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Abstract. A normal form theory for functional differential equations in Banach
spaces of retarded type is addressed. The theory is based on a formal adjoint theory
for the linearized equation at an equilibrium and on the existence of center manifolds
for perturbed inhomogeneous equations, established in the first part of this work
under weaker hypotheses than those that usually appear in the literature. Based on
these results, an algorithm to compute normal forms on finite dimensional invariant
manifolds of the origin is presented. Such normal forms are important in obtaining
the ordinary differential equation giving the flow on center manifolds explicitly in
terms of the original functional differential equation. Applications to Bogdanov-
Takens and Hopf bifurcations are presented.

1. Introduction. The aim of the present paper is to construct and show applica-
tions of a normal form theory on center or other invariant manifolds at equilibria
for semilinear functional differential equations (FDEs) in Banach spaces. Here, we
consider autonomous linear FDEs of retarded type in the form

u̇(t) = AT u(t) + L(ut), (1.1)

where X is a Banach space, r > 0, C := C([−r, 0];X) is the Banach space of
continuous mappings from [−r, 0] to X equipped with the sup norm, ut ∈ C is
defined by ut(θ) = u(t + θ) for t ∈ [−r, 0], L : C −→ X is a bounded linear
operator, and AT : D(AT ) ⊂ X −→ X is the infinitesimal generator of a compact
C0-semigroups of linear operators on X. We also consider semilinear FDEs of type

u̇(t) = AT u(t) + L(ut) + F (ut), (1.2)

where F is regular enough and F (0) = 0,DF (0) = 0.
In applications, it is of particular interest to consider the ordinary differential

equation (ODE) giving the flow on center manifolds, since the qualitative behaviour
of the solutions can be described by the flow on these manifolds. With the present
approach, we give explicit normal forms (in the usual sense for ODEs) for the equa-
tion giving the flow on the center manifold of equilibria for equations in the form
(1.2), without having to compute that manifold beforehand. These normal forms
are also applicable to determine the flow on other finite dimensional invariant mani-
folds, for instance center-unstable manifolds, provided their existence. Situations
with parameters will also be treated, since the normal form theory developed here
is particularly powerful in the study of bifurcation problems.

The normal form theory presented here on one hand relies on the existence of
center manifolds for (1.2), and, on the other hand, on a complete formal adjoint
theory for equations (1.1) established in Part I of the present work (Faria, Huang
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and Wu [7]), where ideas in Arino and Sanchez [1], Busenberg and Huang [2], Huang
[15], Travis and Webb [22] were pursued. We should mention that in [2] a formal
adjoint theory was already derived for a particular model. In [7] the formal duality
was used to decompose the phase space C by a finite set of characteristic values,
and results on the existence and regularity of center manifolds for perturbed FDEs
(1.2) were established. These tools enable us to construct a normal form algorithm
along lines similar to the ones considered in previous works of Faria and Magalhães
[8], [9] on normal forms for autonomous retarded FDEs in finite dimensional spaces.

We point out that normal forms have already been constructed for particular
classes of FDEs in Banach spaces in Faria [5], [6], but under some strong assump-
tions that restrict their application. In fact, for the normal form construction in
Faria [6], as well as for the adjoint theory for linear equations of type (1.1) and
invariant manifolds results in Lin, So and Wu [17], Memory [18], Wu [25], it was
assumed, first, that the eigenvectors of AT formed a basis {βk}∞k=1 for X, and
secondly, that the linear operator L did not mix the modes of eigenspaces of AT

(i.e., L(ϕβk) ∈ span{βk}, for all ϕ ∈ C([−r, 0]; R) and all eigenvectors βk). This
last condition was relaxed in Faria [5], where it was sufficient to impose that the
eigenvectors of AT could be organized in blocks, in such a way that the modes
of the generalized eigenspace for AT generated by them were not mixed by L. In
both cases, the previous approachs for developing a normal form theory rely on the
eigenspaces of AT , through which linear FDEs of type (1.1) or perturbed FDEs of
type (1.2) are decomposed as sequences of FDEs in finite dimensional spaces R

n

(all of them being scalar FDEs for the situation in [6], [17] and [18], and possibly
non-scalar under the weaker condition imposed in [5]), to which the standard for-
mal adjoint theory for FDEs of Hale [12] can be applied. The approach followed
here is completely different, since there are no hypotheses on the eigenvectors of
AT nor on relating the linear operators AT , L. Therefore, it is necessary to recon-
struct a normal form theory solely based on the formal adjoint theory presented in
[7], which enables us to decompose the phase space C by a nonempty finite set of
characteristic values of (1.1).

The paper is organized as follows. In Section 2, we recall some relevant results
in [7] and [22], that will be used in what follows. The option of presenting a
detailed background section was made so that the reader could follow easily the
exposition in Sections 3 and 4 and have the necessary results to understand clearly
the illustrations in the last section. In Section 3, we introduce an enlarged phase
space where (1.2) can be written as an abstract ODE in a Banach space. Section
4 is dedicated to the theory of normal forms. Finally in Section 5, application of
normal forms to the study of Bogdanov-Takens and Hopf bifurcations are presented,
and illustrated with examples.

We now set some notation that will be used throughout the paper. For a given
Banach space X and for a linear operator A from its domain in X to X, we will use
D(A), R(A) and N(A) to denote the domain, range and kernel of A, respectively.
The spectrum, the point spectrum and resolvent of A are considered as subsets of
C, and are denoted by σ(A), σP (A) and ρ(A), respectively. If λ ∈ σP (A), Mλ(A)
is the generalized eigenspace associated with λ.

2. Preliminaries. Consider an autonomous linear retarded FDE (1.1) in the phase
space C = C([−r, 0];X), X a Banach space, with AT : D(AT ) ⊂ X −→ X, L :
C −→ X linear operators. We require the following assumptions:

(H1) AT generates a C0-semigroup of linear operators {T (t)}t≥0 on X, with ‖T (t)‖ ≤
Meωt (t ≥ 0) for some M ≥ 1, ω ∈ R.
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(H2) T (t) is a compact operator for each t > 0.
(H3) there is η : [−r, 0] −→ L(X,X) of bounded variation such that L(ϕ) =∫ 0

−r
dη(θ)ϕ(θ), ϕ ∈ C, where L(X,X) denotes the Banach space of bounded

linear operators from X into X.
Under (H1)-(H2), it was shown in [22] that the initial value problem

u(t) = T (t)ϕ(0) +
∫ t

0

T (t − s)L(us)ds, u0 = ϕ (2.1)

for ϕ ∈ C, has a unique solution u(ϕ)(t), t ≥ −r. Moreover, defining U(t), t ≥ 0,
by U(t) : C −→ C, U(t)ϕ = ut(ϕ), {U(t)}t≥0 is a C0-semigroup of bounded linear
operators on C, with U(t) a compact operator for t > r. Its infinitesimal generator
AU : C −→ C is given by

AUϕ = ϕ̇

D(AU ) = {ϕ ∈ C : ϕ̇ ∈ C,ϕ(0) ∈ D(AT ), ϕ̇(0) = AT ϕ(0) + L(ϕ)},
(2.2)

and has only point spectrum, σ(AU ) = σP (AU ). Futhermore, for any α ∈ R the
set {λ ∈ σ(AU ) : Reλ ≥ α} is finite. For λ ∈ C, we note that λ ∈ σ(AU ) iff λ is a
characteristic value for (1.1), that is, if λ satisfies the characteristic equation

∆(λ)x := AT x + L(eλ·x) − λx = 0, for some x ∈ D(AT ) \ {0}, (2.3)

where ∆(λ) : D(AT ) ⊂ X −→ X and eλ·x ∈ C is given by (eλ·x)(θ) = eλθx for
θ ∈ [−r, 0] and x ∈ X. Clearly, N(AU −λI) = {eλ·x : x ∈ N(∆(λ))}. If λ ∈ σ(AU ),
then the ascent and descent of AU − λI are both finite and equal, and

C = N [(AU − λI)m] ⊕ R[(AU − λI)m], (2.4)

with N [(AU − λI)m] = Mλ(AU ) finite dimensional and R[(AU − λI)m] a closed
subspace of C.

The results concerning a formal adjoint theory obtained by Hale [12] for linear
FDEs in finite dimensional spaces of the form u̇(t) = L(ut), with L : C([−r, 0]; Rn)
−→ R

n linear bounded, remain valid for (1.1) without essential modifications.
These results are summarized here, and the reader should consult [7], [15] and
[22] for details.

Let X∗ be the dual of X, C∗ := C([0, r];X∗), and define a formal duality as the
bilinear form << ·, · >> from C∗ × C to the scalar field given by

<< α,ϕ >>=< α(0), ϕ(0) > −
∫ 0

−r

∫ θ

0

< α(ξ − θ), dη(θ)ϕ(ξ) > dξ (2.5)

for α ∈ C∗, ϕ ∈ C, where < ·, · > is the usual duality between X∗ and X. We
remark that

<< fu∗, ϕ >>=< u∗, f(0)ϕ(0) > − < u∗, L
( ∫ θ

0

f(ξ − θ)ϕ(ξ)dξ
)

>, (2.6)

where f ∈ C([0, r]; R), u∗ ∈ X∗, ϕ ∈ C, and we use fu∗ to denote f ⊗ u∗ in C∗,
i.e., (fu∗)(s) = f(s)u∗ for 0 ≤ s ≤ r. Here and throughout this paper, for the sake
of simplicity, we abuse the notation and often write L(ϕ(θ)) instead of L(ϕ), for
ϕ ∈ C. We also define the formal adjoint operator ∗L of L by

∗L : C∗ −→ X∗, ∗L(α) =
∫ 0

−r

dη∗(θ)α(−θ),
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and the formal adjoint equation for (1.1) by

α̇(t) = −A∗
T α(t) − ∗L(αt), t ≤ 0, (2.7)

where: η∗(θ) is the adjoint of η(θ) ∈ L(X∗,X∗), A∗
T is the adjoint of AT and

αt ∈ C∗ is given by αt(s) = α(t + s) for s ∈ [0, r]. Similarly to what was done for
(1.1), the solutions of (2.7) are associated with a C0-semigroup of linear operators
{∗U(t)}t≥0 on C∗ , whose infinitesimal generator ∗AU is given by

∗AUα = −α̇,

D(∗AU ) = {α ∈ C∗ : α̇ ∈ C∗, α(0) ∈ D(A∗
T ),−α̇(0) = A∗

T α(0) + ∗L(α)}. (2.8)

The concept of adjointness relative to the formal duality << ·, · >> is justified
since << ∗AUα,ϕ >>=<< α,AUϕ >>, for α ∈ D(∗AU ), ϕ ∈ D(AU ).

For λ ∈ C, j ∈ N0,m ∈ N, and similarly to what was done in [1] and [12, Section
7.3], in [7] the following linear operators were considered:

Lj
λ : X −→ X, Lj

λ(x) = L
(θj

j!
eλθx

)
,

L(m)
λ : Xm −→ Xm, L(m)

λ =




∆(λ) L1
λ − I L2

λ . . . Lm−1
λ

0 ∆(λ) L1
λ − I . . . Lm−2

λ
...

...
. . . . . .

...
0 0 . . . ∆(λ) L1

λ − I
0 0 . . . 0 ∆(λ)


 ,

R(m)
λ : C −→ Xm, R(m)

λ (ψ) =




−L
( ∫ θ

0
eλ(θ−ξ) (θ−ξ)m−1

(m−1)! ψ(ξ)dξ
)

...
−L

( ∫ θ

0
eλ(θ−ξ)(θ − ξ)ψ(ξ)dξ

)
ψ(0) − L

( ∫ θ

0
eλ(θ−ξ)ψ(ξ)dξ

)




.

Proposition 2.1. ([7]) Assume (H1)–(H3) and let λ ∈ C,m ∈ N. Then,
(i) ϕ ∈ N [(AU − λI)m] if and only if

ϕ(θ) =
m−1∑
j=0

θj

j!
eλθuj , θ ∈ [−r, 0], with




u0

...
um−1


 ∈ N(L(m)

λ );

(ii) ψ ∈ R[(AU − λI)m] if and only if R(m)
λ (ψ) ∈ R(L(m)

λ );
(iii) α ∈ N [(∗AU − λI)m] if and only if

α(s) =
m−1∑
j=0

(−s)j

j!
e−λsx∗

m−j−1, s ∈ [0, r], with (x∗
0, . . . , x

∗
m−1)

T ∈ N((L(m)
λ )∗).

Some spectral properties and the Fredholm alternative related to this formal
duality are referred to in the next statement:

Proposition 2.2. ([7]) (i) σP (AU ) = σP (∗AU ); moreover, if λ ∈ σP (AU ), the
ascent of AU −λI and ∗AU −λI are equal and dimN [(AU −λI)m] = dimN [(∗AU −
λI)m],m ∈ N;

(ii) for λ ∈ σ(AU ) and m ∈ N, then ψ ∈ R[(AU − λI)m] if and only if <<
α,ψ >>= 0 for all α ∈ N [(∗AU − λI)m];

(iii) for λ, µ ∈ σ(AU ), λ 	= µ and m, r ∈ N, << α,ϕ >>= 0 for all α ∈
N [(∗AU − λI)m] and ϕ ∈ N [(AU − µI)r].
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For λ ∈ σ(AU ), let Φλ = (ϕ1, . . . , ϕpλ
), Ψλ = (ψ1, . . . , ψpλ

)T be bases of the
generalized eigenspaces Mλ(AU ) and Mλ(∗AU ), respectively, where pλ =
dim Mλ(AU ) = dimMλ(∗AU ). From Proposition 2.2 and (2.4), we can choose
Φλ,Ψλ such that << Ψλ,Φλ >>:= [<< ψi, ϕj >>]i,j=1,...,pλ

= Ipλ
. As for linear

FDEs in R
n (cf. [12]), there is a pλ × pλ constant matrix Bλ, with σ(Bλ) = {λ}

and such that Φ̇λ = ΦλBλ, −Ψ̇λ = BλΨλ, and U(t) = ΦλeBλt, t > 0. For
Λ = {λ1, . . . , λs} ⊂ σ(AU ), define ΦΛ = (Φλ1 , . . . ,Φλs

),ΨΛ = (Ψλ1 , . . . ,Ψλs
)T ,

where Φλj
,Ψλj

are bases for Mλj
(AU ),Mλj

(∗AU ), respectively, such that <<
ΨΛ,ΦΛ >>= Ip, where p = pλ1 + · · · + pλs

.

Proposition 2.3. ([7]) Assume (H1)–(H3), let Λ = {λ1, . . . , λs} ⊂ σ(AU ), define

PΛ = Mλ1(AU ) ⊕ · · · ⊕Mλs
(AU ), P ∗

Λ = Mλ1(
∗AU ) ⊕ · · · ⊕Mλs

(∗AU ),

and consider bases ΦΛ,ΨΛ for PΛ, P ∗
Λ such that << ΨΛ,ΦΛ >>= Ip, p = dimPΛ.

Then, there exists a subspace QΛ of C, invariant under AU and U(t), t ≥ 0, such
that

C = PΛ ⊕ QΛ (2.9)
with QΛ = {ϕ ∈ C :<< ΨΛ, ϕ >>= 0}. Moreover, ϕ ∈ C is written according
to decomposition (2.9) as ϕ = ϕPΛ + ϕQΛ , where ϕPΛ = ΦΛ << ΨΛ, ϕ >> and
ϕQΛ ∈ QΛ.

We refer to (2.9) as the decomposition of C by Λ, or by the generalized eigenspace
PΛ.

3. The Enlarged Phase Space. Consider an equation with an equilibrium at
zero of the form

u̇(t) = AT u(t) + L(ut) + F (ut), t ≥ 0, (3.1)
where AT , L are as in (1.1), F : C −→ X is a Ck function (k ≥ 2) with F (0) =
0,DF (0) = 0. In this section, we always assume hypotheses (H1)–(H3).

Let Λ be a nonempty finite subset of σ(AU ) (e.g., Λ = {λ ∈ σ(AU ) : Reλ =
0} 	= ∅), and consider the decomposition (2.9) of C by Λ. For the sake of simplicity
and according to Proposition 2.3, we write Λ = {λ1, . . . , λs}, P := PΛ, Q := QΛ,

Φ := ΦΛ = (Φ1, . . . ,Φs)

Ψ := ΨΛ = (Ψ1, . . . ,Ψs)T , with << Ψ,Φ >>= Ip,
(3.2)

and define
B := diag (B1, . . . , Bs),

where Bi are pi×pi matrices such that Φ̇i = ΦiBi,−Ψ̇i = BiΨi, p :=
∑s

i=1 pi, pi :=
dimMλi

(AU ). Clearly Φ̇ = ΦB,−Ψ̇ = BΨ. Recall also that an element ϕ ∈ C is
decomposed according to C = P ⊕ Q as

ϕ = ϕP + ϕQ, with ϕP = Φ << Ψ, ϕ >>, ϕQ ∈ Q. (3.3)

To develop a normal form theory for abstract FDEs, we now follow closely the
work in [8] and [9]. First, it is necessary to enlarge the phase space C in such a
way that Eq. (3.1) is written as an abstract ODE. An adequate phase space to
accomplish this is the space BC,

BC := {ψ : [−r, 0] −→ X | ψ is continuous on [−r, 0),∃ lim
θ→0−

ψ(θ) ∈ X},
with the sup norm. The elements of BC have the form ψ = ϕ+X0α,ϕ ∈ C,α ∈ X,
where

X0(θ) =

{
0, −r ≤ θ < 0
I, θ = 0, (I : X −→ X is the identity),
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so that BC is identified with C × X, with the norm |ϕ + X0α| = |ϕ|C + |α|X .

In BC we define an extension of the infinitesimal generator AU , denoted by ÃU ,

ÃU : C1
0 ⊂ BC −→ BC

ÃUϕ = ϕ̇ + X0[AT ϕ(0) + L(ϕ) − ϕ̇(0)],
(3.4)

where D(ÃU ) = C1
0 := {ϕ ∈ C | ϕ̇ ∈ C,ϕ(0) ∈ D(AT )}. We also define

π : BC −→ P, π(ϕ + X0α) = Φ
(

<< Ψ, ϕ >> + < Ψ(0), α >
)
. (3.5)

Lemma 3.1. π is a continuous projection onto P , which commutes with ÃU in
C1

0 .

Proof. Clearly R(π) = P . From (2.6) and Proposition 2.1(iii), it follows that π
is continuous. Write Φ,Ψ given in (3.2) as Φ = (ϕ1, . . . , ϕp),Ψ = (ψ1, . . . , ψp)T .
Since << Ψ,Φ >>= Ip, then π(ϕi) = ϕi, i = 1, . . . , p and hence π ◦ π = π.

For ϕ ∈ C1
0 , we have

πÃUϕ = Φ
(

<< Ψ, ϕ̇ >> + < Ψ(0), AT ϕ(0) + L(ϕ) − ϕ̇(0) >
)
. (3.6)

Integrating by parts, we obtain

<< Ψ, ϕ̇ >> =< Ψ(0), ϕ̇(0) > −
∫ 0

−r

∫ θ

0

< Ψ(ξ − θ), dη(θ)ϕ̇(ξ) > dξ

=< Ψ(0), ϕ̇(0) > −
∫ 0

−r

< Ψ(0), dη(θ)ϕ(θ) >

+
∫ 0

−r

< Ψ(−θ), dη(θ)ϕ(0) > +
∫ 0

−r

∫ θ

0

< Ψ̇(ξ − θ), dη(θ)ϕ(ξ) > dξ

=< Ψ(0), ϕ̇(0) > − < Ψ(0), L(ϕ) > + < ∗L(Ψ), ϕ(0) >

+
∫ 0

−r

∫ θ

0

< Ψ̇(ξ − θ), dη(θ)ϕ(ξ) > dξ.

Since ψj ∈ D(∗AU ), j = 1, . . . , p, then −Ψ̇(0) = A∗
T Ψ(0) + ∗L(Ψ). From (3.6),

we derive

πÃUϕ = Φ
[

< −Ψ̇(0), ϕ(0) > +
∫ 0

−r

∫ θ

0

< Ψ̇(ξ − θ), dη(θ)ϕ(ξ) > dξ
]

= Φ << −Ψ̇, ϕ >>= Φ << BΨ, ϕ >>= Φ̇ << Ψ, ϕ >>= ÃUπϕ.

Decomposition C = P ⊕ Q and the above lemma allow us to decompose BC as
a topological direct sum,

BC = P ⊕ N(π), (3.7)
where the subspace Q is contained in the null space of π. Therefore, Eq. (3.1)
can be decomposed as a system of abstract ODEs in R

p × N(π) ≡ BC, as follows.
Setting v(t) = ut ∈ C, from (3.1) we have

dv

dt
(0) = AT v(0) + L(v) + F (v),

dv

dt
(θ) =

dv

dθ
(θ) for θ ∈ [−r, 0),

or simply
dv

dt
= ÃUv + X0F (v). (3.8)

Note that (3.8) is the abstract ODE in BC associated with (3.1). Using (3.7), we
write v(t) ∈ C1

0 as v(t) = Φx(t) + y(t), with x(t) =<< Ψ, v(t) >>∈ R
p, y(t) =
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(I − π)v(t) ∈ N(π)∩C1
0 = Q∩C1

0 = {ϕ ∈ Q : ϕ̇ ∈ C,ϕ(0) ∈ D(AT )} := Q1
0. Thus,

v(t) is a solution of (3.8) iff

Φ
dx

dt
(t) +

dy

dt
(t) = ÃUΦx(t) + (I − π)ÃUy(t)

+ Φ < Ψ(0), F (Φx(t) + y(t)) > +(I − π)X0F (Φx(t) + y(t)).

Since ÃUΦ = ΦB, ÃUπ = πÃU in C1
0 and dy

dt (t) ∈ N(π), the above equation is
equivalent to the system on R

p × N(π){
ẋ(t) = Bx(t)+ < Ψ(0), F (Φx(t) + y(t)) >

ẏ(t) = A1y(t) + (I − π)X0F (Φx(t) + y(t)), x(t) ∈ R
p, y(t) ∈ Q1

0,
(3.9)

(here the dot denotes the derivative with respect to t), where A1 is the restriction
of ÃU to Q1

0 interpreted as an operator acting in the Banach space N(π), i.e.,

A1 : Q1
0 ⊂ N(π) −→ N(π), A1ϕ = ÃUϕ, for ϕ ∈ Q1

0.

The spectrum of A1 will be an important tool for the construction of normal forms.
This is the reason why it is crucial to restrict the range of ÃU |Q1

0
, by considering

A1 in the space N(π), rather than the full space BC.

Lemma 3.2. With the notations above, σ(ÃU ) = σP (ÃU ) = σ(AU ).

Proof. It is obvious that σP (ÃU ) = σP (AU ). On the other hand, it is known
that σP (AU ) = σ(AU ). Consider now λ ∈ ρ(AU ). From Proposition 2.4 in [7], we
have R(∆(λ)) = X; hence, for each ψ ∈ C,α ∈ X there is b ∈ D(AT ) such that

∆(λ)b = ψ(0) − L
( ∫ θ

0

eλ(θ−ξ)ψ(ξ)dξ
)

+ α.

Define ϕ(θ) = eλθb +
∫ θ

0
eλ(θ−ξ)ψ(ξ)dξ. Then, ϕ ∈ C1

0 , ϕ̇ − λϕ = ψ and

AT b + L(eλθb) + L
( ∫ θ

0

eλ(θ−ξ)ψ(ξ)dξ
) − ϕ̇(0)

= ∆(λ)b − ψ(0) + L
( ∫ θ

0

eλ(θ−ξ)ψ(ξ)dξ
)

= α,

proving that (ÃU −λI)ϕ = ψ+X0α. We conclude then that R(ÃU −λI) = BC and
since ÃU is a closed operator in the Banach space BC this justifies that λ ∈ ρ(ÃU ).

Lemma 3.3. With the notations above, σ(A1) = σP (A1) = σ(AU ) \ Λ.

Proof. Using arguments as in [8, Lemma (5.2)], one can prove the following
claims:

Claim 1: σP (A1) = σ(AU ) \ Λ.
Claim 2: σ(A1) ⊂ σ(ÃU ).
From the previous lemma, it is now sufficient to show that
Claim 3: if λ ∈ Λ, then R(A1 − λI) = N(π).
Let λ ∈ Λ and consider f ∈ N(π). As f = (I − π)f , ÃU commutes with π in its

domain and C1
0 ∩ N(π) = Q1

0, then f ∈ R(A1 − λI) iff f ∈ R(ÃU − λI). Hence to
justify Claim 3 it is sufficient to show that for each f = φ + X0α ∈ BC with

<< Ψ, φ >> + < Ψ(0), α >= 0, (3.10)
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there exists h ∈ C1
0 such that (ÃU − λI)h = φ + X0α, which is equivalent to{

ḣ − λh = φ

AT h(0) + L(h) − ḣ(0) = α.
(3.11)

The solution of the first equation is h(θ) = eλθb+
∫ θ

0
eλ(θ−ξ)φ(ξ)dξ, where b = h(0).

Moreover we have ḣ(0) = λb + φ(0). By substituting these expressions into the
second equation of (3.11) we conclude that there is h ∈ C1

0 satisfying (3.11) iff
there is b ∈ D(AT ) such that

∆(λ)b = L
( ∫ θ

0

eλ(θ−ξ)φ(ξ)dξ
)

+ φ(0) + α. (3.12)

Let λ = λi for some i ∈ {1, 2, · · · , s} and let {ψλi
1 , · · · , ψλi

k } (k ≤ pi) be a basis of
N(∗AU − λiI). It follows from Proposition 2.1(iii) that

ψλi
j (s) = e−λisx∗

j , s ∈ [0, r], j = 1, 2, · · · , k,

where {x∗
1, · · · , x∗

k} is a basis of N(∆(λ)∗). Now (3.10) and (2.6) clearly imply that
for j = 1, · · · , k,

0 =<< ψλi
j , φ >> + < ψλi

j (0), α >

=< x∗
j , φ(0) > − < x∗

j , L
( ∫ θ

0

eλi(θ−ξ)φ(ξ)dξ
)

> + < x∗
j , α >

=< x∗
j ,−L

( ∫ θ

0

eλi(θ−ξ)φ(ξ)dξ
)

+ φ(0) + α > .

That is, −L
( ∫ ·

0
eλi(·−ξ)φ(ξ)dξ

)
+ φ(0) + α ∈ [N(∆(λ)∗)]⊥ = R(∆(λ)) = R(∆(λ))

(see [7, Lemma 2.6]). It follows that (3.12) has a solution b ∈ D(AT ).

4. Normal Forms on Center Manifolds or Other Invariant Manifolds. For
the sake of applications, we are particularly interested in obtainig normal forms for
equations giving the flow on center manifolds. Therefore, we now fix Λ as the set of
eigenvalues for AU on the imaginary axis. However, we shall consider and analyse
situations corresponding to other choices of Λ. In the following, we always assume
(H1)–(H3) and use formal series, although in applications only a few terms of those
series are computed.

Suppose then that Λ = {λ ∈ σ(AU ) : Reλ = 0}, consider Eq. (3.1) written in
the form (3.9) and expand F in Taylor series as

F (v) =
∑
j≥2

1
j!

Fj(v), v ∈ C,

where Fj is jth Fréchet derivative of F . Eq. (3.9) becomes{
ẋ = Bx +

∑
j≥2

1
j!f

1
j (x, y)

ẏ = A1y +
∑

j≥2
1
j!f

2
j (x, y),

(4.1)

with fj := (f1
j , f2

j ), j ≥ 2, defined by

f1
j (x, y) =< Ψ(0), Fj(Φx + y) >, f2

j (x, y) = (I − π)X0Fj(Φx + y). (4.2)

As for autonomous FDEs in R
n (cf. [8], [9]), normal forms are obtained by a

recursive process of changes of variables. At each step, the change of variables has
the form

(x, y) = (x̄, ȳ) +
1
j!

(U1
j (x̄), U2

j (x̄)), (4.3j)
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where x, x̄ ∈ R
p, y, ȳ ∈ Q1

0 and U1
j : R

p −→ R
p, U2

j : R
p −→ Q1

0 are homogeneous
polynomials of degree j in x̄. For each j, the aim is to choose (4.3j) in such a way
that all the non-resonant terms of degree j vanish in the transformed equation.

From Theorem 4.2 in [7], the existence of a locally center manifold is guaranteed
under the present circumstances. We want now to linearize the function giving the
center manifold, and simplify the ODE giving the flow on it, by removing all the
non-resonant terms — which means that this ODE should be in normal form.

We describe now the algorithm for computing such normal forms. Suppose that
the changes of variables (4.3�), 2 ≤ � ≤ j − 1 have already been performed. Denote
by f̃j = (f̃1

j , f̃2
j ) the terms of order j in (x, y) obtained after these transformations,

and effect then (4.3j). This recursive process transforms (4.1) into{
˙̄x = Bx̄ +

∑
j≥2

1
j!g

1
j (x̄, ȳ)

˙̄y = A1ȳ +
∑

j≥2
1
j!g

2
j (x̄, ȳ),

(4.4)

where gj := (g1
j , g2

j ) are the new terms of order j given by

g1
j (x, y) = f̃1

j (x, y) − [DU1
j (x)Bx − BU1

j (x)]

g2
j (x, y) = f̃2

j (x, y) − [DU2
j (x)Bx − A1(U2

j (x))], j ≥ 2.

We introduce now some notation: for j ∈ N and Y a normed space, let V p
j (Y )

denote the space of homogeneous polynomials of degree j in p variables, x =
(x1, . . . , xp), with coefficients in Y , V p

j (Y ) = {∑|q|=j cqx
q : q ∈ N

p
0, cq ∈ Y },

with the norm |∑|q|=j cqx
q| =

∑
|q|=j |cq|Y . Define also the operators Mj =

(M1
j ,M2

j ), j ≥ 2, by

M1
j : V p

j (Rp) −→ V p
j (Rp), (M1

j h1)(x) = Dh1(x)Bx − Bh1(x)

M2
j : V p

j (Q1
0) ⊂ V p

j (N(π)) −→ V p
j (N(π)), (M2

j h2)(x) = Dxh2(x)Bx − A1(h2(x)).
(4.5)

Setting Uj = (U1
j , U2

j ), it is clear that

gj = f̃j − MjUj . (4.6)

The ranges of M1
j ,M2

j contain exactly the terms that can be removed from the
equation. They are determined (in general not in a unique way) by the choices of
complementary spaces for R(Mj). Naturally, the situation R(M2

j ) = V p
j (N(π)), j ≥

2, is of particular interest, since it allows us to choose U2
j such that f̃2

j (x, 0) =
(M2

j U2
j )(x), so that the center manifold has equation y = 0. Hence, it is important

to characterize the spectrum of M2
j , j ≥ 2.

Lemma 4.1. The linear operators M2
j , j ≥ 2, are closed and their spectra are

σ(M2
j ) = σP (M2

j ) = {(q, λ̄) − µ : µ ∈ σ(A1), q ∈ N
p
0, |q| = j},

where: λ̄ = (λ1, . . . λp), λ1, . . . , λp are the elements of Λ, counting multiplicities,
and (q, λ̄) = q1λ1 + · · · + qpλp, |q| = q1 + · · · + qp, for q = (q1, . . . , qp).

Proof. Using the arguments for finite dimensional ODEs in Chow and Hale [4,
pp. 408-410], we obtain

σP (M2
j ) = {(q, λ̄) − µ : µ ∈ σ(A1), q ∈ N

p
0, |q| = j}.

To show that σ(M2
j ) = σP (M2

j ), we follow the proof of Theorem (5.4) in [8]. In
both cases, the proofs are algebraic and include an inductive reasoning which is
straightforward to adapt to the present situation, so it is omitted.
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Proposition 4.2. Let Λ = {λ ∈ σ(AU ) : Reλ = 0} 	= ∅ and consider the space
BC decomposed by Λ, BC ≡ R

p × N(π). Then, there exists a formal change of
variables (x, y) = (x̄, ȳ) + O(|x̄|2), such that:

(i) Eq. (4.1) is transformed into Eq. (4.4), where g2
j (x̄, 0) = 0, j ≥ 2;

(ii) a locally center manifold for Eq. (3.1) at zero satisfies ȳ = 0; futhermore,
the flow on it is given by the ODE

˙̄x = Bx̄ +
∑
j≥2

1
j!

g1
j (x̄, 0), x̄ ∈ R

p, (4.7)

which is in normal form (in the usual sense of normal forms for ODEs).

Proof. From Lemma 3.3, σ(A1) = σ(AU ) \Λ. Then, for µ ∈ σ(A1), q ∈ N
p
0, |q| =

j, we have Re [(q, λ̄) − µ] = −Reµ 	= 0, and Lemma 4.1 implies that 0 ∈ ρ(M2
j )

and R(M2
j ) = V p

j (N(π)), j ≥ 2. It is then possible to choose U2
j so that f̃2

j (x, 0) =
(M2

j U2
j )(x), and (i) follows from (4.6). Clearly, for (4.4) a locally center manifold

is now given by ȳ = 0, and (4.7) describes the flow on it. For adequate choices of
U1

j , j ≥ 2, this ODE in R
p is in normal form, since the operators M1

j defined in
(4.5) coincide with those operators defined for computing normal forms for ODEs
in R

p (cf. e.g. [4] and [11]).

Suppose now that another nonempty finite subset Λ of σ(AU ) is chosen, and
consider decomposition (3.7) of BC by Λ. Assume that there exists a locally
invariant manifold MΛ,F for Eq. (3.1) tangent to P at zero. For instance, if
Λ = {λ ∈ σ(AU ) : Reλ ≥ 0} 	= ∅, P is the center-unstable space for the linear
equation u̇(t) = AT u(t) + L(ut) and MΛ,F is the center-unstable manifold for Eq.
(3.1) at zero. In this case, the existence and regularity of MΛ,F were proven in
[16]. In general, provided the existence and regularity of MΛ,F , we obtain a similar
result to the one stated above for the case of center manifolds, if some additional
non-resonance conditions are assumed.

Definition 4.1. Let Λ be a nonempty finite subset of σ(AU ). Eq. (4.1) (or Eq.
(3.1)) is said to satisfy the non-resonance conditions relative to Λ if

(q, λ̄) 	= µ, for all µ ∈ σ(AU ) \ Λ, q ∈ N
p
0, |q| ≥ 2. (4.8)

From Lemmas 3.3 and 4.1, if (4.8) holds then 0 ∈ ρ(M2
j ) and R(M2

j ) = V p
j (N(π)),

for all j ≥ 2, and we can state the following:

Proposition 4.3. If (4.8) is satisfied, the statements in Proposition 4.2 are valid
for other invariant manifolds associated with other nonempty finite subsets Λ of
σ(AU ), assuming that these manifolds exist. In particular, they are valid for the
case of center-unstable manifolds.

For Λ = {λ ∈ σ(AU ) : Reλ = 0} 	= ∅ as before, or in a more general setting for
Λ such that (4.8) holds, we give now the definition of normal forms relative to Λ.

Definition 4.2. Eq. (4.4) is said to be a normal form for Eq. (4.2) (or Eq. (3.1))
relative to Λ if gj = (g1

j , g2
j ) are defined by (4.6), with U2

j (x) = (M2
j )−1f̃2

j (x, 0) and
U1

j (j ≥ 2) are chosen in such a way that Eq. (4.7) is an ODE in normal form.

Remark 4.1. From the method of normal forms for finite dimensional ODEs,
Eq. (4.7) is in normal form if U1

j (x) = (M1
j )−1P 1

j f̃1
j (x, 0), j ≥ 2, where P 1

j is the
projection of V p

j (Rp) onto R(M1
j ) and (M1

j )−1 is a right inverse of M1
j , with P 1

j ,M1
j

depending on the choices of complementary spaces for R(M1
j ), N(M1

j ) in V p
j (Rp),

respectively (see [4, Chap. 12] and [8]).
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Remark 4.2. Consider Eq. (3.1), with F ∈ Ck, for some k ≥ 2, and assume that
the non-resonance conditions (4.8) are fulfilled, but only for |q| = j, 2 ≤ j ≤ k
(instead of |q| ≥ 2). Using the algorithm described above, steps of order j, 2 ≤ j ≤
k, can be performed through changes of variables of the form (4.3j). We obtain
then a normal form relative to Λ up to k-order terms:{

˙̄x = Bx̄ +
∑k

j=2
1
j!g

1
j (x̄, ȳ) + h.o.t.

˙̄y = A1ȳ +
∑k

j=2
1
j!g

2
j (x̄, ȳ) + h.o.t.,

where h.o.t stands for higher order terms. The first equation at ȳ = 0 gives the
normal form up to k-order terms on the invariant manifold associated with Λ, if it
exists.

Remark 4.3. The terms g1
j (x, 0) in (4.7) are recursively given in terms of the

coefficients of the original FDE (3.1), according to the following scheme (see Remark
4.1 for notation):

First step (j = 2) : f̃1
2 = f1

2 ; g1
2(x, 0) = (I − P 1

2 )f1
2 (x, 0).

Second step (j = 3) : U1
2 (x) = (M1

2 )−1P 1
2 f1

2 (x, 0); U2
2 (x) = (M2

2 )−1f2
2 (x, 0);

f̃1
3 (x, 0) = f1

3 (x, 0) + 3
2 [(Dxf1

2 )U1
2 + (Dyf1

2 )U2
2 − (DxU1

2 )g1
2 ](x, 0); g1

3(x, 0) = (I −
P 1

3 )f̃1
3 (x, 0). . . .

For studying bifurcation problems, we need to consider situations with parame-
ters:

u̇(t) = AT u(t) + L(α)(ut) + F (ut, α), (4.9)

where α ∈ V, V a neighbourhood of zero in R
m, L : V −→ L(C;X), F : C ×V −→

X are Ck functions, k ≥ 2, F (0, α) = 0,D1F (0, α) = 0, for all α ∈ V . Introducing
the parameter α as a variable by adding α̇ = 0, we write (4.9) as

u̇(t) = AT u(t) + L0(ut) + (L(α) − L0)(ut) + F (ut, α)

(α̇(t) = 0),
(4.10)

where L0 := L(0). In an obvious way, the above procedure can be repeated for
(4.10), noting however that the term (L(α)−L0)(ut) is no longer of the first order,
since α is taken as a variable. On the other hand, as for Eq. (1.1), the infinitesimal
generator of the C0-semigroup associated with the flow of the linear equation u̇(t) =
AT u(t)+L0(ut), α̇(t) = 0 has only point spectrum, given by σ(AU )∪{0} (AU being
the infinitesimal generator for u̇(t) = AT u(t) + L0(ut)). Now, λ = 0 is always an
eigenvalue, whose associated generalized eigenspace is M0(AU ) × R

m, with the
notation M0(AU ) = {0} if 0 ∈ ρ(AU ). In order to consider the entire generalized
eigenspace associated with λ = 0, the assumption

0 ∈ Λ, whenever 0 ∈ σ(AU ) (4.11)

is required; and the non-resonance conditions relative to Λ read now as

(q, λ̄) 	= µ, for all µ ∈ σ(AU ) \ Λ, q ∈ N
p
0, |q| ≥ 0. (4.12)

Writing the Taylor expansion L(α) = L0 + L1(α) + 1
2L2(α) + · · · , we note that

fj = (f1
j , f2

j ), j ≥ 2, are now defined by (see [9] for details)

f1
j (x, y, α) =< Ψ(0), jLj−1(α)(Φx + y) + Fj(Φx + y, α) >

f2
j (x, y, α) = (I − π)X0[jLj−1(α)(Φx + y) + Fj(Φx + y, α)].

(4.13)
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5. Applications to Bifurcation Problems. Consider a delayed equation with
spatial diffusion of type

∂u(t, x)
∂t

= d
∂2u(t, x)

∂x2
+ a(x, α)u(t, x) + b(x, α)u(t − 1, x)

+ f(u(t, x), u(t − 1, x), x, α), t > 0, x ∈ (�1, �2)
(5.1)

where: d > 0, �2 > �1, α ∈ V , a, b : [�1, �2] × V −→ R are continuous functions and
Ck relative to α, f : R × R × [�1, �2] × V −→ R is continuous and f(z1, z2, ·, α) is
a Ck+1 function such that f(0, 0, x, α) = D1f(0, 0, x, α) = D2f(0, 0, x, α) = 0 for
(x, α) ∈ [�1, �2]× V , where V ⊂ R

m (m ≥ 1) is a neighbourhood of zero and k ≥ 1.
We also require the solutions u to satisfy either Neumann or Dirichlet conditions:

∂u

∂x
(t, �1) =

∂u

∂x
(t, �2) = 0, or (5.2)

u(t, �1) = u(t, �2) = 0. (5.3)

Let X = L2[�1, �2], and consider the operator AT defined by AT v = dv′′ and
domain D := D(AT ) = {v ∈ W 2,2[�1, �2] : v′(�1) = v′(�2) = 0} if (5.2), or D :=
D(AT ) = {v ∈ W 2,2[�1, �2] : v(�1) = v(�2) = 0} if (5.3). Then, AT generates a
C0-semigroup of compact operators. We note that other choices were possible: for
instance, we could consider X = C[�1, �2], D(AT ) = {v ∈ C2[�1, �2] : v′(�1) =
v′(�2) = 0} in the case of (5.2), and D(AT ) = {v ∈ C2[�1, �2] : v(�1) = v(�2) = 0}
in the case of (5.3).

In the phase space C = C([−1, 0];X), Eq. (5.1) is written as

u̇(t) = AT u(t) + L(α)ut + F (ut, α) (5.4)

where u(t) = u(t, ·) ∈ X, L(α) : C −→ X,F : C × V −→ X are defined by
L(α)(ϕ) = a(·, α)ϕ(0) + b(·, α)ϕ(−1), F (ϕ,α) = f(ϕ(0), ϕ(−1), ·, α).

For a(x, 0) = a0(x), b(x, 0) = b0(x), then L0 := L(0) is given by L0(ϕ) =
a0(·)ϕ(0) + b0(·)ϕ(−1). The linearized equation at u = 0, α = 0 is

u̇(t) = AT u(t) + L0ut, (5.5)

with characteristic equation

∆(λ)u = 0 for some u ∈ D \ {0},
where

∆(λ)u = du′′ + a0u + e−λb0u − λu.

5.1. A Bogdanov-Takens Bifurcation. Suppose that α = (α1, α2) ∈ V ⊂ R
2,

a(x, α) = a0(x) + α1a1(x) + O(|α|2), b(x, α) = b0(x) + α2b1(x) + O(|α|2), and k = 1
in (5.1). For (5.5), we now assume the following hypotheses:

(5.6) λ = 0 is a double characteristic value of (5.5) and the ascent of AU is 2.
(5.7) all other characteristic values of (5.5) have non-zero real parts.

Assumption (5.6) means that (see Proposition 2.1 and [7])

dim N(AU ) = 1,

dim N [(AU )2] = 2,

M0(AU ) = N [(AU )2] = {v + θu : ∆(0)u = 0,∆(0)v + L0(θu) − u = 0, u, v ∈ D}.
As usual, here and in the sequel we abuse the notation and write L0(ϕ(θ)) for
L0(ϕ).
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Let Λ = {0} and consider the enlarged phase space BC decomposed by Λ as
BC = P ⊕ N(π), where P = M0(AU ) is the center space for (5.5). Then, (5.6)-
(5.7) imply that there exist functions u0 ∈ D \ {0}, v0 ∈ D such that

P = span Φ, Φ(θ) = [ϕ1(θ) ϕ2(θ)] = [u0 v0 + θu0], θ ∈ [−1, 0],

and
du′′

0 + (a0 + b0)u0 = 0, dv′′
0 + (a0 + b0)v0 − (b0 + 1)u0 = 0. (5.8)

We note that Φ̇ = ΦB, where B is the 2 × 2 matrix B =
(

0 1
0 0

)
.

The formal duality << ·, · >> associated with the adjoint equation for (5.5)
is given by (2.6), where in this case r = 1 and < ·, · > is the duality in X∗ × X
(X considered as a Banach space, rather than a Hilbert space), i.e., < u, v >=∫ �2

�1
u(x)v(x)dx, and η is such that

L0(ϕ) = a0(·)ϕ(0) + b0(·)ϕ(−1) =
∫ 0

−1

dη(θ)ϕ(θ).

From Proposition 2.1, a basis Ψ for the adjoint space P ∗ satisfying −Ψ̇ = BΨ has
the form

P ∗ = span Ψ, Ψ(θ) =
(

ψ1(s)
ψ2(s)

)
=

(
x0 − sy0

y0

)
, s ∈ [0, 1],

where x0 ∈ D, y0 ∈ D \ {0} are such that

dy′′
0 + (a0 + b0)y0 = 0, dx′′

0 + (a0 + b0)x0 − (b0 + 1)y0 = 0.

Since (5.6) holds, then x0 = β1u0 + β2v0, y0 = β2u0 for some contants β1, β2 ∈ R.
Using (2.6), (5.8) and noting that ∆(0)∗ = ∆(0), it is easy to see that condition
<< Ψ,Φ >>= (ψi, φj)2i,j=1 = I2 implies that

Ψ(s) =
(

β1u0 + β2(v0 − su0)
β2u0

)
, s ∈ [0, 1],

where β1, β2 ∈ R are determined by

< u0, (1 + b0)v0 − b0u0/2 > β2 = 1,

< u0, (1 + b0)v0 − b0u0/2 > β1

+ (< v0, (1 + b0)v0 − b0u0 > + < u0, b0u0/6 >)β2 = 0.

(5.9)

Remark 5.1. Clearly, β1, β2 are determined by (5.9), since < u0, (1 + b0)v0 −
b0u0/2 >	= 0. In fact, from (5.8) we obtain < u0, (1 + b0)u0 >=< u0,∆(0)v0 >=<
∆(0)u0, v0 >= 0. In order to get a contradiction, suppose < u0, (1 + b0)v0 −
b0u0/2 >= 0. Then

< c1

(
u0

v0

)
+ c2

(
0
u0

)
,

( −b0u0/2
(1 + b0)u0

)
>= 0, for all c1, c2 ∈ R.

Since
{ (

0
u0

)
,

(
u0

v0

) }
is a basis for N [(L(2)

0 )∗], we derive from this that

( −b0u0/2
(1 + b0)u0

)
∈ N [(L(2)

0 )∗]⊥ = R(L(2)
0 ) = R(L(2)

0 ),

where the last equality follows from [7, Lemma 2.6]. On the other hand,( −b0u0/2
(1 + b0)u0

)
= R(2)

0 (ϕ1), where ϕ1 = u0.
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Proposition 2.1 and (2.4) imply now ϕ1 ∈ R[(AU )2]∩N [(AU )2] = {0}, a contradic-
tion.

Write (5.4) as u̇(t) = AT u(t) + L0ut + (L(α)−L0)(ut) + F (ut, α). Decomposing
ut = Φx(t) + yt, x(t) ∈ R

2, yt ∈ Q1
0 as for (3.9), (5.4) is decomposed as{

ẋ = Bx+ < Ψ(0), (L(α) − L0)(Φx + y) + F (Φx + y, α) >

ẏ = A1y + (I − π)X0[(L(α) − L0)(Φx + y) + F (Φx + y, α)].
(5.10)

According to (4.13), we write

< Ψ(0), (L(α) − L0)(Φx + y)+F (Φx + y, α) >=
1
2
f1
2 (x, y, α) + O(|α|2|(x, y)| + |α||(x, y)|2)

where f1
2 is a homogeneous polynomial in (x, y, α) of degree 2 with coefficients in

R
2.
To show the application of normal forms, suppose now that f(z1, z2, x, α) =

c0(x)z1z2 + O(|α||z|2 + |z|3), c0 : [�1, �2] −→ R a C2 function. This means that
(5.1) has the form

∂u(t, x)
∂t

= d
∂2u(t, x)

∂x2
+ a(x, α)u(t, x) + b(x, α)u(t − 1, x)

+ c0(x)u(t, x)u(t − 1, x) + h.o.t, t > 0, x ∈ (�1, �2)
(5.11)

where h.o.t contains only terms of order higher than three in (u, α) ∈ C × V .
Consider the problem (5.11), with either boundary conditions (5.2) or (5.3), in

its abstract form (5.4) and initial condition u0 = ϕ ∈ C = C([−1, 0];X). For
X = L2[�1, �2] as above, this problem is not well-posed, since L2[�1, �2] is not a
Banach algebra. In order to guarantee the existence of solutions, the state space
should be restricted to an appropriate space of functions from [�1, �2] to R invariant
under products. For instance, we could consider X = C[�1, �2] or X = W 2,2[�1, �2]
(see e.g. [5], [17], [18] and [25]). Another possibility is to restrict the initial-
history space, i.e., the space for initial conditions ϕ. This latter approach is one
usually chosen in the literature dealing with parabolic differential equations, with-
out or with delay. To overcome the difficulty, one can consider a fractional power
(AT )β of the operator AT for an adequate 0 < β < 1 (see Henry [14]). Then, the
fractional power space Xβ = D(Aβ) with the norm ‖v‖β = ‖(AT )βv‖ is taken
as the Banach state space, and Cβ = C([−1, 0];Xβ) as the new phase space.
In the present situation, in order to simplify the computations and use Φ,Ψ as
above, it is convenient to keep X = L2[�1, �2] and the duality < ·, · > in X∗ × X.
Since AT = d d2

dx2 with domain D, it is sufficient to take β = 1
2 and consider C 1

2
,

F : C 1
2
× V −→ X, F (ϕ, β) = c0(·)ϕ(0)ϕ(−1) + h.o.t.. See [10], [13], [14], [19],

[23] and [24] for details. A different framework of investigating the existence of
solutions of partial FDEs with delay was considered in [20] and [21]. In particular,
a system similar to (5.11) with Dirichlet conditions on the boundary was studied in
[21]. In this paper, the authors considered X = L2[�1, �2], initial conditions chosen
in a “natural” initial-history space, and proved existence of solutions by exploring
different techniques and properties, such as the accretivity of the negative Lapla-
cian. Here, we proceed with the computation of normal forms, without further
considerations on the existence of solutions for the initial value problem, since this
is not the aim of this paper.
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With the notations of Section 4, for f given as above, we have
1
2
f1
2 (x, 0, α) =< Ψ(0), α1a1Φ(0)x + α2b1Φ(−1)x > + < Ψ(0), c0(Φ(0)x)(Φ(−1)x) >

=< Ψ(0), (α1a1 + α2b1)u0x1 + (α1a1v0 + α2b1(v0 − u0))x2 >

+ < Ψ(0), c0(u0x1 + v0x2)(u0x1 + (v0 − u0)x2) >,

where Ψ(0) = col(β1u0 + β2v0, β2u0). The normal form for (5.10) on the center
manifold of the origin at α = 0 as the form

ẋ = Bx +
1
2
g1
2(x, 0, α) + h.o.t.,

where g1
2(x, 0, α) = (I −P 1

2 )f1
2 (x, 0, α) (see (4.6) and Remark 4.3) and h.o.t. stands

for higher order terms.
Recall the operators M1

j given by (4.5). In this case, we have

M1
2

(
p1

p2

)
=

(
∂p1
∂x1

x2 − p2
∂p2
∂x1

x2

)
.

It is easy to check that one can choose the decomposition V 2
2 (R2) = R(M1

2 ) ⊕
(R(M1

2 ))c, with complementary space (R(M1
2 ))c defined by

(R(M1
2 ))c = span

{ (
0

x1α1

)
,

(
0

x1α2

)
,

(
0

x2α1

)
,

(
0

x2α2

)
,

(
0
x2

1

)
,

(
0

x1x2

)}
.

Note that g1
2(x, 0, α) = Proj(R(M1

2 ))cf1
2 (x, 0, α). The decomposition above and the

definition of M1
2 yield

1
2
g1
2(x, 0, α) =

(
0

λ1x1 + λ2x2

)
+

(
0

A1x
2
1 + A2x1x2

)
,

where
A1 = β2 < u0, c0u

2
0 >

A2 = 2β1 < u0, c0u
2
0 > +β2 < u0, c0u0(4v0 − u0) >

(5.12)

and the bifurcating parameters are given by

λ1 =(< u0, a1u0 > α1+ < u0, b1u0 > α2)β2

λ2 =
(

< u0, a1u0 > β1 + 2 < v0, a1u0 > β2

)
α1

+
(

< u0, b1u0 > β1+ < u0, b1(2v0 − u0) > β2

)
α2.

(5.13)

These results lead to the following statement:

Theorem 5.1. Consider Eq. (5.1) with α = (α1, α2) ∈ V ⊂ R
2, a(x, α) =

a0(x) + α1a1(x) + O(|α|2), b(x, α) = b0(x) + α2b1(x) + O(|α|2), where a0, b0, a1, b1 :
[�1, �2] −→ R are continuous, and f(z1, z2, x, α) = c0(x)z1z2+O(|α||z|2+ |z|3), with
c0 : [�1, �2] −→ R a C2 function. Assume also either (5.2) or (5.3), and that (5.5)
and (5.6) hold. Then, there is 2-dimensional locally center manifold of the origin
at α = 0, on which the flow is given by{

ẋ1 = x2 + h.o.t

ẋ2 = λ1x1 + λ2x2 + A1x
2
1 + A2x1x2 + h.o.t,

(5.14)

where the coefficients λ1, λ2, A1, A2 are given by (5.12) and (5.13). If A1A2 	= 0
and

< u0, a1u0 >< u0, b1(2v0 − u0) > −2 < u0, b1u0 >< v0, a1u0 >	= 0,
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then (5.14) exhibits a generic Bogdanov-Takens bifurcation.

Proof. It remains to prove the last statement. Note that the above inequal-
ity means that λ1, λ2 given by (5.13) are linearly independent. Therefore, ẋ1 =
x2, ẋ2 = λ1x1 + λ2x2 + A1x

2
1 + A2x1x2 is a versal unfolding for (5.14) (see [3], [4],

[11]).

Example 5.1. As a particular case, suppose that the above hypotheses hold with
b0(x) ≡ −1. In this situation, we can choose v0 = 0 and conditions (5.8) reduce to

du′′
0 + (a0 − 1)u0 = 0, for some u0 ∈ D \ {0}.

Consequently,

Φ(θ) = [u0 θu0], θ ∈ [−1, 0], Ψ(s) =
(

(β1 − sβ2)u0

β2u0

)
, s ∈ [0, 1],

where from (5.9) the coefficients β1, β2 are given by

β1 =
2

3 < u0, u0 >
, β2 =

2
< u0, u0 >

.

Thus, the flow on the center manifold of the origin at α = 0 is given by (5.14) ,
with the following coefficients and bifurcating parameters:

A1 =
2 < u0, c0u

2
0 >

< u0, u0 >
, A2 = −2 < u0, c0u

2
0 >

3 < u0, u0 >
,

λ1 =
2

< u0, u0 >

(
< u0, a1u0 > α1+ < u0, b1u0 > α2

)
,

λ2 =
2

3 < u0, u0 >

(
< u0, a1u0 > α1 − 2 < u0, b1u0 > α2

)
.

If < u0, a1u0 >< u0, b1u0 >< u0, c0u
2
0 >	= 0, then (5.14) undergoes a generic

Bogdanov-Takens bifurcation on the center manifold of the origin. Futhermore, we
have A1A2 < 0. If

∫ �2
�1

c0(x)u3
0(x)dx < 0, then A1 < 0, A2 > 0. In this case and in

the (λ1, λ2)-bifurcation diagram, the Hopf bifurcation curve H and the homoclinic
bifurcation curve HL lie in the region λ1 > 0, λ2 < 0, with H to the left of HL;
both the homoclinic loop and the periodic orbit are asymptotically stable ([3], [4]).
The case A1 > 0, A2 < 0 is analogous.

5.2. A Hopf Bifurcation. Consider again (5.1), and suppose now that a(x, α) =
a0(x)+αa1(x)+O(α2), b(x, α) = b0(x)+αb1(x)+O(α2), for α ∈ V ⊂ R. Let (5.5)
be its linearized equation at u = 0, α = 0. For α = 0, we now assume the following:

(5.15) there is a pair of simple characteristic values of (5.5) on the imaginary axis,
±iω (ω 	= 0);

(5.16) all the other characteristic values of (5.5) have nonzero real parts.

Considering X as a complex Banach space, let u0 be such that

du′′
0 + (a0 + b0e

−iω − iω)u0 = 0, u0 ∈ D \ {0};
then, span {u0} = N(∆(iω)) and Miω(AU ) = N(AU − iωI) = {ceiω·u0 : c ∈ C}.
We can choose

Φ(θ) = [eiωθu0 e−iωθū0] for θ ∈ [−1, 0], Ψ(s) =
(

βe−iωsu0

β̄eiωsū0

)
for s ∈ [0, 1],

with << Ψ,Φ >>= I if

β =< u0, (1 + b0e
−iω)u0 >−1 . (5.17)
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Clearly << e−iω·u0, e
iω·u0 >>	= 0, otherwise Proposition 2.2(ii) would imply that

eiω·u0 ∈ R(AU − iωI), a contradition by (2.4). Thus, β is well-defined by (5.17).
For B = diag (iω,−iω), we have Φ̇ = ΦB,−Ψ̇ = BΨ. In the enlarged phase

space BC, we decompose Eq. (5.1) with boundary conditions (5.2) or (5.3) by
Λ = {iω,−iω}, getting Eq. (3.9), where x = (x1, x2) ∈ C

2. Let

F0(ϕ,α) = (L(α) − L0)(ϕ) + F (ϕ,α)

= α
(
a1(·)ϕ(0) + b1(·)ϕ(−1)

)
+ f(ϕ(0), ϕ(−1), α) + O(α2).

Considering k = 2 in (5.1), thus F0 ∈ C3, we write the Taylor formula

< Ψ(0), F0(Φx + y, α) > =
1
2
f1
2 (x, y, α) +

1
3!

f1
3 (x, y, α) + h.o.t.

(I − π)X0F0(Φx + y, α) =
1
2
f2
2 (x, y, α) +

1
3!

f2
3 (x, y, α) + h.o.t.

where f1
j (x, y, α), f2

j (x, y, α) are homogeneous polynomials in (x, y, α) of degree
j, j = 2, 3, with coefficients in C

2,Ker π, respectively. It will turn out that the
procedure described in Section 4 gives a normal form on the center manifold of the
origin at α = 0 written as

ẋ = Bx +
1
2
g1
2(x, 0, α) +

1
3!

g1
3(x, 0, α) + h.o.t., (5.18)

where

1
2
g1
2(x, 0, α) =

(
A1x1α
B1x2α

)
,

1
3!

g1
3(x, 0, α) =

(
A2x

2
1x2

B2x1x
2
2

)
+ O(|x|α2),

with B1 = A1, B2 = A2, because the coefficients in (5.1) are real. Thus, the change
to real coordinates w, where x1 = w1 − iw2, x2 = w1 + iw2, followed by the use
of polar coordinates (ρ, ξ), w1 = ρ cos ξ, w2 = ρ sin ξ, transforms the normal form
(5.18) into {

ρ̇ = K1αρ + K2ρ
3 + O(α2ρ + |(ρ, α)|4)

ξ̇ = −ω + O(|(ρ, α)|), (5.19)

with K1 = ReA1, K2 = ReA2.
If K2 	= 0, which is the case of the generic Hopf bifurcation, the direction of

the bifurcation and the stability of the nontrivial periodic orbits are determined
by the sign of K1K2 and of K2 (e.g. [4]). The computation of K1,K2 requires
the resolution of ODEs and PDEs that are difficult to handle for the general case
(5.1). Nevertheless, we shall present here explicit formulas for the calculus of such
coefficients for particular functions a, b, f appearing in (5.1), and the complete
calculus for some examples.

We continue with the computation of g1
2 , g1

3 , omiting some details. Consider
the operators M1

j defined in (4.5). For the present situation, in particular we get
M1

j (α�xqek) = iω(q1− q2 +(−1)k)α�xqek, �+ q1 + q2 = j, k = 1, 2, for j = 1, 2, q =
(q1, q2) ∈ N

2
0, � ∈ N0 and {e1, e2} the canonical basis for C

2. Hence,

N(M1
2 ) = span

{ (
x1α
0

)
,

(
0

x2α

) }

N(M1
3 ) = span

{ (
x2

1x2

0

)
,

(
x1α

2

0

)
,

(
0

x1x
2
2

)
,

(
0

x2α
2

)}
.

(5.20)
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For equation (5.1), the second order terms in (α, x) of the normal form on the center
manifold are given by

1
2
g1
2(x, 0, α) =

1
2
ProjN(M1

2 )f
1
2 (x, 0, α)

= ProjN(M1
2 ) < Ψ(0), α

(
a1Φ(0)x + b1Φ(−1)x

)
> .

Therefore, this gives
1
2
g1
2(x, 0, α) =

(
A1x1α
A1x2α

)
, (5.21)

with
A1 = β < u0, (a1 + b1e

−iω)u0 > .

In order to guarantee the existence of a Hopf bifurcation on the center manifold of
the origin, we further assume the following Hopf condition:

(5.22) < u0, (a1 + b1e
−iω)u0 >	= 0.

For the sake of simplicity, and to illustrate how to compute the cubic terms, here
we only consider the situation f(z1, z2, x, α) = cb(x, α)zn

1 z2, with c ∈ R and n = 1
or n = 2, which corresponds to a PFDE of the form

∂u(t, x)
∂t

= d
∂2u(t, x)

∂x2
+ a(x, α)u(t, x) + b(x, α)u(t − 1, x)[1 + cu(t, x)n]

t > 0, x ∈ (�1, �2)
(5.23)

with n = 1 or n = 2. As for (5.11), (5.23) is not well-defined if X = L2[�1, �2]. For
the existence of solutions of the correspondent Cauchy problem, we refer the reader
for the discussion and references presented in section 5.1.

We observe that (see Remark 4.3 and (5.20)) g1
3(x, 0, α) = ProjS f̃1

3 (x, 0, 0) +
O(|x|α2), where

S := span

{ (
x2

1x2

0

)
,

(
0

x1x
2
2

) }
and the term f̃1

3 (x, 0, 0) is defined as

f̃1
3 (x, 0, 0) = f1

3 (x, 0, 0) +
3
2
[(Dxf1

2 )U1
2 − (DxU1

2 )g1
2 ](x, 0, 0) +

3
2
[(Dyf1

2 )h](x, 0, 0),

(5.24)
for U1

2 (x, 0) = (M1
2 )−1ProjR(M1

2 )f
1
2 (x, 0, 0) = (M1

2 )−1f1
2 (x, 0, 0) and h = h(x)(θ)

such that
h(x) = U2

2 (x, 0), (M2
2 U2

2 )(x, 0) = f2
2 (x, 0, 0). (5.25)

For (5.23) with n = 2, we have

f1
2 (x, y, 0) = 0, f2

2 (x, y, 0) = 0,

f1
3 (x, y, 0) = 3!c < Ψ(0), b0(Φ(−1)x + y(−1))(Φ(0)x + y(0))2 >;

hence, f̃1
3 (x, 0, 0) = f1

3 (x, 0, 0) and

1
3!

g1
3(x, 0, 0) = cProjS

(
β < u0, b0(e−iωu0x1 + eiωū0x2)(u0x1 + ū0x2)2 >
β̄ < ū0, b0(e−iωu0x1 + eiωū0x2)(u0x1 + ū0x2)2 >

)

=
(

A2x
2
1x2

A2x1x
2
2

)
,

where
A2 = cβ < u0, b0(2e−iω + eiω)u0|u0|2 >,
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and |u0|2 =< u0, ū0 >=
∫ �2

�1
|u0(x)|2dx. Thus, the normal form (5.18) indeed has

the form

ẋ = Bx +
(

A1x1α
A1x2α

)
+

(
A2x

2
1x2

A2x1x
2
2

)
+ O(|x|α2 + |x|4).

Using (5.17), the above considerations lead to the following result:

Theorem 5.2. Consider Eq. (5.23) with n = 2 and boundary conditions (5.2) or
(5.3), and suppose that (5.15), (5.16) and (5.22) hold. Then a Hopf bifurcation
occurs at α = 0 on a locally 2-dimensinal center manifold of the origin. On this
manifold, the flow is given in polar coordinates by equation (5.19), with

K1 = Re
(< u0, (a1 + b1e

−iω)u0 >

< u0, (1 + b0e−iω)u0 >

)
, K2 = cRe

(< u0, b0(2e−iω + eiω)u0|u0|2 >

< u0, (1 + b0e−iω)u0 >

)
.

Example 5.2. Consider the problem:

∂u(t, x)
∂t

= d
∂2u(t, x)

∂x2
+ b(x, α)u(t − 1, x)[1 + u(t, x)2], t > 0, x ∈ (0, π)

∂u

∂x
(t, 0) =

∂u

∂x
(t, π) = 0,

(5.26)

with b(x, α) = b0 + αb1(x) + O(α2) and b0 constant. Define as before L0(ϕ) :=
L(0)(ϕ) = b0ϕ(−1). It is easy to see that the linearized equation at u = 0, α = 0,
u̇(t) = d∆u(t)+L0(ut), has simple eigenvalues ±iπ

2 iff b0 = −π
2 ; in this case, all the

other eigenvalues have nonzero real parts (e.g. [6], [17]). Let Λ = {iπ
2 ,−iπ

2 }. With
the notations above, we can choose u0 = 1 (a constant function) and β = 2(2−iπ)

π(4+π2) .
Assuming also that

∫ π

0
b1(x)dx 	= 0, hypothesis (5.22) is satisfied, and the flow on

the center manifold of the origin is given by Eq. (5.19) with

K1 = Re A1 = − 2
4 + π2

∫ π

0

b1(x)dx, K2 = Re A2 =
π2

4 + π2
.

If
∫ π

0
b1(x)dx > 0 (respectively < 0), the Hopf bifurcation is supercritical (respec-

tively subcritical). In both cases, the nontrivial periodic orbits bifurcating from
α = 0 are unstable.
Example 5.3. Consider the problem:

∂u(t, x)
∂t

= d
∂2u(t, x)

∂x2
+ a(x, α)u(t, x) + b(x, α)u(t − 1, x)[1 − u(t, x)2],

t > 0, x ∈ (0, π)

u(t, 0) = u(t, π) = 0,

(5.27)

where a(x, α) = a0+αa1(x)+O(α2), b(x, α) = b0+αb1(x)+O(α2) are C1 functions
and a0, b0 constants. In the space C = C([−1, 0];X), X = L2[0, π], consider
u̇(t) = d∆u(t) + a0u(t) + b0u(t − 1), the linearized equation for u = 0, α = 0.
One can prove that this equation has pure imaginary simple eigenvalues ±iω , ω 	=
0, iff a0, b0 are such that b0 cos ω = dk2 − a0, b0 sin ω = −ω, for some k ∈ N.
In this situation, for Λ = {iω,−iω} and k ∈ N fixed, one can choose u0(x) =
sin(kx) in the definition of the bases Φ,Ψ. It is easy to see that the characteristic
equation is equivalent to the sequence of equations a0 + b0e

−λ − λ = dm2, m ∈ N.
Let a0 = ak := dk2(k ∈ N) and b0 = −π

2 ; in this situation, suppose also that
d, k are such that ±iω = ±iπ

2 are the only roots of these equations with zero
real parts. For this, it is sufficient to assume that 2d(2k − 1) > π. Assuming
also that

∫ π

0
(a1(x) − ib1(x)) sin2(kx)dx 	= 0, we conclude that for (5.27) a Hopf

bifurcation occurs in the center manifold of the origin. With the previous notations,
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β = 4(2−iπ)
π(4+π2) , A1 = β

∫ π

0
(a1(x) − ib1(x)) sin2(kx)dx and A2 = −βπi

2

∫ π

0
sin4(kx)dx.

Theorem 5.2 implies that the flow on this manifold is given by (5.19), with

K1 =
4

π(4 + π2)

∫ π

0

[2a1(x) − πb1(x)] sin2(kx)dx

K2 = − 2π

4 + π2

∫ π

0

sin4(kx)dx < 0.

Hence, the non-trivial periodic orbits near α = 0 arrising from the Hopf bifurcation
are always stable. The direction of the Hopf bifurcation depends on the sign of K1.

As we saw, in the situation of Eq. (5.23) with n = 2 and either Neumann or
Dirichlet conditions, the computation of the cubic terms of the normal form on
the center manifold are quite easy, since f2(x, y, 0) = 0. It is more complicated to
apply the algorithm of normal forms in the case f2(x, y, 0) 	= 0. To see how it works,
consider now (5.23) with n = 1. Then, the quadratic and cubic terms in (ϕ,α) for
F0(ϕ,α) have the form

1
2
F2(ϕ,α) = αa1ϕ(0) + αb1ϕ(−1) + cb0ϕ(0)ϕ(−1),

1
3!

F3(ϕ, 0) = 0,

respectively. Thus,
1
2
f1
2 (x, y, 0) =c < Ψ(0), b0(Φ(−1)x + y(−1))(Φ(0)x + y(0)) >

=c

(
β < u0, b0(e−iωu0x1 + eiωū0x2 + y(−1))(u0x1 + ū0x2 + y(0)) >
β̄ < ū0, b0(e−iωu0x1 + eiωū0x2 + y(−1))(u0x1 + ū0x2 + y(0)) >

)

From (4.6), (5.20) and the definition of F0, we have f1
3 (x, 0, 0) = 0, g1

2(x, 0, 0) = 0,
and

1
3!

g1
3(x, 0, 0) =

1
4
ProjS [(Dxf1

2 )U1
2 + (Dyf1

2 )h](x, 0, 0), (5.29)

where U1
2 and h are as in (5.24), (5.25). After computing f1

2 and U1
2 , we get

ProjS [(Dxf1
2 )U1

2 ](x, 0, 0) =
(

C1x
2
1x2

C1x1x
2
2

)
where

Re C1 = −8c2

ω
Im

(
β2e−iωRe (eiω) < u0, b0u

2
0 >< u0, b0|u0|2 >

)
. (5.30)

To determine ProjS [(Dyf1
2 )h](x, 0, 0), and using the definitions of π,A1 and M2

2

in Sections 3 and 4, we start by noting that h(x) is evaluated by the system

ḣ(x) − Dxh(x)Bx = 2cΦ < Ψ(0), b0(Φ(0)x)(Φ(−1)x) > (5.31a)

ḣ(x)(0) − d∆h(x)(0) − L0h(x) = 2cb0(Φ(0)x)(Φ(−1)x), (5.31b)

where ḣ denotes the derivative of h(x)(θ) relative to θ. Writing h, which is a
homogeneous second order polynomial in (x1, x2) ∈ C

2 and coefficients in Ker π, as

h(x) = h20x
2
1 + h11x1x2 + h02x

2
2,

from (5.31a,b) we get that h11 = 0 and h02 = h20. A few computations give us

ProjS [(Dyf1
2 )h](x, 0, 0) =

(
C2x

2
1x2

C2x1x
2
2

)
where

C2 = 2cβ < u0, b0[u0(h11(−1)+ e−iωh11(0))+ ū0(h20(−1)+ eiωh20(0))] > . (5.32)
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On the other hand, (5.31a,b) implies that h02 and h11 are determined respectively
by{

ḣ20(θ) − 2iωh20(θ) = 2ce−iω[β < u0, b0u
2
0 > eiωθu0 + β̄ < ū0, b0u

2
0 > e−iωθū0]

ḣ20(0) − d∆h20(0) − a0h20(0) − b0h20(−1) = 2ce−iωb0u
2
0

(5.33)
and{

ḣ11(θ) = 4cRe (eiω)[β < u0, b0|u0|2 > eiωθu0 + β̄ < ū0, b0|u0|2 > e−iωθū0]
ḣ11(0) − d∆h11(0) − a0h11(0) − b0h11(−1) = 4cRe (eiω)b0|u0|2.

(5.34)

Theorem 5.3. Consider Eq. (5.23) with n = 1 and boundary conditions (5.2) or
(5.3), and suppose that (5.15), (5.16) and (5.22) hold. Then a Hopf bifurcation
occurs at α = 0 on a locally 2-dimensinal center manifold of the origin. On this
manifold, the flow is given in polar coordinates by equation (5.19), with

K1 = Re
(< u0, (a1 + b1e

−iω)u0 >

< u0, (1 + b0e−iω)u0 >

)
, K2 =

1
4
Re (C1 + C2),

where ReC1 is given by (5.30) and C2 is determined by (5.32), (5.33) and (5.34).

Example 5.4. Consider the problem:

∂u(t, x)
∂t

= d
∂2u(t, x)

∂x2
+ b(x, α)u(t − 1, x)[1 + u(t, x)], t > 0, x ∈ (0, π)

∂u

∂x
(t, 0) =

∂u

∂x
(t, π) = 0.

(5.35)

We note that the linear part of (5.35) is as in (5.26). Let b(x, α) = −π
2 + αb1(x) +

O(α2), with
∫ π

0
b1(x)dx 	= 0. The coefficient K1 in (5.19) is still given by K1 =

− 2
4+π2

∫ π

0
b1(x)dx.

From (5.30), and since ω = −π
2 , we have C1 = 0. From (5.33)–(5.34), we get

h11 = 0 and {
ḣ20(θ) − iπh20(θ) = iπ2[βe

iπθ
2 + β̄e

−iπθ
2 ]

ḣ20(0) − d∆h20(0) + π
2 h20(−1) = iπ,

(5.36)

where β is as in Example 5.2. Define z = h20(0). This system gives h20(−1) =
−z + 8

3(4+π2) (−4 + 2π + 2i + iπ), for z ∈ D = {v ∈ W 2,2[0, π] : v′(0) = v′(π) = 0}
such that

dz′′ + (
π

2
− iπ)z =

π

3(4 + π2)
(−16 + 8π + 20i + 4iπ − 3iπ2).

Solving this equation, we obtain h20(−1) + ih20(0) = 2
15(4+π2) (−12 + 20π − 3π2 −

4i + 9iπ2). Using (5.32), we finally get

K2 =
1
4
ReC2 =

π(2 − 3π)
5(4 + π2)

< 0

(see also [6]). We then conclude that the Hopf bifurcation gives raise to nontrivial
stable periodic orbits on the center manifold. The direction of the Hopf bifurcation
is super-, respectively subcritical, if

∫ π

0
b1(x)dx < 0, respectively > 0.
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