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Abstract

Important classical scheduling theory results for real�time computing are identi�ed� Im�

plications of these results from the perspective of a real�time systems designer are discussed�

Uni�processor and multiprocessor results are addressed as well as important issues such as

future release times� precedence constraints� shared resources� task value� overloads� static

versus dynamic scheduling� preemption versus non�preemption� multiprocessing anomalies�

and metrics� Examples of what scheduling algorithms are used in actual applications are

given�
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� Introduction

Every real�time systems designer should be familiar with a set of important classical scheduling
theory results� i�e�� those results largely taken from the literature in complexity theory and
operations research� While knowledge of these results rarely provides a direct solution for
the designer� the implications of the results provide important insight in choosing a good
design and scheduling algorithm for the system� and in avoiding very poor or even erroneous
choices� The literature in scheduling theory is so vast� that we make no pretense at being
comprehensive� In this paper� a minimum set of results� together with their implications�
is presented� For example� the scheduling theory results presented include� Jackson�s rule�
Smith�s rule� McNaughton�s theorem� Liu and Layland�s rate monotonic rule� Mok�s theorems�
and Richard�s anomalies� Besides learning what these important results are� we want the
reader to be able to answer� at least� the following questions�
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� what do we really know about earliest deadline scheduling�

� what is known about uni�processor real�time scheduling problems�

� what is known about multiprocessing real�time scheduling problems�

� what anomalous behavior can occur and can it be avoided�

� where is the boundary between polynomial and NP�hard scheduling problems�

� what task set characteristics cause NP�hardness�

� what type of bounds analysis is useful for real�time systems�

� what is the impact of overloads on the scheduling results�

� how does the metric used in the theory impact the usefulness of the result in a real�time
computing system� and

� what di�erent results exist for static and dynamic scheduling�

There are so many dimensions to the scheduling problem that there is no accepted tax�
onomy� In this paper we divide the scheduling theory between uni�processor 	section 
� and
multiprocessor 	section �� results� In the uni�processor section we begin with independent
tasks� then consider precedence constraints� shared resources� and overload� In the multipro�
cessor case� since most results address precedence and shared resources together� we divide the
work between static and dynamic algorithms�

� Preliminaries

Before presenting the major scheduling results a few basic concepts must be clearly understood�
Here we discuss the di�erences between static� dynamic� o��line and on�line scheduling as well
as various metrics and their implications� NP�complete and NP�hard� terms used throughout
the paper� are de
ned�

��� Static versus Dynamic Scheduling

Most classical scheduling theory deals with static scheduling� Static scheduling refers to the
fact that the scheduling algorithm has complete knowledge regarding the task set and its
constraints such as deadlines� computation times� precedence constraints� and future release
times� This set of assumptions is realistic for many real�time systems� For example� real�time
control of a simple laboratory experiment or a simple process control application might have a

xed set of sensors and actuators� and a well de
ned environment and processing requirements�
In these types of real�time systems� the static scheduling algorithm operates on this set of tasks
and produces a single schedule that is 
xed for all time� Sometimes there is confusion regarding
future release times� If all future release times are known when the algorithm is developing
the schedule then it is still a static algorithm�






In contrast� a dynamic scheduling algorithm 	in the context of this paper� has complete
knowledge of the currently active set of tasks� but new arrivals may occur in the future� not
known to the algorithm at the time it is scheduling the current set� The schedule therefore
changes over time� Dynamic scheduling is required for real�time systems such as teams of
robots cleaning up a chemical spill or in military command and control applications� As we
will see in this paper very few theoretical results are known about real�time dynamic scheduling
algorithms�

O��line scheduling is often equated to static scheduling� but this is wrong� In building
any real�time system� o��line scheduling 	analysis� should always be done regardless of whether
the 
nal runtime algorithm is static or dynamic� In many real�time systems� the designers
can identify the maximum set of tasks with their worst case assumptions and apply a static
scheduling algorithm to produce a static schedule� This schedule is then 
xed and used on�line
with well understood properties such as� given that all the assumptions remain true� all tasks
will meet the deadlines� In other cases� the o��line analysis might produce a static set of
priorities to use at run time� The schedule itself is not 
xed� but the priorities that drive the
schedule are 
xed� This is common in the rate monotonic approach 	to be discussed later��

If the real�time system is operating in a more dynamic environment� then it is not feasible
to meet the assumptions of static scheduling 	i�e�� everything is known a priori�� In this case an
algorithm is chosen and analyzed o��line for the expected dynamic environmental conditions�
Usually� less precise statements about the overall performance can be made� On�line� this same
dynamic algorithm executes�

Generally� a scheduling algorithm 	possibly with some modi
cations� can be applied to
static scheduling or dynamic scheduling and used o��line or on�line� The important di�erence
is what is known about the performance of the algorithm in each of these cases� As an example�
consider earliest deadline 
rst 	EDF� scheduling� When applied to static scheduling we know
that it is optimal in many situations 	to be enumerated below�� but when applied to dynamic
scheduling on multiprocessors it is not optimal� in fact� it is known that no algorithm can be
optimal�

��� Metrics

Classical scheduling theory typically uses metrics such as minimizing the sum of completion
times� minimizing the weighted sum of completion times� minimizing schedule length� minimiz�
ing the number of processors required� or minimizing the maximum lateness� In most cases�
deadlines are not even considered in these results� When deadlines are considered� they are
usually added as constraints� where� for example� one creates a minimum schedule length� sub�
ject to the constraint that all tasks must meet their respective deadline� If one or more tasks
miss their deadlines� then there is no feasible solution� Which of these classical metrics 	where
deadlines are not included as constraints� are of most interest to real�time systems designers�
The sum of completion times is generally not of interest because there is no direct assessment
of timing properties 	deadlines or periods�� However� the weighted sum is very important when
tasks have di�erent values that they impart to the system upon completion� Using value is
often overlooked in many real�time systems where the focus is simply on deadlines and not a
combination of value and deadline� Minimizing schedule length has secondary importance in
possibly helping minimize the resources required for a system� but does not directly address
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the fact that individual tasks have deadlines� The same is true for minimizing the number of
processors required� Minimizing the maximum lateness metric can be useful at design time
where resources can be continually added until the maximum lateness is less than or equal to
zero� In this case no tasks miss their deadlines� On the other hand� the metric is not always
useful because minimizing the maximum lateness doesn�t necessarily prevent one� many� or
even ALL tasks from missing their deadlines� See Figure ��
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T1

maximum lateness

maximum lateness

The first schedule
minimizes the max.
lateness, but all 
tasks miss their 
deadline

The second schedule
has a greater max.
lateness, but four 
tasks out of five
complete before their
deadlines

Figure �� Minimizing Maximum Lateness Example

Rather than these above mentioned metrics much real�time computing work minimizes
the number of tasks that miss deadlines or looks for optimal algorithms de
ned in the following
manner� An optimal scheduling algorithm is one which may fail to meet a deadline only if no
other scheduling algorithm can� In this paper� all of the above metrics will be mentioned�
either because they are directly applicable to real�time systems� or to show where even though
a nice theoretical result exists� there is limited applicability to real�time systems�

Related to metrics is the complexity of the various scheduling problems themselves� As
we shall see� many scheduling results are NP�complete or NP�hard� NP is the class of all
decision problems that can be solved in polynomial time by a nondeterministic machine� A
recognition problem R is NP�complete if R � NP and all other problems inNP are polynomial
transformable to R� A recognition or optimization problem R is NP�hard if all problems in
NP are polynomial transformable to R� but we can�t show that R � NP �

� Uni�processor Systems

In general we follow the notation of ����� in which the problem de
nition has the form � j � j ��
where � indicates the machine environment 	in this section of the paper � � �� indicating
a uni�processor machine�� � indicates the job characteristics 	preemptable� nonpreemptable�
independent� precedence constrained� deadline� etc�� and � indicates the optimality criterion
	maximum lateness� total tardiness� etc��� Note that the optimality criterion depends on the
metric chosen� which strongly relies on the system objectives and the task model�
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��� Preemption vs NonPreemption� Jackson�s Rule

Suppose there are n independent jobs 	the words job� process and task will be used inter�
changeably just as they are throughout the scheduling literature�� with each job j having a
processing time pj and a due date dj� For any given sequence of scheduling� each job will have a
de
ned completion time Cj too� Let us de
ne the lateness of a job j as Lj � Cj � dj� Suppose
we want to minimize the maximum lateness assuming the jobs are executed nonpreemptively�
that is we want to solve the problem

� j nopmtn j Lmax

where ��� stands for single machine� �nopmtn� stands for nonpreemption and the objective
function to minimize is

Lmax � max
j
fLjg�

A very simple solution to this problem� the earliest due date 	EDD� algorithm is as follows�

Theorem ��� �Jackson�s Rule ������ Any sequence is optimal that puts the jobs in order of
nondecreasing due dates� �

The proof of the theorem can be given by a simple interchange argument ����� but
presenting that argument here is beyond the scope of this paper� At 
rst� this result may not
seem too useful to a real�time systems designer because we often require that no task miss its
deadline� But� since this is a static scheduling algorithm and if the maximum lateness is greater
than zero� then the designer knows that he must increase the computing power of his system
to meet the requirements of missing no deadlines� Further� as we shall see� EDD is optimal in
many other situations also� Note that since all tasks are known and ready to execute at time
zero� preemption would not improve the situation�

If our real�time system requires a more sophisticated programming model� one of the

rst extensions to consider is the introduction of release times� We say that a job j has release
time rj if its execution cannot start before time rj� Unfortunately� the problem above extended
with release times� that is

� j nopmtn� rj j Lmax

is NP�hard �����
In this case we obtain a great bene
t if we permit jobs to be preempted at any instant�

In fact� the problem
� j pmtn� rj j Lmax

is easy� that is� an algorithm for its solution exists and has polynomial complexity� Again the
algorithm is based on the Jackson�s rule� slightly modi
ed in order to take the release times
into account�

Theorem ��� Any sequence that at any instant schedules the job with the earliest due date
among all the eligible jobs �i�e�	 those whose release time is less then or equal to the current
time� is optimal with respect to minimizing maximum lateness� �

�



The result again can be easily proven by an interchange argument� The proof obtained
in this way is very similar to the �time slice swapping� technique used in ��� and �
�� to show
the optimality of the earliest deadline 
rst 	EDF from now on� and the least laxity 
rst 	LLF�
algorithms� respectively�

One implication of these results is that when practical considerations do not prevent
us from using it� preemption usually gives greater bene
t than nonpreemption in terms of
scheduling complexity� Unfortunately� when we deal with shared resources in real�time systems
we have to address critical sections and one technique is to create nonpreemptable code� this
again creates an NP�hard problem�

Another implication of these theorems is that the minimization of maximum lateness
implies optimality even when all deadlines must be met� because the maximum lateness can
be required to be less than or equal to zero� In fact� the very well�known paper by Liu
and Layland �
�� focussed on this aspect of EDF scheduling for a set of independent periodic
processes� showing that a full processor utilization is always achievable and giving a very simple
necessary and su�cient condition for the schedulability of the tasks�

X

j

pj
Tj

� �

where Tj is the period of the task j�
The EDF algorithm has also been shown to be optimal under various stochastic condi�

tions� All of these results imply that EDF works well under many di�erent situations� Recently�
variations of EDF are being used in multimedia applications� robotics� and real�time databases�
Note� however� that in none of the above classical results for EDF is precedence constraints�
shared resources� or overloads taken into account� We address these aspects in subsequent
sections�

Another very important and common area for real�time scheduling is the scheduling of
periodic tasks� Here the rate monotonic algorithm is often used� This algorithm assigns to
each task a static priority inversely proportional to its period� i�e�� tasks with the shortest
periods get the highest priority� For a 
xed set of independent periodic tasks with deadlines
the same as the periods� we know�

Theorem ��� �Liu and Layland ����� A set of n independent periodic jobs can be scheduled
by the rate monotonic policy if

Pn
i�� pi�Ti � n � 	
��n � �� where Ti and pi are the period and

worst case execution time	 respectively�

For large n we obtain the utilization bound of ��� meaning that as long as the CPU
utilization is less than ��� all tasks will make their deadlines� This is often referred to as the
schedulability test� If deadlines of periodic tasks can be less than the period the above rule is
no longer optimal� Rather we must use a deadline monotonic policy �
�� where the periodic
process with the shortest deadline is assigned the highest priority� This scheme is optimal in
the sense that if any static priority scheme can schedule this set of periodic processes then the
deadline monotonic algorithm can� Note that deadline monotonic is not the same as pure EDF
scheduling because tasks may have di�erent periods and the assigned priorities are 
xed� The
rate monotonic algorithm has been extended in many ways the most important of which deals
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with shared resources 	see Section ����� and schedulability tests have been formulated for the
deadline monotonic algorithm ����

The rate monotonic scheduling algorithm has been chosen for the Space Station Freedom
Project� the FAA Advanced Automation System 	AAS�� and has in�uenced the speci
cation
of the IEEE Futurebus�� The DoD�s ���� Software Technology Strategy says that the Rate
Monotonic Scheduling is a �major payo�� and �system designers can use this theory to predict
whether task deadlines will be met long before the costly implementation phase of a project
begins�� In ���
 the Acting Deputy Administrator of NASA stated� �Through the development
of Rate Monotonic Scheduling� we now have a system that will allow 	Space Station� Freedom�s
computers to budget their time� to choose between a variety of tasks� and decide not only which
one to do 
rst but how much time to spend in the process�� Rate monotonic is also useful for
simple applications� such as the real�time control of a simple experiment that might contain

� sensors whose data must be processed periodically� or a chemical plant that has a large
number of periodic tasks and a few alarms� These alarms can be treated as periodic tasks
whose minimum interarrival time is equal to its period� and then static scheduling� using the
rate monotonic algorithm� can be applied�

��� Precedence Constraints

In many systems of practical interest we do not expect tasks to be independent� but rather
cooperate to achieve the goal of the application� Cooperation among tasks is achieved by
various types of communication semantics� Depending on the chosen semantics� application
tasks experience precedence constraints or blocking� or both� while accessing shared resources�
A precedence relation among tasks makes the scheduling problem more complex� Since not all
tasks are ready to be scheduled at the same time� the simple EDF rule is no longer optimal�

In the following� precedence constraints will be expressed with the notation i � j� or
with their associated digraph G	V�E� where V is the set of tasks and E the set of edges� an
edge connecting tasks i�j if task i precedes task j�

The simple scheduling problem of a set of tasks with no�preemption� identical arrival
time and a precedence relation among them� described as�

� j prec� nopmtn j Lmax

was solved by Lawler ���� with an EDF�like algorithm that works backwards� starting from
the leaf tasks in the precedence graph�

The algorithm works as follows� the scheduling list is built starting from the bottom in
reverse topological order� and adding to the list on each step� the task having the minimum
value for the chosen metric and whose successors have been scheduled� Lawler�s algorithm is
optimal� and runs in O	n���

Lawler�s algorithm gives a solution for tasks having identical start time� Unfortunately�
this is not su�cient for all systems of practical interest where periodic tasks or dynamically
arising tasks do not have a common start time� The problem of non�preemptive scheduling
of jobs with di�erent release times and general precedence constraints is not a simple one� in
fact� the problem

� j nopmtn� ri j Lmax
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and the corresponding

� j prec� nopmtn� ri j Lmax

were proven to be NP�hard by Lenstra �����
The NP hardness of the general precedence constrained problem is a major obstacle for

non�preemptive scheduling� in spite of the fact that optimal results or polynomial algorithms
exist for similar problems� where some of the general assumptions are constrained� For example�
a polynomial algorithm was found for unit computation time tasks and arbitrary precedence
constraints�

The most interesting results related to precedence constraints are those obtained working
on sub�classes of the general precedence relation� Polynomial algorithms have been found for
precedence relations in the form of intrees� that is when every task has no more than one
predecessor� or outtrees� when tasks have no more than one successor� or when the precedence
relation is a series�parallel graph� It is easy to show how the intree and outtree cases are
included in the more general class of series�parallel graphs� The series�parallel graph is the
most interesting subset of the general precedence relation for which optimality results have
been found� A series�parallel graph is de
ned recursively this way�

� G	fj�g��� is a series � parallel graph

� if G�	V�� A�� and G�	V�� A�� are series�parallel graphs than

G� � G� � 	V� � V�� A� � A� � 	V� � V��� and

G� jj G� � 	V� � V�� A� �A�� are series � parallel graphs

or alternatively� a graph is a series�parallel graph only if its transitive closure does not contain
the Z graph� A Z graph is a graph that contains as a subgraph � nodes f i�j�k�l g with only
the following edges

i� j� i� k� l� k�

Figure 
 graphically depicts intrees and outtrees 	series�parallel graphs� and a Z graph
	not a series parallel graph�� E�cient solutions exist for series�parallel graphs� but they do not
exist for a Z graph� Unfortunately� Z graphs arise in practice� Details on these results follow�

Theorem ��� �Lawler ����� Given any set of tasks related by a series
parallel precedence graph
an optimal solution exists for every cost function that admits a string interchange relation� �

Formally� a cost function has a string interchange relation if� given two strings of jobs �
and � and a quasi total order � among them� the following relation holds�

f	�� � f	��	 f	a������b�� f	a������b�

Intuitively� this formula means that a cost function admits a string interchange relation
when a lower value is obtained when individual tasks of lower value are scheduled 
rst� The
theorem says that if we are interested in minimizing or maximizing a cost function that admits a
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Intree Outtree Z-graph

Figure 
� Precedence Relations

string interchange relation 	e�g�� minimizing lateness�� it is possible to 
nd an optimal schedule
in polynomial time for every set of tasks related by a series�parallel precedence graph�

The algorithm which solves this problem works with a decomposition tree� that is the
tree that shows how sub�graphs are connected by the series or parallel relation to form the
global precedence graph� The decomposition tree can be found in O	j N j � j A j� where N is
the number of nodes and A the number of edges� The algorithm starts from the tasks having
no successor in the decomposition tree� and� for every node� calculates a string sequence by
combining the strings of jobs coming from the sons� The 
nal node� representing the original
graph� is reached when the whole optimal scheduling list has been computed�

A common feature of this algorithm� as is also found in other similar algorithms from the
literature dealing with intrees or outtrees� is that they work on the precedence graph 	or on
the related decomposition tree�� starting from jobs with no successors or no predecessors� and
build a sequence of sub�optimal schedules� This technique can be useful in various scheduling
heuristics�

To what extent can Lawler�s optimal algorithm for series�parallel graphs� and even other
optimal algorithms which work only on intrees or outtrees� help us in real�time systems�
Unfortunately� some high level communication semantics found in programming languages�
give rise to precedence constrained jobs with Z graphs� meaning that these optimal algorithms
don�t apply and heuristics need to be used� One example of how a Z graph arises is a simple
pair of tasks linked by an asynchronous send with synchronous receive� See Figure �� Note
that remote procedure calls 	RPC� do not give rise to Z graphs�

If preemption is allowed� classical results go further in providing solutions for general
precedence constraints� Preemption reduces the complexity of the scheduling problem of prece�
dence related tasks with di�erent arrival times� The problem is� in fact� solvable in O	n�� by
Baker�s algorithm �
�
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--
--
--
Asynch_Send(...)
--
--
--

--
--
--
Synch_Receive(...)
--
--
--

process A process B process A process B

message

Figure �� Program Example That Gives Rise to Z Graph

� j prec� pmtn� ri j Lmax�

Baker�s procedure is recursive and because of its computational complexity it seems
suited for o��line scheduling� Due to the di�culty of describing the algorithm and space
limitations� we do not describe the algorithm here� However� an important feature of the
algorithm is that the number of preemptions is limited to n�� where n is the number of jobs�
thus making the preemption overhead bounded� In all practical situations the scheduling and
preemption overheads must be bounded and taken into account� We rarely see this issue
addressed in classical scheduling theory�

In the above solutions� a scheduling list is explicitly created� Another technique is to
encode the precedence relations into the parameters used by the scheduling algorithm� for
example� into deadlines and release times�

Blazewicz ��� shows how to adjust deadlines so that precedence constraints are encoded
in the deadlines a priori� and at run time you simply use EDF scheduling� His result comes
from the fact that task deadlines depend on their deadlines and successors� deadlines� while
task start times depend on their own start time and predecessors� start times� The theorem
assumes no shared resources among tasks�

Theorem ��� �Blazewicz ���� EDF is optimal for tasks that have a general precedence relation
and di�erent release dates if deadlines and start times are revised according to the following
formulas�

d�i � minfdi�min	d�j � pj �Si � Sj�g

starting from the tasks having no successor and processing on every step those tasks whose
successors have been processed

r�i � maxfri�max	r�j � pj�Sj � Si�g

��



starting from the tasks having no predecessor� �

This result allows us to transform a set of dependent tasks into a set of independent ones
obtaining an equivalent problem under the EDF policy� The optimality of the technique of the
revised deadlines and arrival dates has been used in both on�line ��� and o��line algorithms
�
���

Unfortunately� the optimality of this technique is again lost if tasks with precedence
constraints also share resources in an exclusive way� Moreover� if arbitrary protocols are
used to access shared resources� the revision of tasks� deadlines and release times is no longer
su�cient to guarantee the correct ordering of jobs without additional constraints� The general
problem of scheduling a set of tasks with precedence constraints and arbitrary resource con�icts
is NP�hard�

Some o��line algorithms face the NP hardness of the general problem trying to 
nd
acceptable solutions by means of heuristics� branch and bound techniques and so on� An
example is given by the algorithm by Xu and Parnas ��
� where on every step a sub�optimal
schedule is obtained� There are even examples of on�line systems driven by heuristics as the
Spring system �
�� where the scheduling list is built on�line�

��� Shared Resources

Shared resources are commonly used in multitasking applications� While in general purpose
systems this is a well�known problem solved� for example� with mutual exclusion primitives�
in real�time systems a straightforward application of this solution does not hold� De
ning a
run�time scheduler as totally on
line if it has no knowledge about the future arrival times of
the tasks� the following has been proven�

Theorem ��� �Mok ������ When there are mutual exclusion constraints	 it is impossible to

nd a totally on
line optimal run
time scheduler� �

The proof is simply given by an adversary argument� Furthermore� the same author
showed a much more negative result�

Theorem ��� �Mok ������ The problem of deciding whether it is possible to schedule a set of
periodic processes which use semaphores only to enforce mutual exclusion is NP
hard� �

A transformation of the ��partition problem to this scheduling problem is shown to prove
the theorem�

In Mok�s opinion �the reason for the NP�hardness of the above scheduling problem lies
in the possibility that there are mutually exclusive scheduling blocks which have di�erent
computation times�� A con
rmation of this point of view is that the problem of minimizing
the maximum lateness of n independent unit�time jobs with arbitrary release times� that is�

� j nopmtn� rj� pj � � j Lmax�

is easy ����� Moreover� if we add precedence constraints and we want to minimize the maximum
completion time 	makespan�� that is� we want to solve

� j nopmtn� prec� rj� pj � � j Cmax�
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the problem is still easy ����� The algorithm that solves it makes use of forbidden regions�
intervals of time during which no task can start if the schedule is to be feasible� The idea is
that because of the nonpreemption� scheduling a task at a certain point in time could force
some other late task to miss its deadline�

At this point several choices are possible� One of them� followed by Mok� is to enforce the
use of mutually exclusive scheduling blocks having the same computation time� and another�
followed� for example� by Sha et al� �
�� and Baker �
�� is to e�ciently 
nd a suboptimal
solution with a clever allocation policy� guaranteeing at the same time a minimum level of
performance�

The former solution is called Kernelized Monitor� The key idea is to assign the processor
in time quantums of length q such that

q 
 max
i
fl	CSi�g�

where l	CSi� is the length of the i�th critical section� In other words the grain of the system is
made coarser� Furthermore� the ready times and the deadlines of the tasks can be previously
modi
ed according to some partial order on the tasks� Adjusting the EDF scheduler with the
technique of the forbidden regions mentioned above� the following theorem can be proven�

Theorem ��	 �Mok ������ If a feasible schedule exists for an instance of the process model
with precedence constraints and critical sections	 then the kernelized monitor scheduler can be
used to produce a feasible schedule� �

In �
�� Sha et al� introduce the Priority Ceiling Protocol 	PCP�� an allocation policy for
shared resources which works with a Rate Monotonic scheduler� Successively Chen and Lin ���
extend the utilization of the protocol to an EDF scheduler�

The main goal of this� as other similar protocols� is to bound the usually uncontrolled
priority inversion� a situation in which a higher priority job is blocked by lower priority jobs
for an inde
nite period of time 	recall that a block can occur if a job tries to enter a critical
section already locked by some other job�� Finding a bound to priority inversion allows to
evaluate the worst case blocking times eventually experienced by the jobs� so that they can
be accounted for in the schedulability guaranteeing formulas� In other words this means to
evaluate the worst case loss of performance�

The key ideas behind the PCP is to prevent multiple priority inversions by means of early
blocking of tasks that could cause priority inversion� and to minimize as much as possible the
length of the same priority inversion allowing a temporary rise of the priority of the blocking
task� This is done in the following way� de
ne the ceiling of a critical section as the priority
of the highest priority task that currently locks or could lock the critical section� and allow
the locking of a critical section only if the priority of the requesting task is higher than the
ceiling of all critical sections currently locked� In case of blocking� the task that holds the lock
inherits the priority of the requesting task until it leaves the critical section�

The following properties have been shown�

� A job can be blocked at most once before it enters its 
rst critical section�

� The PCP prevents the occurrence of deadlocks�
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Of course� the former property is used to evaluate the worst case blocking times of the
jobs�

In �
� Baker describes a similar protocol� the Stack Resource Policy 	SRP�� that han�
dles a more general situation in which multiunit resources� both static and dynamic priority
schemes� and sharing of runtime stacks are all allowed� The protocol relies on the following
two conditions�

� To prevent deadlocks� a job should not be permitted to start until the resources currently
available are su�cient to meet its maximum requirements�

� To prevent multiple priority inversion� a job should not be permitted to start until the
resources currently available are su�cient to meet the maximum requirement of any
single job that might preempt it�

The key idea behind this protocol is that when a job needs a resource not available� it is
blocked at the time it attempts to preempt� rather than later� when it actually may need the
shared resource� The main advantages of this earlier blocking are to save unnecessary context
switches and the possibility of a simple and e�cient implementation of the SRP by means of
a stack�

In summary� dealing with shared resources in a real�time system is of utmost importance�
The classical results given in this section provide a good means for handling resources in a uni�
processor� Many researchers feel that these techniques do not work well in multiprocessors nor
in distributed systems� For such systems shared resources are typically addressed by on�line
planning algorithms �
�� 
�� ���� or by static schedules developed with o��line heuristics� Both
of these alternative approaches avoid blocking over shared resources by scheduling competing
tasks at di�erent points in time�

��� Overload and Value

EDF and LLF algorithms have been shown to be optimal with respect to di�erent metrics�
However� in overload conditions� these algorithms perform very poorly� Experiments carried
out by Locke �

� and others have shown that both EDF and LLF rapidly degrade their
performance during overload intervals� This is due to the fact that such algorithms give the
highest priority to those processes that are close to missing their deadlines�

A typical phenomenon that may happen with EDF when the system is overloaded is the
�domino e�ect�� since the 
rst task that misses its deadline may cause all subsequent tasks
to miss their deadlines� In such a situation� EDF does not provide any type of guarantee on
which tasks will meet their timing constraints� This is a very undesirable behavior in practical
systems� since in real�world applications intermittent overloads may occur due to exceptional
situations� such as modi
cations in the environment� arrival of a burst of tasks� or cascades of
system failures� As a real world example� this situation could cause a �exible manufacturing
application to produce no completed products by their deadlines�

In order to gain control over the tardy tasks in overload conditions� a value is usually
associated with each task� re�ecting the importance of that task within the set� When dealing
with task sets with values� tasks can be scheduled by the Smith� rule�

��



Theorem ��
 �Smith�s rule ����� Finding an optimal schedule for

� jj
X

wjCj

is given by any sequence that puts jobs in order of non decreasing ratios �j � pj�wj�

Smith�s rule resembles the common shortest processing time 
rst 	SPT� rule and is
equivalent to it when all tasks have equal weights� However� it is not su�cient to solve the
problem of scheduling with general precedence constraints� The problems

� j prec j
X

wjCj

� j dj j
X

wjCj

turn out to be NP complete ���� and the same is true even for the simpler ones

� j prec j
X

Cj

� j prec� pj � � j
X

wjCj�

Interesting solutions had been found for particular kind of precedence relations� in fact� optimal
polynomial algorithm had been found for the problems

� j chain j
X

Cj

� j series � parallel j
X

Cj

� j dj j
X

Cj�

Unfortunately� in real�time systems the precedence constraints imposed on tasks are often
more general� A heuristic was proposed in the Spring project� where deadline and cost driven
algorithms are combined together with rules to dynamically revise values and deadlines in
accordance with the precedence relations ����

A number of heuristic algorithms have also been proposed to deal with overloads ����
���� which improve the performance of EDF�

Baruah� et al� ��� have shown that there exists an upper bound on the performance of
any on�line 	preemptive� algorithm working in overload conditions� The �goodness� of an on�
line algorithm is measured with respect to a clairvoyant scheduler 	one that knows the future��
by means of the competitive factor� which is the ratio r of the cumulative value achieved by
the on�line algorithm to the cumulative value achieved by the clairvoyant schedule� The value
associated with each task is equal to the task�s execution time if the task request is successfully
scheduled to completion� a value of zero is given to tasks that do not terminate within their
deadline� According to this metric� they proved the following theorem�

Theorem ���� �Baruah	 et� al� ���� There does not exist an on
line scheduling algorithm
with a competitive factor greater than �����

��



What the theorem says is that no on�line scheduling algorithm can guarantee a cumu�
lative value greater than ���th the value obtainable by a clairvoyant scheduler� These bounds
are true for any load� but can be re
ned for a given load� For example� if the load is less than
� then the bound is �� as the load just surpasses � then the bound drops immediately to �����
for loads from greater than � up to 
 the bound gradually drops from ���� to �
�� and then for
all loads greater than 
 the bound is �
��

It is worth pointing out that the above bound is achieved under very restrictive assump�
tions� such as all tasks in the set have zero laxity� the overload can have an arbitrary 	but 
nite�
duration� task�s execution time can be arbitrarily small� and task value is equal to computation
time� Since in most real world applications tasks characteristics are much less restrictive� the
���th bound has only a theoretical validity and more work is needed to derive other bounds
based on more knowledge of the task set�

��� Summary of Uni	processor Results

Many basic algorithms and theoretical results have been developed for scheduling on uni�
processors� Many of these are based on earliest deadline scheduling or rate monotonic schedul�
ing� Extensions of these results to handle precedence and resource sharing have occurred�
Because of this work� designers of real�time systems have a wealth of information concerning
uni�processor scheduling� What is still required are more results on scheduling in overload and
for fault tolerance 	although fault tolerance usually requires multiple processors as well�� It
is also necessary to develop a more integrated and comprehensive scheduling approach that
addresses periodic and aperiodic tasks� preemptive and non�preemptive tasks in the same sys�
tem� tasks with values� and combined CPU and I O scheduling� to name a few issues� As an
example� the operational �ight program of the A��E aircraft has �� periodic and ��
 aperiodic
processes with signi
cant synchronization requirements� Extensions to rate monotonic that
integrate periodic and aperiodic tasks could be used for such an application�

� Multi�processor Real�Time Scheduling

More and more real�time systems are relying on multiprocessors� Unfortunately� less is known
about how to schedule multiprocessor based real�time systems than for uni�processors� This is
partly due to the fact that complexity results show that almost all real�time multiprocessing
scheduling is NP�hard� and partly due to the minimal actual experience that exists with such
systems so even the number of heuristics that exist is relatively low� In spite of the negative
implications that complexity analysis provides� it is important to understand these complexity
results because

� understanding the boundary between polynomial and NP�hard problems can provide
insights into developing useful heuristics that can be used as a design tool or as an
on�line scheduling algorithm�

� understanding the algorithms that achieve some of the polynomial results can again
provide a basis upon which to base such heuristics�
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� fundamental limitations of on�line algorithms must be understood to better create robust
systems and to avoid operating under misconceptions� and

� serious scheduling anomalies can be avoided�

In this section we present multiprocessing scheduling results for deterministic 	static�
scheduling both with and without preemption� for dynamic on�line scheduling with and without
preemption� identify various anomalies� and brie�y discuss the similarity of this problem to
bin packing� Important implications of the theory are stressed throughout the section and a
summary of the global picture of multiprocessor real�time scheduling is given�

��� Deterministic 
Static� Scheduling

����� Non�preemptive Multiprocessing Results

Let our model of multiprocessing be that there are a set of P processors� T tasks� and R
resources� The processors are identical� Each task has a worst case execution time of � � is
non�preemptive� and tasks may be related by a partial order indicating that� e�g�� task T	i�
must complete before task T	j�� It is important to note that in most of the scheduling theory
results� tasks are considered to have constant execution time� For most computer applications
tasks never have constant execution time so we must understand the implication of this fact�
For example� this fact gives rise to one of the interesting multiprocessing anomalies of real�time
scheduling 	see section ����� For each resource R	k� there is a number which indicates howmuch
of it exists� Tasks can then require a portion of that resource� This directly models a resource
like main memory� It can also model a mutually exclusive resource by requiring the task to
access ���� of the resource� The complexity results from deterministic scheduling theory for
multiprocessing where tasks are non�preemptive� have a partial order among themselves� have
resource constraints 	even a single resource constraint�� and have a single deadline show that
almost all the problems are NP�complete� To delineate the boundary between polynomial and
NP�hard problems and to present basic results that every real�time designer should know� we
list the following theorems without proof and compare them in Table �� The metric used in
the following theorems is the amount of computation time required for determining a schedule
which satis
es the partial order and resource constraints� and completes all required processing
before a given 
xed deadline�

Theorem ��� �Co�man and Graham ����� The multiprocessor scheduling problem with �
processors	 no resources	 arbitrary partial order relations	 and every task has unit computation
time is polynomial� �

Theorem ��� �Garey and Johnson ������ The multiprocessor scheduling problem with � pro

cessors	 no resources	 independent tasks	 and arbitrary computation times is NP
complete� �

Theorem ��� �Garey and Johnson ������ The multiprocessor scheduling problem with � pro

cessors	 no resources	 arbitrary partial order	 and task computation times are either � or �
units of time is NP
complete� �
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Proc� Res� Ordering Comp T� Complexity


 � Arbitrary Unit Polynomial


 � Independ� Arbitrary NP�Comp


 � Arbitrary � or 
 Units NP�Comp


 � Forest Unit NP�Comp

� � Independ� Unit NP�Comp

N � Forest Unit Polynomial

N � Arbitrary Unit NP�Comp

Table �� Summary of Basic Multiprocessor Scheduling Theorems

Theorem ��� �Garey and Johnson ������ The multiprocessor scheduling problem with � pro

cessors	 � resource	 a forest partial order	 and each computation time of every task equal to �
is NP
complete� �

Theorem ��� �Garey and Johnson ������ The multiprocessor scheduling problem with � or
more processors	 one resource	 all independent tasks	 and each tasks computation time equal
to � is NP
complete� �

Theorem ��� �Hu ������ The multiprocessor scheduling problem with n processors	 no re

sources	 a forest partial order	 and each task having a unit computation time is polynomial�
�

Theorem ��� �Ullman ������ The multiprocessing scheduling problem with n processors	 no
resources	 arbitrary partial order	 and each task having a unit computation time is NP
complete�
�

From these theorems we can see that for non�preemptive multiprocessing scheduling
almost all problems are NP�complete implying that heuristics must be used for such problems�
Basically� we see that non�uniform task computation time and resource requirements cause
NP�completeness immediately� An implication of these results is that designs which use only
local resources 	such as object based systems and functional language based systems� and
schedule based on a unit time slot have signi
cant advantages as far as scheduling complexity
is concerned� Of course� few if any real�time systems have unit tasks and any attempt to
carve up a process into unit times creates di�cult maintenance problems and possibly wasted
processing cycles when tasks consume less than the allocated unit of time� Note that the
above results refer to a single deadline for all tasks� If each task has a deadline the problem is
exacerbated�

����� Preemptive Multiprocessing Real�Time Scheduling

It is generally true that if the tasks to be scheduled are preemptable� then the scheduling
problem is easier� but in certain situations there is no advantage to preemption� The following
classical results pertain to multiprocessing scheduling where tasks are preemptable� i�e��

P j pmtn j
X

j

wjCj�
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Theorem ��	 �McNaughton ������ For any instance of the multiprocessing scheduling problem
with P identical machines	 preemption allowed	 and minimizing the weighted sum of completion
times	 there exists a schedule with no preemption for which the value of the sum of computation
times is as small as for any schedule with a 
nite number of preemptions� �

So here we see an example� for a given metric� that there may be no advantage to
preemption� However� to 
nd such a schedule with or without preemption is NP�hard� Note
that if the metric is the sum of completion times� then the shortest processing time 
rst greedy
approach solves the problem and is not NP� Here again� there is no advantage to preemption�
This result can have an important implication when creating a static schedule� we certainly
prefer to minimize preemption for practical reasons at run time� so knowing that there is no
advantage to preemption� a designer would not create a static schedule with any preemptions�

Theorem ��
 �Lawler ������ The multiprocessing problem of scheduling P processors	 with
task preemption allowed and where we try to minimize the number of late tasks is NP
hard� �

This theorem indicates that one of the most common forms of real�time multiprocessing
scheduling� i�e��

P j pmtn j
X

Uj

where Uj are the late tasks� requires heuristics�

��� Dynamic Multiprocessor Scheduling

There are so few real�time classical scheduling results for dynamic multiprocessing scheduling
that we treat preemptive and non�preemptive cases together�

First� consider that under certain conditions in a uni�processor� dynamic earliest deadline
scheduling is optimal� Is this algorithm optimal in a multiprocessor� The answer is no�

Theorem ���� �Mok ������ Earliest deadline scheduling is not optimal in the multiprocessor
case� �

To illustrate why this is true consider the following example� We have � tasks to execute
on 
 processors� The task characteristics are given by task�number	computation time� dead�
line�� T�	�� ��� T�	�� 
�� and T�	�� ����� Scheduling by earliest deadline would execute T� on P�
and T� on P
 and then T� misses its deadline� However� if we schedule T� 
rst� on P�� then T�
and T� on P
� all tasks make their deadlines� An optimal algorithm does exist for the static
version of this problem 	all tasks exist at the same time� if one considers both deadlines and
computation time ����� but this algorithm is too complicated to present here�

Now� if dynamic earliest deadline scheduling for multiprocessors is not optimal� the next
question is whether any dynamic algorithm is optimal� in general� Again� the answer is no�

Theorem ���� �Mok ������ For two or more processors	 no deadline scheduling algorithm can
be optimal without complete a priori knowledge of �� deadlines	 �� computation times	 and ��
start times of the tasks� �
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This implies that any of the classical scheduling theory algorithms which requires knowl�
edge of start times can not be optimal if used on�line� This also points out that we cannot hope
to develop an optimal on�line algorithm for the general case� But� optimal algorithms may
exist for a given set of conditions� One important example of this situation is assuming that
all worst case situations exist simultaneously� If this scenario is schedulable� then it will also
be schedulable at run time even if the arrival times are di�erent because those later arrivals
can�t make conditions any worse� When such a worst case analysis approach is not possible
for a given system� usually because such su�cient conditions cannot be developed or because
ensuring such conditions are too costly� more probabilistic approaches are needed� A number of
good heuristics exist for dynamic multiprocessor scheduling and we are beginning to see much
needed stochastic analysis of these conditions� It is especially valuable to be able to create al�
gorithms that operate with levels of guarantee� For example� even though the system operates
stochastically and non�optimally� it might be able to provide a minimum level of guaranteed
performance�

As mentioned� various heuristics exist for real�time multiprocessor scheduling with re�
source constraints �
��� However� in general� these heuristics use a non�preemptive model� The
advantages of a non�preemptive model are few context switches� higher understandability and
easier testing than for the preemptive model� and avoidance of blocking is possible� The main
disadvantage of the non�preemptive model is the 	usually� less e�cient utilization of the pro�
cessor� Heuristics also exist for a preemptive model ����� The advantages of a preemptive model
are high utilizations and low latency at reacting to newly invoked work� The disadvantages are
many context switches� di�culty in understanding the run time execution and its testing� and
blocking is common� All these heuristics� whether for the preemptive or non�preemptive cases�
are fairly expensive in terms of absolute on�line computation time compared to very simple
algorithms such as EDF� so this sometimes requires additional hardware support in terms of
a scheduling chip�

As mentioned earlier overload and performance bounds analysis are important issues�
Now assume we have a situation with sporadic tasks� preemption permitted� and if the task
meets its deadline then a value equal to the execution time is obtained� else no value is obtained�
Let the system operate in both normal and overload conditions� Let there be 
 processors�

Theorem ���� �Baruah	 et� al� ����� No on
line scheduling algorithm can guarantee a cumu

lative value greater than one
half for the dual processor case� �

As for the bounds results for the uni�processor case 	presented in Section ����� the impli�
cations of this theorem are very pessimistic� As before� some of the pessimism arises because
of the assumptions made concerning the lack of knowledge of the task set� In reality� we do
have signi
cant knowledge 	such as we know the arrival of new instances of periodic tasks�
or because of �ow control we may know that the maximum arrival rate is capped� or know
the minimum laxity of any task in the system is greater than some value�� If we can exploit
this knowledge� then the bounds may not be so pessimistic� We require more algorithms that
directly address the performance of a multiprocessing system in overload conditions�
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��� Multiprocessing Anomalies

Designers must be aware of several important anomalies� called Richard�s anomalies� that can
occur in multiprocessing scheduling so that they can be avoided� Assume that a set of tasks are
scheduled optimally on a multiprocessor with some priority order� a 
xed number of processors�

xed execution times� and precedence constraints�

Theorem ���� �Graham ������ For the stated problem	 changing the priority list	 increasing
the number of processors	 reducing execution times	 or weakening the precedence constraints
can increase the schedule length� �

An implication of this result means that if tasks have deadlines� then the accompanying
increase in schedule length due to the anomaly can cause a previously valid schedule to become
invalid� i�e�� tasks can now miss deadlines� It is initially counter intuitive to think that adding
resources such as an extra processor� or relaxing constraints such as less precedence among
tasks� or less execution time requirements can make things worse� But� this is the insidious
nature of timing constraints and multiprocessing scheduling� An example can best illustrate
why this theorem is true� Consider an optimal schedule where we now reduce the time required
for the 
rst task T� on the 
rst processor� This means that the second task T
 on that processor
can begin earlier� However� doing this may now cause some task on another processor to block
over a shared resource and miss its deadline� where had T
 not executed earlier then no blocking
would have occurred and all tasks would have made their deadlines 	because it was originally
an optimal schedule�� See Figure ��

T1

T3 T4 T5

T1

T3

Schedule length

T4 T5

Schedule length

T2

T2

Task 2 and Task 4 share the
same resource in exclusive mode

Tasks are statically allocated:
Task 1 and Task 2 on processor 1;
Task 3, Task 4 and Task 5 on processor 2.

Figure �� One Example of Richard�s Anomalies

It is especially important to note that for most on�line scheduling algorithms we must
deal with the problem of tasks completing before their worst case times� A simple solution
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that avoids the anomaly is to have tasks that complete early simply idle� but this can often be
very ine�cient� However� algorithms such as �
�� strive to reclaim this idle time� but carefully
address the anomalies so that they will not occur�

��� Similarity to Bin Packing

Another tremendously active area of scheduling research is in bin packing algorithms� Each
bin 	processor� has a maximum capacity and boxes 	jobs or tasks� placed in the bins require
some percentage of the capacity� The goal is either� given a 
xed number of bins� pack them
with jobs so as to minimize the maximum length of any bin� or rather 
ll the bins to capacity
minimizing the number of bins required� The bins are the computers of a multiprocessor which
provide a computing capacity up to the deadline of the set of jobs� Jobs require some amount
of processing time� In real�time scheduling it is usually assumed that memory requirements
are implicitly met� The common algorithms are best 
t 	BF�� 
rst 
t 	FF�� 
rst 
t decreasing
	FFD�� and best 
t decreasing 	BFD�� The latter two algorithms arrange the list of jobs into
a nonincreasing list with respect to capacity requirements� and then apply 
rst 
t or best 
t�
respectively� Theoretical bounds exist to describe� e�g�� the minimum number of bins required�
The worst case bounds for FF and BF for large task sets are 	������L� where L� is the
optimal 	minimum� number of bins ��
�� For FFD the bound is 	�����L� and it is known that
the bound of BFD is less than or equal to the FFD bound ��
�� This work is of limited value
for real�time systems since we have only a single deadline and other issues such as precedence
constraints and other real considerations are not taken into account� However� some useful
implications are

� we can know about the worst case and avoid it by design�

� we can obtain an estimate on the number of processors required for our application� and

� since average behavior is also important and since we are doing this analysis o��line�
if good packing is not achieved then we can permute the packing using average case
information� put constraints on job sizes� etc� Bin packing results should be extended
and incorporated into real�time design tools�

��� Summary of Multiprocessor Results

Most multiprocessor scheduling problems are NP� but for deterministic scheduling this is not
a major problem because either the speci
c problem is not NP�complete and we can use a
polynomial algorithm and develop an optimal schedule� or we can use o��line heuristic search
techniques based on what classical theory implies� These o��line techniques usually only have to

nd feasible schedules not optimal ones� Many heuristics perform well in the average case and
only deteriorate to exponential complexity in the worst 	rare� case� Good design tools would
allow users to provide feedback and redesign the task set to avoid the rare case� So the static�
multiprocessor� scheduling problem is largely solved in the sense that we know how to proceed�
We must point out� however� good tools with implemented heuristics are still necessary and
many extensions that treat more sophisticated sets of task and system characteristics are still
possible� On�line multiprocessing scheduling must rely on heuristics and would be substantially
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helped by special scheduling chips� Any such heuristics must avoid Richard�s anomalies �
���
Better results for operation in overloads� better bounds which account for typical a priori
knowledge found in real�time systems� and algorithms which can guarantee various levels of
performance are required� Dynamic multiprocessing scheduling is in its infancy�

� Conclusion

Classical scheduling theory provides a basic set of results of use to real�time systems designers�
Many results are known for uni�processors and very few for multi�processors� Complexity�
fundamental limits� and performance bounds for important scheduling problems are known�
Anomalies that must be avoided have been identi
ed� It is still necessary for real�time designers
to take these basic facts and apply them to their problem � a di�cult engineering problem in
many cases� Many new results are needed that deal more directly with metrics of interest to
real�time applications and with more realistic task set characteristics than is typical for much
of the theory presented here�

Many issues are outside the scope of this paper including distributed scheduling� integra�
tion of cpu scheduling with communication scheduling� with I O scheduling� groups of tasks
with a single deadline� placement constraints and the impact of this placement on the run time
scheduling� fault tolerance needs� other kinds of timing requirements besides simple deadlines
and periods� integration of critical and non�critical tasks� and the interaction of scheduling
algorithms with the system design and implementation including run time overhead� Most of
these areas are wide open areas for research�
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