. 



The application is designed to enable users to visualize large 
CAD data and manipulate it for discussion on design decisions. It 
is built on the peer/server model and implemented in C++. A 
server performs user membership management and conflict 
resolution. For conflict resolution, the system adopts a simple 
lock based concurrency control scheme that is suitable for 
detailed and correct manipulation of CAD visualization data. 
Figure 5 is a capture image of the application.  

4.2 ATLAS + Virtual Playground 
Virtual Playground (VP) [22], developed by Human Interface 
Technology (HIT) laboratory at University of Washington, 
provides a shared virtual world that demonstrates how people 
learn, perform cooperative work, and engage in entertaining 
activity within 3D distributed virtual environments. It originally 
uses its own network modules which just provide primitive 
network functionality without any specific network management 
or filtering schemes. 
We integrated ATLAS with VP without modifying it. Instead, we 
just replace the network modules with ATLAS and place a veneer 
layer between the two. In the veneer layer, VP events and data 
types are converted to ATLAS events and vice versa. Figure 6 
shows the overall integration architecture. 

The veneer layer is composed of two lightweight modules. 
VPToAtlasAdapter plays a role of converting or mapping VP 
events, which need to share among participants, to ATLAS events. 
The mapped events are processed and filtered in ATLAS modules 
based on the event types. The filtered ones are then sent to the 

destination. AtlasToVPAdapter performs the opposite operations 
of VPToAtlasAdapter. 
VP is written in Java. We use a Java version of ATLAS to 
integrate the two systems and the client/server model is used as a 
communication architecture. The integrated system performs 
region-based filtering to reduce communication overhead. VP 
uses a portal concept to allow a user to move to other place. We 
assign a logical region to a specific place which is separated by 
the portal. Figure 7 shows a user navigating in the integrated 
system. 

Figure 5. Collaborative engineering application. 

Figure 7. Virtual Playground on ATLAS. 

4.3 ATLAS + X3D Browser  
ETRI/ICU Virtual shopping mall [11] (web site: 
http://cds.icu.ac.kr/VS/index.htm) is a web-based application 
which uses ATLAS as a communication infrastructure and RTV 
X3D viewer [20] as a browser. 
Based on the client-server model, the application consists of an 
ATLAS server, a Web server, and clients. The ATLAS server 
manages not only a consistent state of a virtual world, but also 
concurrency control among users. The web server performs 
distribution of static virtual world data, avatar information, 
product information, and world rule information which describes 
dynamic objects in a virtual world. 
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Communication Manager

Virtual Playground

Scene Manager

VPMessage Manager

Other Managers

VPToAtlasAdaptor AtlasToVPAdaptor

A client, written in Java, is composed of an ATLAS client module 
and a RTV X3D browser. Communication and event passing 
between an ATLAS client and an X3D browser is done using EAI 
[4] and the extended interfaces of the browser. Figure 8 shows the 
architecture of the web-based virtual shopping mall system. 
To enter a virtual shopping mall, users first connect to the web 
server, and download an applet and a X3D browser to set up a 
user interface. As a user selects a session and an avatar type 
which he/she is interested in, static world data and world rule 
information are downloaded from the web server in order to 
initialize the virtual world. Using the world rule information, an 
ATLAS client initializes dynamic objects and their properties 
obtained through EAI. To support late comers, the client 
downloads the current state information of dynamic objects from 
the ATLAS server and updates the virtual world. 

Figure 6. Integration architecture of 
ATLAS with Virtual Playground. 

To support scalability, the application applies the user interest 
group based filtering scheme [10] and the inter-region interaction 
scheme [16] as interest management described in Section 3. 
For real time interactive concurrency control, we use the 
optimistic scheme rather than the pessimistic one. Figure 9 shows 
a client view of the virtual shopping mall. 



5. CONCLUSION 
Scalability is one of important design issues in DVEs as users are 
geographically distributed and their number increases. In this 
paper, we have analyzed the scalability in terms of 
communication architecture, interest management, concurrent 
control, and data replication. We have proposed a network 
framework, ATLAS that supports scalable solutions based on our 
previous work in these four aspects. ATLAS provides a set of 
APIs in Java and C++ which suits various requirements of 
applications. To meet various application requirements, we 
support a peer/server model as well as a client/server model. To 
improve scalability, ATLAS allows a user to receive update 
messages from only others in whom he is interested instead of all 
users in the same and neighboring regions, which enhance the 
interactive performance. To resolve conflicts of concurrent 
updates of objects and grant an ownership to a right user in time, 
ATLAS provides a prediction-based concurrency control scheme 
in which the current owner of an object receives ownership 
requests only from users adjacent to the object not from all users 
in the same region. When replicating objects from server at local 
hosts, ATLAS reduces downloading time by caching and 
prefetching only objects in which users are interested in terms of 
proximity between users and objects and access priority of objects 
based on user’s behavior pattern. Successful integrations of 
ATLAS with several applications ensure its versatility. 
As the requirements of the users are diverse, it may require a 
DVE system to be dynamically extended or adapted to new 
services during runtime. We currently work on extending ATLAS 

for this, including resource discovery, resource monitoring, and 
dynamic world partitioning. 

Figure 8. System architecture of ETRI/ICU virtual 
shopping mall. 
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