
ATLAS – A Scalable Network Framework for Distributed
Virtual Environments

Dongman Lee, Mingyu Lim, Seunghyun Han
Information & Communications University

58-4 Hwaam-dong, Yusung-ku
Daejeon 305-732, Korea

+82-42-866-6163

{dlee, cats, dennis}@icu.ac.kr

ABSTRACT
A distributed virtual environment (DVE) is a software system that
allows users on a network to interact with each other by sharing a
common view of their states. As users are geographically
distributed over large networks like the Internet and the number
of users increases, scalability is a key aspect to consider for real-
time interaction. Various solutions have been proposed to
improve the scalability in DVE systems but they are either
focused on only specific aspects or customized to a target
application. In this paper, we classify the approaches for
improving scalability of DVE into four categories:
communication architecture, interest management, concurrency
control, and data replication. We then propose a scalable network
framework for DVEs, ATLAS. Incorporated with our various
scalable schemes, ATLAS meets the scalability of a system as a
whole. By providing system developers with a set of APIs as a
network infrastructure, ATLAS intends to support various
applications The integration experiences of ATLAS with several
virtual reality systems ensures the versatility of the proposed
solution.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – client/server, distributed applications.

General Terms
Design, Management.

Keywords
DVE, scalability, network framework.

1. INTRODUCTION
A distributed virtual environment (DVE) is a software system that
allows real-time interaction among geographically distributed
users by providing various levels of sharing in terms of space,
presence, time, etc [23]. A shared context among users is

achieved by sharing each user’s activities to the rest of users and
often enhanced by replicating the information at each user’s site.
However, as users are geographically distributed over large
networks like the Internet and the number of users increases,
scalability is a key aspect to consider for supporting real-time
interaction [17].
Various attempts have been made to improve scalability in DVEs.
A key design issue in them is to reduce message exchange as
much as possible in terms of number and size without harming the
shared context and interactive performance. A most typical
approach is filtering unnecessary messages by dividing a virtual
world into several regions [1,18] or localizing the area of interest
of users [2,7,9]. However, if the filtering is solely done by a
server, it burdens the server with a flood of messages and thus
increases network delay. To avoid this, peer/peer or peer/server
models are adopted with multicast support [1,2,9,18]. Another
way to reduce message exchange is to replicate virtual world data
at the client from the server. A key concern here is how to
efficiently reduce transmission delay of the virtual world data
[3,5]. However, replication requires synchronization among
replicas in the presence of multiple concurrent updates, which
eventually lead to inconsistent views among users. This results in
the need of concurrency control. It should provide acceptable
interactive performance and consistency [21]. In summary, key
considerations for scalability improvement in DVEs are interest
management, communication architecture, data replication, and
concurrency control.
Existing systems have proposed various solutions to the
scalability problem but their approaches are limited to specific
applications and/or do not cover all four aspects of scalability
considerations. NPSNET [18], which is primarily aimed to
military simulations, attempts to increase scalability not only by
using spatial filtering mechanism but also by adopting the peer-to-
peer communication architecture. However, it pays little
consideration on data replication or concurrency control schemes.
MASSIVE systems [2], which are designed for teleconferencing,
reduce communication overheads by leveraging spatial
relationship among participants or by providing aggregated group
of view. They also do not consider world data replication or
concurrency control mechanisms. Both approaches assume that a
whole world data is replicated at each client and a pessimistic
concurrency control is used. DIVE [9], which is designed to
support 3D teleconference, introduces the aura concept to support
natural user interaction and to reduce the communication cost,
and supports heterogeneous network requirements based on
DiveBone [6]. However, it overlooks scalable concurrency
control and data replication. PaRADE [21] is an exemplary

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CVE’02, September 30–October 2, 2002, Bonn, Germany.
Copyright 2002 ACM 1-58113-489-4/02/0009…$5.00.

system which attemps to improve interactive performance in
concurrency control by using a prediction-based scheme. It,
however, does not provide scalable message filtering and data
replication. QUICK [3] framework takes into account dynamic
objects distribution to participants without considering
concurrency control or interest management. Bamboo [24],
provides interfaces for device management, networking, graphical
user interface, and extensibility using callbacks to application
designer. It, however, delegates to application developers the
mechanisms for interest management, data replication, and
concurrency control.
Advances in network and 3D graphics technologies have led to
growing demands for various DVE applications such as virtual
community, collaborative engineering, network game, and so on.
In this paper, we propose a scalable network framework for DVEs,
ATLAS. It provides various scalable schemes in all four
scalability aspects described above, not restricted to specific ones.
For meeting various DVE application requirements, these
schemes are provided to system developers as APIs. Intending to
support various applications, ATLAS introduces an intermediate
layer playing a role of routing and transforming messages
between ATLAS and applications. We have succeeded to
integrate ATLAS with several applications, which ensures the
versatility of the proposed solution.
The rest of the paper is organized as follows. In section 2, we
discuss four scalability considerations in large DVE systems.
Section 3 introduces the proposed network framework for DVEs,
ATLAS, and its internal modules in detail. Section 4 illustrates
our integration experiences of ATLAS with various applications.
Conclusion with future work follows in Section 5.

2. SCALABILITY CONSIDERATIONS
In this section, we discuss the four key design issues that should
be considered for scalability of DVEs.

2.1 Communication Architecture
Since a DVE provides users with a shared context by exchanging
their states with each other, how to reduce communication
overhead is a key design consideration. Depending on how the
communication is coordinated, the communication architecture
can be characterized as follows: client/server model, peer/peer
model, and peer/server model.
In the client/server model, all the messages are sent to a server
and then the server distributes them to all or some of users
according to synchronization requirements. Apparently it is not
scalable as the number of participants in a virtual world increases
since the server becomes a bottleneck. Even if additional servers
are used [7], the delay due to additional communication overhead
in servers is inevitable. To avoid this, the peer/peer model is
introduced. It allows users to directly exchange messages.
However, each user has to assume all the responsibility of
message filtering and synchronization. The peer/server model
exploits the benefits of two models described above such that
consistency management is done by a server and communication
among users is performed directly by themselves using multicast.

2.2 Interest Management
Though the computing powers and rendering speed are rapidly
increasing, network resources still remain very expensive
compared with computational resources. To overcome the

limitations of the network resources, various relevance-filtering
mechanisms should be considered. Since users need not receive
all update messages related to the whole world, they instead
receive only messages which they are interested in [8,23]. The
interest management is divided into two methods according to the
fidelity of capability of message filtering: dividing a virtual world
into several regions and localizing the area of interest of the
participants [16].

2.3 Concurrency Control
Shared information in DVEs is often replicated at each user’s site
to provide acceptable interactive performance, especially where
users are geographically distributed over large networks like the
Internet. Replication enables users to locally access and update
the data. On the other hand, the cost of replication is to maintain
synchronization among replicas in the presence of multiple
concurrent updates, which eventually lead to inconsistent views
among users. As communication delay increases, the probability
of conflicts between operations does as much. Therefore,
concurrency control is required to maintain synchronization
among replicas. Approaches to concurrency control have been
broadly categorized into pessimistic, optimistic and prediction
scheme [25].
The pessimistic scheme blocks a user until a lock request for an
object is granted and then allows him to manipulate the object. It
is simple and guarantees absolute consistency. However, when
communication delay becomes high due to increase of the number
of users, they suffer from the long response time, which in turn
deteriorates the interactive performance.
The optimistic scheme allows users to update objects without
conflict checks with others and thus to interact with objects more
naturally. However, when conflicts occur, a repair must be done.
This not only makes systems complex but also perplexes users
with undoing and redoing of previous actions on user interfaces.
The prediction based concurrency control is to allow users to lie
in the optimistic scheme as well as to eliminate the need for
repairs like the pessimistic scheme to support real time interaction.
The owner of an object predicts the next owner before users
request ownership of the object based on the position, orientation,
and navigation speed of the users. The key to the prediction based
concurrency control is to accurately predict a correct one among
several users requesting an ownership and grant the ownership to
it in time.

2.4 Data Replication
For supporting real time interaction in DVEs, it is common to
replicate virtual world data from the server at the client. Each
client then updates its replicated data by local changes or
notification of remote changes. As the size of the virtual world
increases, it becomes significant transmission overhead increasing
initial download delay of the virtual world data, especially when
to replicate a whole virtual world to the client. To reduce the
overhead, several on-demand transmission (partial-replication)
techniques are devised [3,5]. In these techniques, instead of
downloading the whole virtual world objects into the clients’
machines, copied are only objects that the user needs [17]. A key
aspect in partial replication is how to efficiently replicate the
required data lest that user’s immersion in virtual world be
disturbed for the loss of data. For efficient replication, two

schemes are used together in general – prioritized transfer of
objects, and a caching and prefetching techniques [19].

3. ATLAS
In this section, we describe how each scalability issue discussed
in the previous section has been dealt in ATLAS and its detailed
architecture.

3.1 Scalability Support
3.1.1 Communication Architecture
ATLAS supports the peer/server model as a primary
communication architecture. A server joins several multicast
addresses assigned to regions and maintains the membership of
users and the states of a virtual world. Each participant multicasts
its update messages directly to other participants in its region and
its neighboring regions as well. ATLAS also supports the
client/server model for versatility. This model is useful when
web-based DVE applications and multicast is not available.

3.1.2 Interest Management
We assume that a whole virtual world is divided into several
logical regions and that each participant can communicate with
other participants in a region to which he belongs and those in
neighboring regions. We support the interest management scheme
based on user interests and spatial distance [10]. We leverage
human heuristic such that, for instance, in a virtual shopping mall,
users often tend to move to and crowd specific places with their
own interests and to interact with those who have similar interests.
In our interest group based filtering scheme, the users of the same
interests dynamically form a group when they get close. Each
user in the group multicasts update messages to the rest of the
group whenever he moves or interact with the world. On the other
hand, when the group is included or collided with the interest area
of a user who is not a member of the group, that is, not sharing the
same interests, the representative of the group sends the
aggregated update information of the group with low frequency to
the user. It can enhance the interactive performance as the number
of users in DVE increases and crowds in a specific place.
We also support inter-region interactions with a more scalable
manner [16]. While a few systems [1,2,18] support inter-region
interactions, users have to pay the price: they must be always
informed of the status of all the users in neighboring regions some
of whom they are not interested in. This imposes communications
overhead on the users who wish to pursue interactions with other
users across regions and thus makes the system less scalable. The
region manager selects only a subset of users from the
neighboring region whose members have high possibility of
interaction with users in the current region. This subset of users
forms another multicast group. This enables users in the region
not to receive all the update messages from the neighboring
region. They receive the update messages regarding only the users
in whom they are interested in the neighboring region.

3.1.3 Concurrency Control
The prediction based concurrency control is to allow users to lie
in the optimistic scheme as well as to eliminate the need for
repairs like the pessimistic scheme to support real time interaction.
It is suitable to allow real time interactions for users. In the
existing approach [21], users wishing to obtain an ownership

multicast the ownership requests with their predicted collision
time to all the potential owners for distributed control. The owner
of an object collects only the requests sent to it and performs
prediction for determining the next owner based on the predicted
collision times. However, as the number of users and objects in a
virtual world increases, the owners and the network may become
overwhelmed. This causes the owner to fail to transfer the
ownership to the next owner in time because of the delayed
request processing time.
We developed the entity-centric prediction based concurrency
control scheme [25] that satisfies the needs for scalability in terms
of interactive performance as the number of users increases. Only
the users surrounding a target entity multicast the ownership
requests by using the multicast group address assigned to the
entity. The number of messages per owner decreases drastically
since the owner receives only from users joining the entity
multicast group instead of from all users in the same region. This
reduces network bandwidth consumption. Therefore, an owner
makes prediction with the reduced number of messages, which, in
turn, results in a short request processing time. It allows the owner
to determine the next owner and pass the ownership in time.
Our scheme improves performance by grouping closely gathered
entities into one entity group and sharing a multicast address
among group member entities [13]. This reduces the number of
frequent join and leave operations, and maintains enough
interactive performance. Another enhancement supports users
with various navigation speeds [14]. It allows as many Entity
Radii as the number of different speed and allocates a separate
queue for users of each speed. Each queue is examined in parallel
to predict the next owner candidate and among the selected
candidates is chosen the final candidate, which contributes to the
timely advanced transfer of ownership by using appropriate Entity
Radius based on a user’s speed.

3.1.4 Data Replication
Several data replication schemes [3,5] using partial replication do
not handle a scalability problem efficiently. The spatial
relationship used in the existing approaches just guesses the user’s
behavior from proximity between the user and objects. This
makes it difficult to determine which types of objects are more
important to an individual user, not reflecting the user’s interests
– a significant factor affecting the user’s behavior. Since the
diverse types of objects become existent as the number of objects
in a virtual world increases, it is more difficult to correctly predict
the user’s behavioral pattern according to the types of objects.
For efficient data management of a virtual world, we have
proposed a scheme using user-based caching and prefetching
exploiting the object’s access priority generated from spatial
distance and individual user’s interest in objects in DVEs [19].
The scheme leverages the locality obtained from interactions
between a user and objects during user’s navigation in a virtual
world, so called “user-based” data management. We assume that
the behavioral pattern of a user is explained using the user’s
interest in objects in the world. To incorporate the user’s interest
into the access priority of objects, we leverage the fact that a user
tends to repeatedly visit objects interesting to it or highly popular
objects likely attracting it. To enumerate the level of interest and
popularity of an object, we introduce two values, interest score
and popularity score of an object, respectively. The interest score
of an object is set per user and represents how much the user

expresses its interest to the object. The popularity score of an
object is set per world and represents how many people in the
world express their interest to the object. By combining these two
values with the spatial relationship, we improve the performance
of caching and prefetching since the interaction locality between
the user and objects are reflected in addition to spatial locality.
Interest and popularity scores are determined by the number of
access times for a given object. For further improvement of cache
hit rate, we incorporate user’s navigation behavior into the spatial
relationship between a user and the objects in the cache. We
observe that a user usually alternates a navigation mode between
wandering and moving. An object residing at user’s moving
direction should have the same priority as an object residing at the
opposite side of the user’s moving direction in case of a
wandering mode since it implies the possibility of rapid rotation.
Apparently the former object should have higher priority than the
latter object in case of a moving mode. This provides more

accurate information for caching and prefetching.

3.2 System Architecture
ATLAS provides modules for server and peer parts as illustrated
in Figure 1. Each part consists of several major modules such as
communication manager, event manager, session manager, and
region manager. The communication manager is used for
communication channel management. With selective
communication types, ATLAS can be organized as the
client/server model or the peer/server model. The event manager
mediates messages between local events sent to remote peer and
remote events processed by proper manager modules. The session
manager manages membership in a session and the region
managers in it. The region manager has a role of keeping a
consistent state in a logical region.

3.2.1 ATLAS Events
Peers or servers communicate with each other via ATLAS events.
There are six types of an event: session event, region event, data
event, interest event, concurrency event, and dummy event. Each
event type has its own purpose. For instance, a session event is

defined for session-related events such as user-login and logout.
The type of an event also implies which modules will handle the
event. For instance, a session event is processed in the session
manager. Each event type has several different event IDs
depending on the purpose of the event. For instance, interest event
has more than ten event IDs such as USER_MOVED,
USER_LEAVED, etc. Each event class provides the interfaces for
marshalling or unmarshalling the message. The event manager
dispatches events to a proper handler. The detailed information on
each event type is described in [15].

3.2.2 Communication Manager
The communication manager is responsible for creation and
deletion of communication channels, and message transmission.
For channel management, the manager owns a channel list which
holds channels currently being open. It supports polling and
threaded socket group to receive incoming messages. To send
outgoing messages, the communication manager provides several
communication methods such as unicast, multicast, and broadcast.
Since we abstract a raw socket interface to facilitate easy
communication channel management, it is possible to extend
ATLAS basic socket classes for providing various communication
protocols such as reliable multicast. In addition, the
communication manager strictly handles communication
exceptions to provide robust and stable communication channels.

3.2.3 Event Manager
The event manager mediates events between the communication
manager and high-level components, such as the session manager,
the region manager, the interest manager, the concurrency
manager and the data distribution manager. It extracts the event
information from the message delivered by the communication
manager. It then checks the type and event ID field of the event to
find an appropriate handler. The event is delivered to the chosen
handler which has been registered to the event manager to handle
the event. The structure of the event manager is illustrated in

Figure 2.

Figure 1. ATLAS architecture.

Multicast

one-to-one one-to-one

Session Management

Interaction Management

Network Management
Event Manager

Session Manager

Region Manager

Communication Manager

Server

TCP TCPMulticast

Event Manager

Session Manager

Region Manager

Communication Manager
TCP Multicast

Peer

Client Application

Event Manager

Session Manager

Region Manager

Communication Manager
TCPMulticast

Peer

Client Application

Event Manager

Handler idProcess events

CAtlasCommManager

CAtlasManager

CAtlasHandler

inherit

send event

register

Figure 2. Structure of the event manager.

All the ATLAS managers inherit CAtlasHandler class to receive
and process events from the event manager or other components.
A manager that wishes to receive specific type of events must
register its reference to the components from which the manager
is to receive events. The event manager has another role of
meditating outgoing event to other remote peers or server. High-
level managers such as the session and region managers send
their events via the event manager. Then it selects channels

corresponding to the destinations of the events and passes them to
the communication manager.

3.2.4 Session Manager
A session in ATLAS implies a basic unit which is an independent
virtual world. The session manager provides users with the
interfaces for entering or leaving its virtual world and
membership management, and defines specific rules applied to
the session. Since we assume that a virtual world is divided into
several logical regions, the session manager holds the references
to the region managers that manage logical regions. It inherits
CAtlasHandler class in order to handle incoming events and to
send session specific events to remote peers or server.
ATLAS also supports multiple sessions. For dynamic
management of sessions, the multi-session manager holding
reference list of session managers provides users with the
interfaces for initiation, termination, selection, join, leave,
creation and deletion of sessions. To enter a virtual world, users
query the multi-session manager about information on available
sessions, and select a session among several sessions maintained
by the ATLAS server. Receiving a login request from a user, the
session manager verifies the user with his/her name and password.
It then informs the user of regions in it, among which the user
enters a default region. After receiving information on other users
and objects in the region, the user can interact with them.

3.2.5 Region Manager
The region manager plays a major role of keeping a consistent
state or view among users who participate in a virtual world. For
this, it keeps track of all states information including dynamic

objects and users in a region or partial information of neighboring
regions. Figure 3 illustrates a basic structure and event flows in
the region manager.
The region manager has modules each of which contributes to the
scalability described in Section 3.1: concurrency manager,
interest manager, and data manager.
The concurrency manager resolves conflicts of concurrent access
to an object in a region. It provides users with the entity-centric
prediction based scheme [25] and the optimistic scheme as well as
the simple locking based scheme. Whenever an object moves or a
user wishes to manipulate an object, the concurrency manager

can adopt the registered scheme as its concurrency control
mechanism.
The interest manager manages users’ interest in other users and
objects and keeps track of information on the users who
participate in a region and its neighboring regions. Whenever a
user’s state changes, the interest manager updates the user table.
It provides several filtering mechanisms including not only the
basic region-based filtering but also the inter-region interaction
scheme [16] and the user interest group-based filtering scheme
[10]. Whenever a user moves in a region, the interest manager
selects an appropriate destination according to the specific interest
management scheme, which prevents unnecessary event from
being propagated to other users who are not interested in the event.
When a user joins a region, the data manager in the server sends
him the region state information including user and dynamic
object states to make the system consistent. It then notifies other
users in the region of the new user. The data manager
incorporates the mechanism described in 3.1.4.

4. INTEGRATION EXPERIENCES
In this section, we describe our experiences that we have obtained
from the integration of ATLAS with various applications.
ATLAS is designed to provide a network framework for DVE
applications. While ATLAS provides no graphics and UI support,
it does a veneer layer which intermediates between ATLAS and
applications based on various graphics and UI models. The veneer
layer mainly performs transformation between application events
and ATLAS events. It also provides applications with a set of
interfaces for interaction with ATLAS.

Concurrent Event

Region Manager

Concurrency Manager

Interest Manager

Data Manager

Update

Interest Event

Reference

Distribute changed
data & user Info.

Update
Reference Reference

User Moved

New User

User Table Object Table

Figure 3. Structure of the region manager. Figure 4. Integration architecture of ATLAS
with Kitten.

Kitten

ATLAS-Kitten
Integrator

ATLAS Stub

ATLAS

Kitten

ATLAS-Kitten
Integrator

ATLAS Stub

ATLAS

ATLAS is implemented in C++ and Java. It has a set of classes,
and the detailed implementation of the classes is described in [15].

4.1 ATLAS + Kitten
Kitten [12], developed by VR lab at KAIST, is a graphic library
to implement a single user virtual reality system. It consists of a
rendering module, a simulator module, and a user interface
module each of which runs as an independent thread. We
integrated ATLAS with Kitten for a collaborative engineering
application. Integration is done with help of the intermediate
veneer layer composed of ATLAS-Kitten Integrator and ATLAS
Stub. Figure 4 shows the integration architecture.

The application is designed to enable users to visualize large
CAD data and manipulate it for discussion on design decisions. It
is built on the peer/server model and implemented in C++. A
server performs user membership management and conflict
resolution. For conflict resolution, the system adopts a simple
lock based concurrency control scheme that is suitable for
detailed and correct manipulation of CAD visualization data.
Figure 5 is a capture image of the application.

4.2 ATLAS + Virtual Playground
Virtual Playground (VP) [22], developed by Human Interface
Technology (HIT) laboratory at University of Washington,
provides a shared virtual world that demonstrates how people
learn, perform cooperative work, and engage in entertaining
activity within 3D distributed virtual environments. It originally
uses its own network modules which just provide primitive
network functionality without any specific network management
or filtering schemes.
We integrated ATLAS with VP without modifying it. Instead, we
just replace the network modules with ATLAS and place a veneer
layer between the two. In the veneer layer, VP events and data
types are converted to ATLAS events and vice versa. Figure 6
shows the overall integration architecture.

The veneer layer is composed of two lightweight modules.
VPToAtlasAdapter plays a role of converting or mapping VP
events, which need to share among participants, to ATLAS events.
The mapped events are processed and filtered in ATLAS modules
based on the event types. The filtered ones are then sent to the

destination. AtlasToVPAdapter performs the opposite operations
of VPToAtlasAdapter.
VP is written in Java. We use a Java version of ATLAS to
integrate the two systems and the client/server model is used as a
communication architecture. The integrated system performs
region-based filtering to reduce communication overhead. VP
uses a portal concept to allow a user to move to other place. We
assign a logical region to a specific place which is separated by
the portal. Figure 7 shows a user navigating in the integrated
system.

Figure 5. Collaborative engineering application.

Figure 7. Virtual Playground on ATLAS.

4.3 ATLAS + X3D Browser
ETRI/ICU Virtual shopping mall [11] (web site:
http://cds.icu.ac.kr/VS/index.htm) is a web-based application
which uses ATLAS as a communication infrastructure and RTV
X3D viewer [20] as a browser.
Based on the client-server model, the application consists of an
ATLAS server, a Web server, and clients. The ATLAS server
manages not only a consistent state of a virtual world, but also
concurrency control among users. The web server performs
distribution of static virtual world data, avatar information,
product information, and world rule information which describes
dynamic objects in a virtual world.

ATLAS Peer

Network

Event Manager

Session Manager Region Manager

Communication Manager

Virtual Playground

Scene Manager

VPMessage Manager

Other Managers

VPToAtlasAdaptor AtlasToVPAdaptor

A client, written in Java, is composed of an ATLAS client module
and a RTV X3D browser. Communication and event passing
between an ATLAS client and an X3D browser is done using EAI
[4] and the extended interfaces of the browser. Figure 8 shows the
architecture of the web-based virtual shopping mall system.
To enter a virtual shopping mall, users first connect to the web
server, and download an applet and a X3D browser to set up a
user interface. As a user selects a session and an avatar type
which he/she is interested in, static world data and world rule
information are downloaded from the web server in order to
initialize the virtual world. Using the world rule information, an
ATLAS client initializes dynamic objects and their properties
obtained through EAI. To support late comers, the client
downloads the current state information of dynamic objects from
the ATLAS server and updates the virtual world.

Figure 6. Integration architecture of
ATLAS with Virtual Playground.

To support scalability, the application applies the user interest
group based filtering scheme [10] and the inter-region interaction
scheme [16] as interest management described in Section 3.
For real time interactive concurrency control, we use the
optimistic scheme rather than the pessimistic one. Figure 9 shows
a client view of the virtual shopping mall.

5. CONCLUSION
Scalability is one of important design issues in DVEs as users are
geographically distributed and their number increases. In this
paper, we have analyzed the scalability in terms of
communication architecture, interest management, concurrent
control, and data replication. We have proposed a network
framework, ATLAS that supports scalable solutions based on our
previous work in these four aspects. ATLAS provides a set of
APIs in Java and C++ which suits various requirements of
applications. To meet various application requirements, we
support a peer/server model as well as a client/server model. To
improve scalability, ATLAS allows a user to receive update
messages from only others in whom he is interested instead of all
users in the same and neighboring regions, which enhance the
interactive performance. To resolve conflicts of concurrent
updates of objects and grant an ownership to a right user in time,
ATLAS provides a prediction-based concurrency control scheme
in which the current owner of an object receives ownership
requests only from users adjacent to the object not from all users
in the same region. When replicating objects from server at local
hosts, ATLAS reduces downloading time by caching and
prefetching only objects in which users are interested in terms of
proximity between users and objects and access priority of objects
based on user’s behavior pattern. Successful integrations of
ATLAS with several applications ensure its versatility.
As the requirements of the users are diverse, it may require a
DVE system to be dynamically extended or adapted to new
services during runtime. We currently work on extending ATLAS

for this, including resource discovery, resource monitoring, and
dynamic world partitioning.

Figure 8. System architecture of ETRI/ICU virtual
shopping mall.

ATLAS VS Server

Event Manager

Session Manager Region Manager

Communication Manager

Web Browser

ATLAS Peer

X3D Browser

EAI & Extension

Web Browser

ATLAS Peer

X3D Browser

EAI & Extension

Web Server

Rule Description File

World
Information

Product
Information

6. ACKNOWLEDGMENTS
We would like to thank members of CDSN laboratory for their
work and comments during development of the system. We would
also like to thank K Wohn and HS Kim at KAIST, Tom Furness
and Bruce Campbell at HIT Lab, and BT Choi and HD Kim at
ETRI for their help with this work. This work was supported by
Virtual Reality Research Center of Korea Science and
Engineering Foundation and the National Research Laboratory
Program funded by Ministry of Science and Technology, the
Republic of Korea.

7. REFERENCES
[1] Barrus, J., Waters, R. and Anderson, D. Locales: Supporting

Large Multiuser Virtual Environments. IEEE Computer
Graphics and Applications, November 1996, 16(6):50-57.

[2] Benford, S. and Greenhalgh, C. Introducing Third Party
Objects into the Spatial Model of Interaction. European
Conference on Computer Supported Cooperative Work,
Lancaster, September 1997.

[3] Capps, M. The QUICK Framework for Task-Specific Asset
Prioritization in Distributed Virtual Environments. IEEE
Virtual Reality, March 2000, 143-150.

[4] Carey, R., Bell, G. and Marrin, C. ISO/IEC 14772-2:2001,
The Virtual Reality Modeling Language (VRML) - Part 2:
External authoring interface (EAI) see at
http://www.web3d.org/fs_specifications.htm. Figure 9. ETRI/ICU virtual shopping mall.

[5] Chim, J., Lau, R., Si, A., Leong, H., To, D., Green, M. and
Lam, M. Multi-Resolution Model Transmission in
Distributed Virtual Environment. ACM Symposium on
Virtual Reality Software and Technology, November 1998,
25-34.

[6] Frécon, E., Greenhalgh, C. and Stenius, M. The DiveBone-
An Application-Level Network Architecture for Internet-
Based CVEs. ACM Symposium on Virtual Reality Software
and Technology, University College London UK, December
1999.

[7] Funkhouser, T. RING: A Client-Server System for Multi-
User Virtual Environments. ACM SIGGRAPH Symposium
on Interactive 3D Graphics, Monterey California USA, April
1995, 85-92.

[8] Greenhalgh, C. and Benford, S. Boundaries, Awareness and
Interaction in Collaborative Virtual Environments. IEEE
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, Cambridge Massachusetts USA,
June 1997, 193-198.

[9] Hagsand, O. Interactive Multiuser VEs in the DIVE system.
IEEE Multimedia, Spring 1996, 30-39.

[10] Han, S., Lim, M. and Lee, D. Scalable Interest Management
Using Interest Group based Filtering for Large Networked
Virtual Environments. ACM Symposium on Virtual Reality
Software and Technology, Korea, October 2000, 103-108.

[11] Han, S., Lim, M., Lee, E. and Lee, D. A Scalable Network
Support for Internet-based 3D Virtual Shopping Mall.
HCI’02, Phoenix Park, Korea, February 2002.

[12] Kitten for PC.
http://vr.kaist.ac.kr/project1.htm.

[13] Lee, D., Yang, J. and Hyun, S.J. Scalable Predictive
Concurrency Control for Large Distributed Virtual
Environments with Densely Populated Objects. ACM
Symposium on Virtual Reality Software and Technology,
Korea, October 2000, 109-114.

[14] Lee, E., Lee. D., Han, S. and Hyun, S.J. Prediction-based
Concurrency Control for A Large Scale Networked Virtual
Environment Supporting Various Navigation Speeds. ACM
Symposium on Virtual Reality Software and Technology,
Canada, November 2001, 227-232.

[15] Lim, M., Han, S., and Lee, D., ATLAS – Internal
Specification. Project Report, 2001.
http://cds.icu.ac.kr/research/area/dve.

[16] Lim, M. and Lee, D. Improving Scalability Using Sub-
Regions in Distributed Virtual Environments. International
Conference on Artificial Reality and Telexistence, Tokyo
Japan, December 1999, 179-184.

[17] Macedonia. M. and Zyda, M. A Taxonomy for Networked
Virtual Environments. IEEE Multimedia, January-March
1997, 4(1):48-56.

[18] Macedonia, M., Zyda, M., Pratt, D., Brutzman, D. and
Barham, P. Exploiting Reality with Multicast Groups. IEEE
Computer Graphics and Applications, September 1995, 38-
45.

[19] Park, S., Lee, D., Lim, M. and Yu, C. Scalable Data
Management Using User-Based Caching and Prefetching in
Distributed Virtual Environments. ACM Symposium on
Virtual Reality Software and Technology, Canada,
November 2001, 221-226.

[20] Real Time Visual Company.
http://www.realtimevisual.com.

[21] Roberts, D. and Sharkey, P. Maximising Concurrency and
Scalability in a Consistent, Causal, Distributed Virtual
Reality System, Whilst Minimising the Effect of Network
Delays. IEEE Workshops on Enabling Technology:
Infrastructure for Collaborative Enterprise, 1997, 161-166.

[22] Schwartz, P., Bricker, L., Campbell, B., Furness, T., Inkpen,
K., Matheson, L., Nakamura, N., Shen, L., Tanney, S. and
Yeh, S. Virtual Playground: Architectures for a Shared
Virtual World. ACM Symposium on Virtual Reality
Software and Technology, Taipei Taiwan, November 1998,
43-50.

[23] Singhal, S. and Zyda, M. Networked Virtual Environments
Design and Implementation. Addison Wesley, July 1999.

[24] Watsen, K. and Zyda, M. Bamboo-A Portable System for
Dynamically Extensible, Real-time, Networked, Virtual
Environments. Virtual Reality Annual International
Symposium, Atlanta Georgia, 1998, 252-259.

[25] Yang, J. and Lee, D. Scalable Prediction Based Concurrency
Control for Distributed Virtual Environments. IEEE Virtual
Reality 2000, New Brunswick NJ USA, March 2000, 151-
158.

