
Implications of Classical Scheduling Results For

Real�Time Systems�

John A� Stankovic� Marco Spuri� Marco Di Natale� and
Giorgio Buttazzoy

Scuola Superiore �S�Anna�
via Carducci� �� � �	
�� Pisa �Italy�

June 
�� 
���

Abstract

Important classical scheduling theory results for real�time computing are identi�ed� Im�

plications of these results from the perspective of a real�time systems designer are discussed�

Uni�processor and multiprocessor results are addressed as well as important issues such as

future release times� precedence constraints� shared resources� task value� overloads� static

versus dynamic scheduling� preemption versus non�preemption� multiprocessing anomalies�

and metrics� Examples of what scheduling algorithms are used in actual applications are

given�

KEYWORDS� scheduling theory� real�time� uniprocessor scheduling�

multiprocessor scheduling

� Introduction

Every real�time systems designer should be familiar with a set of important classical scheduling
theory results� i�e�� those results largely taken from the literature in complexity theory and
operations research� While knowledge of these results rarely provides a direct solution for
the designer� the implications of the results provide important insight in choosing a good
design and scheduling algorithm for the system� and in avoiding very poor or even erroneous
choices� The literature in scheduling theory is so vast� that we make no pretense at being
comprehensive� In this paper� a minimum set of results� together with their implications�
is presented� For example� the scheduling theory results presented include� Jackson�s rule�
Smith�s rule� McNaughton�s theorem� Liu and Layland�s rate monotonic rule� Mok�s theorems�
and Richard�s anomalies� Besides learning what these important results are� we want the
reader to be able to answer� at least� the following questions�

�This work was done while the �rst author was on sabbatical from the Computer Science Dept� at the Univ�

of Massachusetts�
yThis work has been supported� in part� by NSF under grants IRI ������� and CDA �����	�� by ONR under

grant N���
�����J�
���� and by the IRI of Italy�

�



� what do we really know about earliest deadline scheduling�

� what is known about uni�processor real�time scheduling problems�

� what is known about multiprocessing real�time scheduling problems�

� what anomalous behavior can occur and can it be avoided�

� where is the boundary between polynomial and NP�hard scheduling problems�

� what task set characteristics cause NP�hardness�

� what type of bounds analysis is useful for real�time systems�

� what is the impact of overloads on the scheduling results�

� how does the metric used in the theory impact the usefulness of the result in a real�time
computing system� and

� what di�erent results exist for static and dynamic scheduling�

There are so many dimensions to the scheduling problem that there is no accepted tax�
onomy� In this paper we divide the scheduling theory between uni�processor 	section 
� and
multiprocessor 	section �� results� In the uni�processor section we begin with independent
tasks� then consider precedence constraints� shared resources� and overload� In the multipro�
cessor case� since most results address precedence and shared resources together� we divide the
work between static and dynamic algorithms�

� Preliminaries

Before presenting the major scheduling results a few basic concepts must be clearly understood�
Here we discuss the di�erences between static� dynamic� o��line and on�line scheduling as well
as various metrics and their implications� NP�complete and NP�hard� terms used throughout
the paper� are de
ned�

��� Static versus Dynamic Scheduling

Most classical scheduling theory deals with static scheduling� Static scheduling refers to the
fact that the scheduling algorithm has complete knowledge regarding the task set and its
constraints such as deadlines� computation times� precedence constraints� and future release
times� This set of assumptions is realistic for many real�time systems� For example� real�time
control of a simple laboratory experiment or a simple process control application might have a

xed set of sensors and actuators� and a well de
ned environment and processing requirements�
In these types of real�time systems� the static scheduling algorithm operates on this set of tasks
and produces a single schedule that is 
xed for all time� Sometimes there is confusion regarding
future release times� If all future release times are known when the algorithm is developing
the schedule then it is still a static algorithm�






In contrast� a dynamic scheduling algorithm 	in the context of this paper� has complete
knowledge of the currently active set of tasks� but new arrivals may occur in the future� not
known to the algorithm at the time it is scheduling the current set� The schedule therefore
changes over time� Dynamic scheduling is required for real�time systems such as teams of
robots cleaning up a chemical spill or in military command and control applications� As we
will see in this paper very few theoretical results are known about real�time dynamic scheduling
algorithms�

O��line scheduling is often equated to static scheduling� but this is wrong� In building
any real�time system� o��line scheduling 	analysis� should always be done regardless of whether
the 
nal runtime algorithm is static or dynamic� In many real�time systems� the designers
can identify the maximum set of tasks with their worst case assumptions and apply a static
scheduling algorithm to produce a static schedule� This schedule is then 
xed and used on�line
with well understood properties such as� given that all the assumptions remain true� all tasks
will meet the deadlines� In other cases� the o��line analysis might produce a static set of
priorities to use at run time� The schedule itself is not 
xed� but the priorities that drive the
schedule are 
xed� This is common in the rate monotonic approach 	to be discussed later��

If the real�time system is operating in a more dynamic environment� then it is not feasible
to meet the assumptions of static scheduling 	i�e�� everything is known a priori�� In this case an
algorithm is chosen and analyzed o��line for the expected dynamic environmental conditions�
Usually� less precise statements about the overall performance can be made� On�line� this same
dynamic algorithm executes�

Generally� a scheduling algorithm 	possibly with some modi
cations� can be applied to
static scheduling or dynamic scheduling and used o��line or on�line� The important di�erence
is what is known about the performance of the algorithm in each of these cases� As an example�
consider earliest deadline 
rst 	EDF� scheduling� When applied to static scheduling we know
that it is optimal in many situations 	to be enumerated below�� but when applied to dynamic
scheduling on multiprocessors it is not optimal� in fact� it is known that no algorithm can be
optimal�

��� Metrics

Classical scheduling theory typically uses metrics such as minimizing the sum of completion
times� minimizing the weighted sum of completion times� minimizing schedule length� minimiz�
ing the number of processors required� or minimizing the maximum lateness� In most cases�
deadlines are not even considered in these results� When deadlines are considered� they are
usually added as constraints� where� for example� one creates a minimum schedule length� sub�
ject to the constraint that all tasks must meet their respective deadline� If one or more tasks
miss their deadlines� then there is no feasible solution� Which of these classical metrics 	where
deadlines are not included as constraints� are of most interest to real�time systems designers�
The sum of completion times is generally not of interest because there is no direct assessment
of timing properties 	deadlines or periods�� However� the weighted sum is very important when
tasks have di�erent values that they impart to the system upon completion� Using value is
often overlooked in many real�time systems where the focus is simply on deadlines and not a
combination of value and deadline� Minimizing schedule length has secondary importance in
possibly helping minimize the resources required for a system� but does not directly address

�



the fact that individual tasks have deadlines� The same is true for minimizing the number of
processors required� Minimizing the maximum lateness metric can be useful at design time
where resources can be continually added until the maximum lateness is less than or equal to
zero� In this case no tasks miss their deadlines� On the other hand� the metric is not always
useful because minimizing the maximum lateness doesn�t necessarily prevent one� many� or
even ALL tasks from missing their deadlines� See Figure ��

T5T2 T3 T4

d1 d2 d3 d4 d5

T1

T5T2 T3 T4

d1 d2 d3 d4 d5

T1

maximum lateness

maximum lateness

The first schedule
minimizes the max.
lateness, but all 
tasks miss their 
deadline

The second schedule
has a greater max.
lateness, but four 
tasks out of five
complete before their
deadlines

Figure �� Minimizing Maximum Lateness Example

Rather than these above mentioned metrics much real�time computing work minimizes
the number of tasks that miss deadlines or looks for optimal algorithms de
ned in the following
manner� An optimal scheduling algorithm is one which may fail to meet a deadline only if no
other scheduling algorithm can� In this paper� all of the above metrics will be mentioned�
either because they are directly applicable to real�time systems� or to show where even though
a nice theoretical result exists� there is limited applicability to real�time systems�

Related to metrics is the complexity of the various scheduling problems themselves� As
we shall see� many scheduling results are NP�complete or NP�hard� NP is the class of all
decision problems that can be solved in polynomial time by a nondeterministic machine� A
recognition problem R is NP�complete if R � NP and all other problems inNP are polynomial
transformable to R� A recognition or optimization problem R is NP�hard if all problems in
NP are polynomial transformable to R� but we can�t show that R � NP �

� Uni�processor Systems

In general we follow the notation of ����� in which the problem de
nition has the form � j � j ��
where � indicates the machine environment 	in this section of the paper � � �� indicating
a uni�processor machine�� � indicates the job characteristics 	preemptable� nonpreemptable�
independent� precedence constrained� deadline� etc�� and � indicates the optimality criterion
	maximum lateness� total tardiness� etc��� Note that the optimality criterion depends on the
metric chosen� which strongly relies on the system objectives and the task model�

�



��� Preemption vs NonPreemption� Jackson�s Rule

Suppose there are n independent jobs 	the words job� process and task will be used inter�
changeably just as they are throughout the scheduling literature�� with each job j having a
processing time pj and a due date dj� For any given sequence of scheduling� each job will have a
de
ned completion time Cj too� Let us de
ne the lateness of a job j as Lj � Cj � dj� Suppose
we want to minimize the maximum lateness assuming the jobs are executed nonpreemptively�
that is we want to solve the problem

� j nopmtn j Lmax

where ��� stands for single machine� �nopmtn� stands for nonpreemption and the objective
function to minimize is

Lmax � max
j
fLjg�

A very simple solution to this problem� the earliest due date 	EDD� algorithm is as follows�

Theorem ��� �Jackson�s Rule ������ Any sequence is optimal that puts the jobs in order of
nondecreasing due dates� �

The proof of the theorem can be given by a simple interchange argument ����� but
presenting that argument here is beyond the scope of this paper� At 
rst� this result may not
seem too useful to a real�time systems designer because we often require that no task miss its
deadline� But� since this is a static scheduling algorithm and if the maximum lateness is greater
than zero� then the designer knows that he must increase the computing power of his system
to meet the requirements of missing no deadlines� Further� as we shall see� EDD is optimal in
many other situations also� Note that since all tasks are known and ready to execute at time
zero� preemption would not improve the situation�

If our real�time system requires a more sophisticated programming model� one of the

rst extensions to consider is the introduction of release times� We say that a job j has release
time rj if its execution cannot start before time rj� Unfortunately� the problem above extended
with release times� that is

� j nopmtn� rj j Lmax

is NP�hard �����
In this case we obtain a great bene
t if we permit jobs to be preempted at any instant�

In fact� the problem
� j pmtn� rj j Lmax

is easy� that is� an algorithm for its solution exists and has polynomial complexity� Again the
algorithm is based on the Jackson�s rule� slightly modi
ed in order to take the release times
into account�

Theorem ��� Any sequence that at any instant schedules the job with the earliest due date
among all the eligible jobs �i�e�	 those whose release time is less then or equal to the current
time� is optimal with respect to minimizing maximum lateness� �

�



The result again can be easily proven by an interchange argument� The proof obtained
in this way is very similar to the �time slice swapping� technique used in ��� and �
�� to show
the optimality of the earliest deadline 
rst 	EDF from now on� and the least laxity 
rst 	LLF�
algorithms� respectively�

One implication of these results is that when practical considerations do not prevent
us from using it� preemption usually gives greater bene
t than nonpreemption in terms of
scheduling complexity� Unfortunately� when we deal with shared resources in real�time systems
we have to address critical sections and one technique is to create nonpreemptable code� this
again creates an NP�hard problem�

Another implication of these theorems is that the minimization of maximum lateness
implies optimality even when all deadlines must be met� because the maximum lateness can
be required to be less than or equal to zero� In fact� the very well�known paper by Liu
and Layland �
�� focussed on this aspect of EDF scheduling for a set of independent periodic
processes� showing that a full processor utilization is always achievable and giving a very simple
necessary and su�cient condition for the schedulability of the tasks�

X

j

pj
Tj

� �

where Tj is the period of the task j�
The EDF algorithm has also been shown to be optimal under various stochastic condi�

tions� All of these results imply that EDF works well under many di�erent situations� Recently�
variations of EDF are being used in multimedia applications� robotics� and real�time databases�
Note� however� that in none of the above classical results for EDF is precedence constraints�
shared resources� or overloads taken into account� We address these aspects in subsequent
sections�

Another very important and common area for real�time scheduling is the scheduling of
periodic tasks� Here the rate monotonic algorithm is often used� This algorithm assigns to
each task a static priority inversely proportional to its period� i�e�� tasks with the shortest
periods get the highest priority� For a 
xed set of independent periodic tasks with deadlines
the same as the periods� we know�

Theorem ��� �Liu and Layland ����� A set of n independent periodic jobs can be scheduled
by the rate monotonic policy if

Pn
i�� pi�Ti � n � 	
��n � �� where Ti and pi are the period and

worst case execution time	 respectively�

For large n we obtain the utilization bound of ��� meaning that as long as the CPU
utilization is less than ��� all tasks will make their deadlines� This is often referred to as the
schedulability test� If deadlines of periodic tasks can be less than the period the above rule is
no longer optimal� Rather we must use a deadline monotonic policy �
�� where the periodic
process with the shortest deadline is assigned the highest priority� This scheme is optimal in
the sense that if any static priority scheme can schedule this set of periodic processes then the
deadline monotonic algorithm can� Note that deadline monotonic is not the same as pure EDF
scheduling because tasks may have di�erent periods and the assigned priorities are 
xed� The
rate monotonic algorithm has been extended in many ways the most important of which deals

�



with shared resources 	see Section ����� and schedulability tests have been formulated for the
deadline monotonic algorithm ����

The rate monotonic scheduling algorithm has been chosen for the Space Station Freedom
Project� the FAA Advanced Automation System 	AAS�� and has in�uenced the speci
cation
of the IEEE Futurebus�� The DoD�s ���� Software Technology Strategy says that the Rate
Monotonic Scheduling is a �major payo�� and �system designers can use this theory to predict
whether task deadlines will be met long before the costly implementation phase of a project
begins�� In ���
 the Acting Deputy Administrator of NASA stated� �Through the development
of Rate Monotonic Scheduling� we now have a system that will allow 	Space Station� Freedom�s
computers to budget their time� to choose between a variety of tasks� and decide not only which
one to do 
rst but how much time to spend in the process�� Rate monotonic is also useful for
simple applications� such as the real�time control of a simple experiment that might contain

� sensors whose data must be processed periodically� or a chemical plant that has a large
number of periodic tasks and a few alarms� These alarms can be treated as periodic tasks
whose minimum interarrival time is equal to its period� and then static scheduling� using the
rate monotonic algorithm� can be applied�

��� Precedence Constraints

In many systems of practical interest we do not expect tasks to be independent� but rather
cooperate to achieve the goal of the application� Cooperation among tasks is achieved by
various types of communication semantics� Depending on the chosen semantics� application
tasks experience precedence constraints or blocking� or both� while accessing shared resources�
A precedence relation among tasks makes the scheduling problem more complex� Since not all
tasks are ready to be scheduled at the same time� the simple EDF rule is no longer optimal�

In the following� precedence constraints will be expressed with the notation i � j� or
with their associated digraph G	V�E� where V is the set of tasks and E the set of edges� an
edge connecting tasks i�j if task i precedes task j�

The simple scheduling problem of a set of tasks with no�preemption� identical arrival
time and a precedence relation among them� described as�

� j prec� nopmtn j Lmax

was solved by Lawler ���� with an EDF�like algorithm that works backwards� starting from
the leaf tasks in the precedence graph�

The algorithm works as follows� the scheduling list is built starting from the bottom in
reverse topological order� and adding to the list on each step� the task having the minimum
value for the chosen metric and whose successors have been scheduled� Lawler�s algorithm is
optimal� and runs in O	n���

Lawler�s algorithm gives a solution for tasks having identical start time� Unfortunately�
this is not su�cient for all systems of practical interest where periodic tasks or dynamically
arising tasks do not have a common start time� The problem of non�preemptive scheduling
of jobs with di�erent release times and general precedence constraints is not a simple one� in
fact� the problem

� j nopmtn� ri j Lmax

�



and the corresponding

� j prec� nopmtn� ri j Lmax

were proven to be NP�hard by Lenstra �����
The NP hardness of the general precedence constrained problem is a major obstacle for

non�preemptive scheduling� in spite of the fact that optimal results or polynomial algorithms
exist for similar problems� where some of the general assumptions are constrained� For example�
a polynomial algorithm was found for unit computation time tasks and arbitrary precedence
constraints�

The most interesting results related to precedence constraints are those obtained working
on sub�classes of the general precedence relation� Polynomial algorithms have been found for
precedence relations in the form of intrees� that is when every task has no more than one
predecessor� or outtrees� when tasks have no more than one successor� or when the precedence
relation is a series�parallel graph� It is easy to show how the intree and outtree cases are
included in the more general class of series�parallel graphs� The series�parallel graph is the
most interesting subset of the general precedence relation for which optimality results have
been found� A series�parallel graph is de
ned recursively this way�

� G	fj�g��� is a series � parallel graph

� if G�	V�� A�� and G�	V�� A�� are series�parallel graphs than

G� � G� � 	V� � V�� A� � A� � 	V� � V��� and

G� jj G� � 	V� � V�� A� �A�� are series � parallel graphs

or alternatively� a graph is a series�parallel graph only if its transitive closure does not contain
the Z graph� A Z graph is a graph that contains as a subgraph � nodes f i�j�k�l g with only
the following edges

i� j� i� k� l� k�

Figure 
 graphically depicts intrees and outtrees 	series�parallel graphs� and a Z graph
	not a series parallel graph�� E�cient solutions exist for series�parallel graphs� but they do not
exist for a Z graph� Unfortunately� Z graphs arise in practice� Details on these results follow�

Theorem ��� �Lawler ����� Given any set of tasks related by a series
parallel precedence graph
an optimal solution exists for every cost function that admits a string interchange relation� �

Formally� a cost function has a string interchange relation if� given two strings of jobs �
and � and a quasi total order � among them� the following relation holds�

f	�� � f	��	 f	a������b�� f	a������b�

Intuitively� this formula means that a cost function admits a string interchange relation
when a lower value is obtained when individual tasks of lower value are scheduled 
rst� The
theorem says that if we are interested in minimizing or maximizing a cost function that admits a

�



Intree Outtree Z-graph

Figure 
� Precedence Relations

string interchange relation 	e�g�� minimizing lateness�� it is possible to 
nd an optimal schedule
in polynomial time for every set of tasks related by a series�parallel precedence graph�

The algorithm which solves this problem works with a decomposition tree� that is the
tree that shows how sub�graphs are connected by the series or parallel relation to form the
global precedence graph� The decomposition tree can be found in O	j N j � j A j� where N is
the number of nodes and A the number of edges� The algorithm starts from the tasks having
no successor in the decomposition tree� and� for every node� calculates a string sequence by
combining the strings of jobs coming from the sons� The 
nal node� representing the original
graph� is reached when the whole optimal scheduling list has been computed�

A common feature of this algorithm� as is also found in other similar algorithms from the
literature dealing with intrees or outtrees� is that they work on the precedence graph 	or on
the related decomposition tree�� starting from jobs with no successors or no predecessors� and
build a sequence of sub�optimal schedules� This technique can be useful in various scheduling
heuristics�

To what extent can Lawler�s optimal algorithm for series�parallel graphs� and even other
optimal algorithms which work only on intrees or outtrees� help us in real�time systems�
Unfortunately� some high level communication semantics found in programming languages�
give rise to precedence constrained jobs with Z graphs� meaning that these optimal algorithms
don�t apply and heuristics need to be used� One example of how a Z graph arises is a simple
pair of tasks linked by an asynchronous send with synchronous receive� See Figure �� Note
that remote procedure calls 	RPC� do not give rise to Z graphs�

If preemption is allowed� classical results go further in providing solutions for general
precedence constraints� Preemption reduces the complexity of the scheduling problem of prece�
dence related tasks with di�erent arrival times� The problem is� in fact� solvable in O	n�� by
Baker�s algorithm �
�

�



--
--
--
Asynch_Send(...)
--
--
--

--
--
--
Synch_Receive(...)
--
--
--

process A process B process A process B

message

Figure �� Program Example That Gives Rise to Z Graph

� j prec� pmtn� ri j Lmax�

Baker�s procedure is recursive and because of its computational complexity it seems
suited for o��line scheduling� Due to the di�culty of describing the algorithm and space
limitations� we do not describe the algorithm here� However� an important feature of the
algorithm is that the number of preemptions is limited to n�� where n is the number of jobs�
thus making the preemption overhead bounded� In all practical situations the scheduling and
preemption overheads must be bounded and taken into account� We rarely see this issue
addressed in classical scheduling theory�

In the above solutions� a scheduling list is explicitly created� Another technique is to
encode the precedence relations into the parameters used by the scheduling algorithm� for
example� into deadlines and release times�

Blazewicz ��� shows how to adjust deadlines so that precedence constraints are encoded
in the deadlines a priori� and at run time you simply use EDF scheduling� His result comes
from the fact that task deadlines depend on their deadlines and successors� deadlines� while
task start times depend on their own start time and predecessors� start times� The theorem
assumes no shared resources among tasks�

Theorem ��� �Blazewicz ���� EDF is optimal for tasks that have a general precedence relation
and di�erent release dates if deadlines and start times are revised according to the following
formulas�

d�i � minfdi�min	d�j � pj �Si � Sj�g

starting from the tasks having no successor and processing on every step those tasks whose
successors have been processed

r�i � maxfri�max	r�j � pj�Sj � Si�g

��



starting from the tasks having no predecessor� �

This result allows us to transform a set of dependent tasks into a set of independent ones
obtaining an equivalent problem under the EDF policy� The optimality of the technique of the
revised deadlines and arrival dates has been used in both on�line ��� and o��line algorithms
�
���

Unfortunately� the optimality of this technique is again lost if tasks with precedence
constraints also share resources in an exclusive way� Moreover� if arbitrary protocols are
used to access shared resources� the revision of tasks� deadlines and release times is no longer
su�cient to guarantee the correct ordering of jobs without additional constraints� The general
problem of scheduling a set of tasks with precedence constraints and arbitrary resource con�icts
is NP�hard�

Some o��line algorithms face the NP hardness of the general problem trying to 
nd
acceptable solutions by means of heuristics� branch and bound techniques and so on� An
example is given by the algorithm by Xu and Parnas ��
� where on every step a sub�optimal
schedule is obtained� There are even examples of on�line systems driven by heuristics as the
Spring system �
�� where the scheduling list is built on�line�

��� Shared Resources

Shared resources are commonly used in multitasking applications� While in general purpose
systems this is a well�known problem solved� for example� with mutual exclusion primitives�
in real�time systems a straightforward application of this solution does not hold� De
ning a
run�time scheduler as totally on
line if it has no knowledge about the future arrival times of
the tasks� the following has been proven�

Theorem ��� �Mok ������ When there are mutual exclusion constraints	 it is impossible to

nd a totally on
line optimal run
time scheduler� �

The proof is simply given by an adversary argument� Furthermore� the same author
showed a much more negative result�

Theorem ��� �Mok ������ The problem of deciding whether it is possible to schedule a set of
periodic processes which use semaphores only to enforce mutual exclusion is NP
hard� �

A transformation of the ��partition problem to this scheduling problem is shown to prove
the theorem�

In Mok�s opinion �the reason for the NP�hardness of the above scheduling problem lies
in the possibility that there are mutually exclusive scheduling blocks which have di�erent
computation times�� A con
rmation of this point of view is that the problem of minimizing
the maximum lateness of n independent unit�time jobs with arbitrary release times� that is�

� j nopmtn� rj� pj � � j Lmax�

is easy ����� Moreover� if we add precedence constraints and we want to minimize the maximum
completion time 	makespan�� that is� we want to solve

� j nopmtn� prec� rj� pj � � j Cmax�

��



the problem is still easy ����� The algorithm that solves it makes use of forbidden regions�
intervals of time during which no task can start if the schedule is to be feasible� The idea is
that because of the nonpreemption� scheduling a task at a certain point in time could force
some other late task to miss its deadline�

At this point several choices are possible� One of them� followed by Mok� is to enforce the
use of mutually exclusive scheduling blocks having the same computation time� and another�
followed� for example� by Sha et al� �
�� and Baker �
�� is to e�ciently 
nd a suboptimal
solution with a clever allocation policy� guaranteeing at the same time a minimum level of
performance�

The former solution is called Kernelized Monitor� The key idea is to assign the processor
in time quantums of length q such that

q 
 max
i
fl	CSi�g�

where l	CSi� is the length of the i�th critical section� In other words the grain of the system is
made coarser� Furthermore� the ready times and the deadlines of the tasks can be previously
modi
ed according to some partial order on the tasks� Adjusting the EDF scheduler with the
technique of the forbidden regions mentioned above� the following theorem can be proven�

Theorem ��	 �Mok ������ If a feasible schedule exists for an instance of the process model
with precedence constraints and critical sections	 then the kernelized monitor scheduler can be
used to produce a feasible schedule� �

In �
�� Sha et al� introduce the Priority Ceiling Protocol 	PCP�� an allocation policy for
shared resources which works with a Rate Monotonic scheduler� Successively Chen and Lin ���
extend the utilization of the protocol to an EDF scheduler�

The main goal of this� as other similar protocols� is to bound the usually uncontrolled
priority inversion� a situation in which a higher priority job is blocked by lower priority jobs
for an inde
nite period of time 	recall that a block can occur if a job tries to enter a critical
section already locked by some other job�� Finding a bound to priority inversion allows to
evaluate the worst case blocking times eventually experienced by the jobs� so that they can
be accounted for in the schedulability guaranteeing formulas� In other words this means to
evaluate the worst case loss of performance�

The key ideas behind the PCP is to prevent multiple priority inversions by means of early
blocking of tasks that could cause priority inversion� and to minimize as much as possible the
length of the same priority inversion allowing a temporary rise of the priority of the blocking
task� This is done in the following way� de
ne the ceiling of a critical section as the priority
of the highest priority task that currently locks or could lock the critical section� and allow
the locking of a critical section only if the priority of the requesting task is higher than the
ceiling of all critical sections currently locked� In case of blocking� the task that holds the lock
inherits the priority of the requesting task until it leaves the critical section�

The following properties have been shown�

� A job can be blocked at most once before it enters its 
rst critical section�

� The PCP prevents the occurrence of deadlocks�

�




Of course� the former property is used to evaluate the worst case blocking times of the
jobs�

In �
� Baker describes a similar protocol� the Stack Resource Policy 	SRP�� that han�
dles a more general situation in which multiunit resources� both static and dynamic priority
schemes� and sharing of runtime stacks are all allowed� The protocol relies on the following
two conditions�

� To prevent deadlocks� a job should not be permitted to start until the resources currently
available are su�cient to meet its maximum requirements�

� To prevent multiple priority inversion� a job should not be permitted to start until the
resources currently available are su�cient to meet the maximum requirement of any
single job that might preempt it�

The key idea behind this protocol is that when a job needs a resource not available� it is
blocked at the time it attempts to preempt� rather than later� when it actually may need the
shared resource� The main advantages of this earlier blocking are to save unnecessary context
switches and the possibility of a simple and e�cient implementation of the SRP by means of
a stack�

In summary� dealing with shared resources in a real�time system is of utmost importance�
The classical results given in this section provide a good means for handling resources in a uni�
processor� Many researchers feel that these techniques do not work well in multiprocessors nor
in distributed systems� For such systems shared resources are typically addressed by on�line
planning algorithms �
�� 
�� ���� or by static schedules developed with o��line heuristics� Both
of these alternative approaches avoid blocking over shared resources by scheduling competing
tasks at di�erent points in time�

��� Overload and Value

EDF and LLF algorithms have been shown to be optimal with respect to di�erent metrics�
However� in overload conditions� these algorithms perform very poorly� Experiments carried
out by Locke �

� and others have shown that both EDF and LLF rapidly degrade their
performance during overload intervals� This is due to the fact that such algorithms give the
highest priority to those processes that are close to missing their deadlines�

A typical phenomenon that may happen with EDF when the system is overloaded is the
�domino e�ect�� since the 
rst task that misses its deadline may cause all subsequent tasks
to miss their deadlines� In such a situation� EDF does not provide any type of guarantee on
which tasks will meet their timing constraints� This is a very undesirable behavior in practical
systems� since in real�world applications intermittent overloads may occur due to exceptional
situations� such as modi
cations in the environment� arrival of a burst of tasks� or cascades of
system failures� As a real world example� this situation could cause a �exible manufacturing
application to produce no completed products by their deadlines�

In order to gain control over the tardy tasks in overload conditions� a value is usually
associated with each task� re�ecting the importance of that task within the set� When dealing
with task sets with values� tasks can be scheduled by the Smith� rule�

��



Theorem ��
 �Smith�s rule ����� Finding an optimal schedule for

� jj
X

wjCj

is given by any sequence that puts jobs in order of non decreasing ratios �j � pj�wj�

Smith�s rule resembles the common shortest processing time 
rst 	SPT� rule and is
equivalent to it when all tasks have equal weights� However� it is not su�cient to solve the
problem of scheduling with general precedence constraints� The problems

� j prec j
X

wjCj

� j dj j
X

wjCj

turn out to be NP complete ���� and the same is true even for the simpler ones

� j prec j
X

Cj

� j prec� pj � � j
X

wjCj�

Interesting solutions had been found for particular kind of precedence relations� in fact� optimal
polynomial algorithm had been found for the problems

� j chain j
X

Cj

� j series � parallel j
X

Cj

� j dj j
X

Cj�

Unfortunately� in real�time systems the precedence constraints imposed on tasks are often
more general� A heuristic was proposed in the Spring project� where deadline and cost driven
algorithms are combined together with rules to dynamically revise values and deadlines in
accordance with the precedence relations ����

A number of heuristic algorithms have also been proposed to deal with overloads ����
���� which improve the performance of EDF�

Baruah� et al� ��� have shown that there exists an upper bound on the performance of
any on�line 	preemptive� algorithm working in overload conditions� The �goodness� of an on�
line algorithm is measured with respect to a clairvoyant scheduler 	one that knows the future��
by means of the competitive factor� which is the ratio r of the cumulative value achieved by
the on�line algorithm to the cumulative value achieved by the clairvoyant schedule� The value
associated with each task is equal to the task�s execution time if the task request is successfully
scheduled to completion� a value of zero is given to tasks that do not terminate within their
deadline� According to this metric� they proved the following theorem�

Theorem ���� �Baruah	 et� al� ���� There does not exist an on
line scheduling algorithm
with a competitive factor greater than �����

��



What the theorem says is that no on�line scheduling algorithm can guarantee a cumu�
lative value greater than ���th the value obtainable by a clairvoyant scheduler� These bounds
are true for any load� but can be re
ned for a given load� For example� if the load is less than
� then the bound is �� as the load just surpasses � then the bound drops immediately to �����
for loads from greater than � up to 
 the bound gradually drops from ���� to �
�� and then for
all loads greater than 
 the bound is �
��

It is worth pointing out that the above bound is achieved under very restrictive assump�
tions� such as all tasks in the set have zero laxity� the overload can have an arbitrary 	but 
nite�
duration� task�s execution time can be arbitrarily small� and task value is equal to computation
time� Since in most real world applications tasks characteristics are much less restrictive� the
���th bound has only a theoretical validity and more work is needed to derive other bounds
based on more knowledge of the task set�

��� Summary of Uni	processor Results

Many basic algorithms and theoretical results have been developed for scheduling on uni�
processors� Many of these are based on earliest deadline scheduling or rate monotonic schedul�
ing� Extensions of these results to handle precedence and resource sharing have occurred�
Because of this work� designers of real�time systems have a wealth of information concerning
uni�processor scheduling� What is still required are more results on scheduling in overload and
for fault tolerance 	although fault tolerance usually requires multiple processors as well�� It
is also necessary to develop a more integrated and comprehensive scheduling approach that
addresses periodic and aperiodic tasks� preemptive and non�preemptive tasks in the same sys�
tem� tasks with values� and combined CPU and I O scheduling� to name a few issues� As an
example� the operational �ight program of the A��E aircraft has �� periodic and ��
 aperiodic
processes with signi
cant synchronization requirements� Extensions to rate monotonic that
integrate periodic and aperiodic tasks could be used for such an application�

� Multi�processor Real�Time Scheduling

More and more real�time systems are relying on multiprocessors� Unfortunately� less is known
about how to schedule multiprocessor based real�time systems than for uni�processors� This is
partly due to the fact that complexity results show that almost all real�time multiprocessing
scheduling is NP�hard� and partly due to the minimal actual experience that exists with such
systems so even the number of heuristics that exist is relatively low� In spite of the negative
implications that complexity analysis provides� it is important to understand these complexity
results because

� understanding the boundary between polynomial and NP�hard problems can provide
insights into developing useful heuristics that can be used as a design tool or as an
on�line scheduling algorithm�

� understanding the algorithms that achieve some of the polynomial results can again
provide a basis upon which to base such heuristics�

��



� fundamental limitations of on�line algorithms must be understood to better create robust
systems and to avoid operating under misconceptions� and

� serious scheduling anomalies can be avoided�

In this section we present multiprocessing scheduling results for deterministic 	static�
scheduling both with and without preemption� for dynamic on�line scheduling with and without
preemption� identify various anomalies� and brie�y discuss the similarity of this problem to
bin packing� Important implications of the theory are stressed throughout the section and a
summary of the global picture of multiprocessor real�time scheduling is given�

��� Deterministic 
Static� Scheduling

����� Non�preemptive Multiprocessing Results

Let our model of multiprocessing be that there are a set of P processors� T tasks� and R
resources� The processors are identical� Each task has a worst case execution time of � � is
non�preemptive� and tasks may be related by a partial order indicating that� e�g�� task T	i�
must complete before task T	j�� It is important to note that in most of the scheduling theory
results� tasks are considered to have constant execution time� For most computer applications
tasks never have constant execution time so we must understand the implication of this fact�
For example� this fact gives rise to one of the interesting multiprocessing anomalies of real�time
scheduling 	see section ����� For each resource R	k� there is a number which indicates howmuch
of it exists� Tasks can then require a portion of that resource� This directly models a resource
like main memory� It can also model a mutually exclusive resource by requiring the task to
access ���� of the resource� The complexity results from deterministic scheduling theory for
multiprocessing where tasks are non�preemptive� have a partial order among themselves� have
resource constraints 	even a single resource constraint�� and have a single deadline show that
almost all the problems are NP�complete� To delineate the boundary between polynomial and
NP�hard problems and to present basic results that every real�time designer should know� we
list the following theorems without proof and compare them in Table �� The metric used in
the following theorems is the amount of computation time required for determining a schedule
which satis
es the partial order and resource constraints� and completes all required processing
before a given 
xed deadline�

Theorem ��� �Co�man and Graham ����� The multiprocessor scheduling problem with �
processors	 no resources	 arbitrary partial order relations	 and every task has unit computation
time is polynomial� �

Theorem ��� �Garey and Johnson ������ The multiprocessor scheduling problem with � pro

cessors	 no resources	 independent tasks	 and arbitrary computation times is NP
complete� �

Theorem ��� �Garey and Johnson ������ The multiprocessor scheduling problem with � pro

cessors	 no resources	 arbitrary partial order	 and task computation times are either � or �
units of time is NP
complete� �

��



Proc� Res� Ordering Comp T� Complexity


 � Arbitrary Unit Polynomial


 � Independ� Arbitrary NP�Comp


 � Arbitrary � or 
 Units NP�Comp


 � Forest Unit NP�Comp

� � Independ� Unit NP�Comp

N � Forest Unit Polynomial

N � Arbitrary Unit NP�Comp

Table �� Summary of Basic Multiprocessor Scheduling Theorems

Theorem ��� �Garey and Johnson ������ The multiprocessor scheduling problem with � pro

cessors	 � resource	 a forest partial order	 and each computation time of every task equal to �
is NP
complete� �

Theorem ��� �Garey and Johnson ������ The multiprocessor scheduling problem with � or
more processors	 one resource	 all independent tasks	 and each tasks computation time equal
to � is NP
complete� �

Theorem ��� �Hu ������ The multiprocessor scheduling problem with n processors	 no re

sources	 a forest partial order	 and each task having a unit computation time is polynomial�
�

Theorem ��� �Ullman ������ The multiprocessing scheduling problem with n processors	 no
resources	 arbitrary partial order	 and each task having a unit computation time is NP
complete�
�

From these theorems we can see that for non�preemptive multiprocessing scheduling
almost all problems are NP�complete implying that heuristics must be used for such problems�
Basically� we see that non�uniform task computation time and resource requirements cause
NP�completeness immediately� An implication of these results is that designs which use only
local resources 	such as object based systems and functional language based systems� and
schedule based on a unit time slot have signi
cant advantages as far as scheduling complexity
is concerned� Of course� few if any real�time systems have unit tasks and any attempt to
carve up a process into unit times creates di�cult maintenance problems and possibly wasted
processing cycles when tasks consume less than the allocated unit of time� Note that the
above results refer to a single deadline for all tasks� If each task has a deadline the problem is
exacerbated�

����� Preemptive Multiprocessing Real�Time Scheduling

It is generally true that if the tasks to be scheduled are preemptable� then the scheduling
problem is easier� but in certain situations there is no advantage to preemption� The following
classical results pertain to multiprocessing scheduling where tasks are preemptable� i�e��

P j pmtn j
X

j

wjCj�

��



Theorem ��	 �McNaughton ������ For any instance of the multiprocessing scheduling problem
with P identical machines	 preemption allowed	 and minimizing the weighted sum of completion
times	 there exists a schedule with no preemption for which the value of the sum of computation
times is as small as for any schedule with a 
nite number of preemptions� �

So here we see an example� for a given metric� that there may be no advantage to
preemption� However� to 
nd such a schedule with or without preemption is NP�hard� Note
that if the metric is the sum of completion times� then the shortest processing time 
rst greedy
approach solves the problem and is not NP� Here again� there is no advantage to preemption�
This result can have an important implication when creating a static schedule� we certainly
prefer to minimize preemption for practical reasons at run time� so knowing that there is no
advantage to preemption� a designer would not create a static schedule with any preemptions�

Theorem ��
 �Lawler ������ The multiprocessing problem of scheduling P processors	 with
task preemption allowed and where we try to minimize the number of late tasks is NP
hard� �

This theorem indicates that one of the most common forms of real�time multiprocessing
scheduling� i�e��

P j pmtn j
X

Uj

where Uj are the late tasks� requires heuristics�

��� Dynamic Multiprocessor Scheduling

There are so few real�time classical scheduling results for dynamic multiprocessing scheduling
that we treat preemptive and non�preemptive cases together�

First� consider that under certain conditions in a uni�processor� dynamic earliest deadline
scheduling is optimal� Is this algorithm optimal in a multiprocessor� The answer is no�

Theorem ���� �Mok ������ Earliest deadline scheduling is not optimal in the multiprocessor
case� �

To illustrate why this is true consider the following example� We have � tasks to execute
on 
 processors� The task characteristics are given by task�number	computation time� dead�
line�� T�	�� ��� T�	�� 
�� and T�	�� ����� Scheduling by earliest deadline would execute T� on P�
and T� on P
 and then T� misses its deadline� However� if we schedule T� 
rst� on P�� then T�
and T� on P
� all tasks make their deadlines� An optimal algorithm does exist for the static
version of this problem 	all tasks exist at the same time� if one considers both deadlines and
computation time ����� but this algorithm is too complicated to present here�

Now� if dynamic earliest deadline scheduling for multiprocessors is not optimal� the next
question is whether any dynamic algorithm is optimal� in general� Again� the answer is no�

Theorem ���� �Mok ������ For two or more processors	 no deadline scheduling algorithm can
be optimal without complete a priori knowledge of �� deadlines	 �� computation times	 and ��
start times of the tasks� �

��



This implies that any of the classical scheduling theory algorithms which requires knowl�
edge of start times can not be optimal if used on�line� This also points out that we cannot hope
to develop an optimal on�line algorithm for the general case� But� optimal algorithms may
exist for a given set of conditions� One important example of this situation is assuming that
all worst case situations exist simultaneously� If this scenario is schedulable� then it will also
be schedulable at run time even if the arrival times are di�erent because those later arrivals
can�t make conditions any worse� When such a worst case analysis approach is not possible
for a given system� usually because such su�cient conditions cannot be developed or because
ensuring such conditions are too costly� more probabilistic approaches are needed� A number of
good heuristics exist for dynamic multiprocessor scheduling and we are beginning to see much
needed stochastic analysis of these conditions� It is especially valuable to be able to create al�
gorithms that operate with levels of guarantee� For example� even though the system operates
stochastically and non�optimally� it might be able to provide a minimum level of guaranteed
performance�

As mentioned� various heuristics exist for real�time multiprocessor scheduling with re�
source constraints �
��� However� in general� these heuristics use a non�preemptive model� The
advantages of a non�preemptive model are few context switches� higher understandability and
easier testing than for the preemptive model� and avoidance of blocking is possible� The main
disadvantage of the non�preemptive model is the 	usually� less e�cient utilization of the pro�
cessor� Heuristics also exist for a preemptive model ����� The advantages of a preemptive model
are high utilizations and low latency at reacting to newly invoked work� The disadvantages are
many context switches� di�culty in understanding the run time execution and its testing� and
blocking is common� All these heuristics� whether for the preemptive or non�preemptive cases�
are fairly expensive in terms of absolute on�line computation time compared to very simple
algorithms such as EDF� so this sometimes requires additional hardware support in terms of
a scheduling chip�

As mentioned earlier overload and performance bounds analysis are important issues�
Now assume we have a situation with sporadic tasks� preemption permitted� and if the task
meets its deadline then a value equal to the execution time is obtained� else no value is obtained�
Let the system operate in both normal and overload conditions� Let there be 
 processors�

Theorem ���� �Baruah	 et� al� ����� No on
line scheduling algorithm can guarantee a cumu

lative value greater than one
half for the dual processor case� �

As for the bounds results for the uni�processor case 	presented in Section ����� the impli�
cations of this theorem are very pessimistic� As before� some of the pessimism arises because
of the assumptions made concerning the lack of knowledge of the task set� In reality� we do
have signi
cant knowledge 	such as we know the arrival of new instances of periodic tasks�
or because of �ow control we may know that the maximum arrival rate is capped� or know
the minimum laxity of any task in the system is greater than some value�� If we can exploit
this knowledge� then the bounds may not be so pessimistic� We require more algorithms that
directly address the performance of a multiprocessing system in overload conditions�

��



��� Multiprocessing Anomalies

Designers must be aware of several important anomalies� called Richard�s anomalies� that can
occur in multiprocessing scheduling so that they can be avoided� Assume that a set of tasks are
scheduled optimally on a multiprocessor with some priority order� a 
xed number of processors�

xed execution times� and precedence constraints�

Theorem ���� �Graham ������ For the stated problem	 changing the priority list	 increasing
the number of processors	 reducing execution times	 or weakening the precedence constraints
can increase the schedule length� �

An implication of this result means that if tasks have deadlines� then the accompanying
increase in schedule length due to the anomaly can cause a previously valid schedule to become
invalid� i�e�� tasks can now miss deadlines� It is initially counter intuitive to think that adding
resources such as an extra processor� or relaxing constraints such as less precedence among
tasks� or less execution time requirements can make things worse� But� this is the insidious
nature of timing constraints and multiprocessing scheduling� An example can best illustrate
why this theorem is true� Consider an optimal schedule where we now reduce the time required
for the 
rst task T� on the 
rst processor� This means that the second task T
 on that processor
can begin earlier� However� doing this may now cause some task on another processor to block
over a shared resource and miss its deadline� where had T
 not executed earlier then no blocking
would have occurred and all tasks would have made their deadlines 	because it was originally
an optimal schedule�� See Figure ��

T1

T3 T4 T5

T1

T3

Schedule length

T4 T5

Schedule length

T2

T2

Task 2 and Task 4 share the
same resource in exclusive mode

Tasks are statically allocated:
Task 1 and Task 2 on processor 1;
Task 3, Task 4 and Task 5 on processor 2.

Figure �� One Example of Richard�s Anomalies

It is especially important to note that for most on�line scheduling algorithms we must
deal with the problem of tasks completing before their worst case times� A simple solution


�



that avoids the anomaly is to have tasks that complete early simply idle� but this can often be
very ine�cient� However� algorithms such as �
�� strive to reclaim this idle time� but carefully
address the anomalies so that they will not occur�

��� Similarity to Bin Packing

Another tremendously active area of scheduling research is in bin packing algorithms� Each
bin 	processor� has a maximum capacity and boxes 	jobs or tasks� placed in the bins require
some percentage of the capacity� The goal is either� given a 
xed number of bins� pack them
with jobs so as to minimize the maximum length of any bin� or rather 
ll the bins to capacity
minimizing the number of bins required� The bins are the computers of a multiprocessor which
provide a computing capacity up to the deadline of the set of jobs� Jobs require some amount
of processing time� In real�time scheduling it is usually assumed that memory requirements
are implicitly met� The common algorithms are best 
t 	BF�� 
rst 
t 	FF�� 
rst 
t decreasing
	FFD�� and best 
t decreasing 	BFD�� The latter two algorithms arrange the list of jobs into
a nonincreasing list with respect to capacity requirements� and then apply 
rst 
t or best 
t�
respectively� Theoretical bounds exist to describe� e�g�� the minimum number of bins required�
The worst case bounds for FF and BF for large task sets are 	������L� where L� is the
optimal 	minimum� number of bins ��
�� For FFD the bound is 	�����L� and it is known that
the bound of BFD is less than or equal to the FFD bound ��
�� This work is of limited value
for real�time systems since we have only a single deadline and other issues such as precedence
constraints and other real considerations are not taken into account� However� some useful
implications are

� we can know about the worst case and avoid it by design�

� we can obtain an estimate on the number of processors required for our application� and

� since average behavior is also important and since we are doing this analysis o��line�
if good packing is not achieved then we can permute the packing using average case
information� put constraints on job sizes� etc� Bin packing results should be extended
and incorporated into real�time design tools�

��� Summary of Multiprocessor Results

Most multiprocessor scheduling problems are NP� but for deterministic scheduling this is not
a major problem because either the speci
c problem is not NP�complete and we can use a
polynomial algorithm and develop an optimal schedule� or we can use o��line heuristic search
techniques based on what classical theory implies� These o��line techniques usually only have to

nd feasible schedules not optimal ones� Many heuristics perform well in the average case and
only deteriorate to exponential complexity in the worst 	rare� case� Good design tools would
allow users to provide feedback and redesign the task set to avoid the rare case� So the static�
multiprocessor� scheduling problem is largely solved in the sense that we know how to proceed�
We must point out� however� good tools with implemented heuristics are still necessary and
many extensions that treat more sophisticated sets of task and system characteristics are still
possible� On�line multiprocessing scheduling must rely on heuristics and would be substantially


�



helped by special scheduling chips� Any such heuristics must avoid Richard�s anomalies �
���
Better results for operation in overloads� better bounds which account for typical a priori
knowledge found in real�time systems� and algorithms which can guarantee various levels of
performance are required� Dynamic multiprocessing scheduling is in its infancy�

� Conclusion

Classical scheduling theory provides a basic set of results of use to real�time systems designers�
Many results are known for uni�processors and very few for multi�processors� Complexity�
fundamental limits� and performance bounds for important scheduling problems are known�
Anomalies that must be avoided have been identi
ed� It is still necessary for real�time designers
to take these basic facts and apply them to their problem � a di�cult engineering problem in
many cases� Many new results are needed that deal more directly with metrics of interest to
real�time applications and with more realistic task set characteristics than is typical for much
of the theory presented here�

Many issues are outside the scope of this paper including distributed scheduling� integra�
tion of cpu scheduling with communication scheduling� with I O scheduling� groups of tasks
with a single deadline� placement constraints and the impact of this placement on the run time
scheduling� fault tolerance needs� other kinds of timing requirements besides simple deadlines
and periods� integration of critical and non�critical tasks� and the interaction of scheduling
algorithms with the system design and implementation including run time overhead� Most of
these areas are wide open areas for research�

References

��� N� Audsley� A� Burns� M� Richardson� and A� Wellings� �Hard Real�Time Scheduling� The
Deadline Monotonic Approach�� IEEE Workshop on Real
Time Operating Systems� ���
�

�
� T�P� Baker� �Stack�Based Scheduling of Real�time Processes�� Journal of Real
Time Sys

tems� �� �����

��� S� Baruah� G� Koren� D� Mao� B� Mishra� A� Raghunathan� L� Rosier� D� Shasha� and F�
Wang� �On the Competitiveness of On�Line Real�Time Task Scheduling�� Proceedings of
Real
Time Systems Symposium� December �����

��� J� Blazewicz� �Scheduling Dependent Tasks with Di�erent Arrival Times to Meet Dead�
lines�� In E� Gelenbe� H� Beilner 	eds�� Modeling and Performance Evaluation of Computer
Systems� Amsterdam� North�Holland� �����

��� M� Chen and K� Lin� �Dynamic Priority Ceilings� A Concurrency Control Protocol for
Real�Time Systems�� Journal of Real
Time Systems� 
� �����

��� S� Cheng� J� Stankovic� and K� Ramamritham� �Dynamic Scheduling of Groups of Tasks
with Precedence Constraints in Distributed Hard Real�Time Systems� � Real
Time Sys

tems Symposium� December �����







��� H� Chetto� M� Silly� and T� Bouchentouf� �Dynamic Scheduling of Real�Time Tasks Under
Precedence Constraints�� Real
Time Systems Journal� 
� �����

��� E�G� Co�man and R� Graham� �Optimal Scheduling for Two�Processor Systems�� ACTA
Informat�� �� ���
�

��� M�L� Dertouzos� �Control Robotics� the Procedural Control of Physical Processes�� In

formation Processing ��� North�Holland Publishing Company� �����

���� R� Garey and D� Johnson� �Complexity Results for Multiprocessor Scheduling Under
Resource Constraints�� SIAM Journal of Computing� �����

���� M�R� Garey� D�S� Johnson� B�B� Simons� and R�E� Tarjan� �Scheduling Unit�Time Tasks
with Arbitrary Release Times and Deadlines�� SIAM Journal Comput�� ��	
�� May �����

��
� R� Graham� Bounds on the Performance of Scheduling Algorithms� chapter in Computer
and Job Shop Scheduling Theory� John Wiley and Sons� pp� ����

�� �����

���� J� R� Haritsa� M� Livny� and M� J� Carey� �Earliest Deadline Scheduling for Real�Time
Database Systems�� Proceedings of Real
Time Systems Symposium� December �����

���� W� Horn� �Some Simple Scheduling Algorithms�� Naval Research Logistics Quarterly� 
��
pp� �������� �����

���� T� C� Hu� �Parallel Scheduling and Assembly Line Problems�� Operations Research� ��
�����

���� J�R� Jackson� �Scheduling a Production Line to Minimize MaximumTardiness�� Research
Report ��� Management Science Research Project� University of California� Los Angeles�
�����

���� E�L� Lawler� �Optimal Sequencing of a Single Machine Subject to Precedence Con�
straints�� Management Science� ��� �����

���� E�L� Lawler� �Recent Results in the Theory of Machine Scheduling�� Mathematical Pro�
gramming� the State of the Art� A� Bachen et al� 	eds��� Springer�Verlag� New York�
�����

���� J�K� Lenstra and A�H�G� Rinnooy Kan �Optimization and Approximation in Deterministic
Sequencing and Scheduling� A Survey�� Ann� Discrete Math� �� pp� 
����
�� �����

�
�� J� Leung and J� Whitehead� �On the Complexity of Fixed Priority Scheduling of Periodic�
Real�Time Tasks�� Performance Evaluation� 
	��� pp� 
���
��� ���
�

�
�� C�L� Liu� J�W� Layland� �Scheduling Algorithms for Multiprogramming in a Hard�Real�
Time Environment�� Journal of the ACM� 
�	��� �����

�

� C� D� Locke� �Best�e�ort Decision Making for Real�Time Scheduling�� PhD thesis� Com�
puter Science Department� Carnegie�Mellon University� �����


�



�
�� R� McNaughton� �Scheduling With Deadlines and Loss Functions�� Management Science�
�� pp� ���
� �����

�
�� A�K� Mok� �Fundamental Design Problems of Distributed Systems for the Hard�Real�
Time Environment�� Ph�D� Thesis� Department of Electrical Engineering and Computer
Science� Massachusetts Institute of Technology� Cambridge� Massachusetts� May �����

�
�� J� Moore� �An n Job� One Machine Sequencing Algorithm for Minimizing the Number of
Late Jobs�� Management Science� Vol� ��� No� �� pp� ��
����� September �����

�
�� K� Ramamritham� J� Stankovic� and P� Shiah� �E�cient Scheduling Algorithms For Real�
Time Multiprocessor Systems�� IEEE Transactions on Parallel and Distributed Comput

ing� Vol� �� No� 
� pp� �������� April �����

�
�� L� Sha� R� Rajkumar� J�P� Lehoczky� �Priority Inheritance Protocols� An Approach to
Real�Time Synchronization�� IEEE Transactions on Computers� ��	��� �����

�
�� C� Shen� K� Ramamritham� and J� Stankovic� �Resource Reclaiming in Multiprocessor
Real�Time Systems�� IEEE Transactions on Parallel and Distributed Computing� Vol� ��
No� �� April �����

�
�� W� Smith� �Various Optimizers for Single Stage Production�� Naval Research Logistics
Quarterly� �� pp� ������ �����

���� P� Thambidurai and K� S� Trivedi� �Transient Overloads in Fault�Tolerant Real�Time
Systems�� Proceedings of Real
Time Systems Symposium� December �����

���� J� D� Ullman� �Polynomial Complete Scheduling Problems��Proc� �th Symp� on Operating
System Principles� �����

��
� J� Xu and D� Parnas� �Scheduling Processes with Release Times� Deadlines� Precedence�
and Exclusion Relations�� IEEE Transactions on Software Engineering� Vol� ��� No� ��
pp��������� March �����

���� W� Zhao� K� Ramamritham� and J� Stankovic� �Preemptive Scheduling Under Time and
Resource Constraints�� Special Issue of IEEE Transactions on Computers on Real�Time
Systems� Vol� C���� No� �� pp� �������� August �����


�


