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Abstract— We develop a new method for safety verification
of stochastic systems based on functions of states termed
barrier certificates. Given a stochastic continuous or hybrid
system and sets of initial and unsafe states, our method
computes an upper bound on the probability that a trajectory
of the system reaches the unsafe set, a bound whose validity is
proven by the existence of a barrier certificate. For polynomial
systems, both the upper bound and its corresponding barrier
certificate can be computed using convex optimization, and
hence the method is computationally tractable.

I. INTRODUCTION

Complex behaviors that can be exhibited by modern engi-
neering systems, which typically have hybrid (i.e., a mixture
of continuous and discrete) dynamics, make the safety
verification of such systems both critical and challenging.
In principle, safety verification or reachability analysis aims
to show that starting at some initial conditions, a system
cannot evolve to some unsafe region in the state space.
The importance of safety verification here is underscored
by the fact that many applications which employ this kind
of systems are safety critical. For example, hybrid systems
appear in air traffic control, life support devices, etc.

For verifying safety, several methods have been proposed
in the recent years. Explicit computation of either exact or
approximate reachable sets corresponding to the continuous
dynamics is crucial for virtually all of these methods (see
e.g. [3], [13], [2], [1], [6], [21], [22]). In a different vein,
we have recently proposed a safety verification method
that differs from the above techniques in the sense that
it does not require explicit computation of reachable sets,
but instead relies on functions of states termed barrier
certificates [19]. In the state space, the zero level set of a
barrier certificate separates an unsafe region from all system
trajectories starting from a given set of initial conditions,
and therefore the existence of such a function provides an
exact certificate/proof of system safety. Similar to the Lya-
punov stability results, the main idea is to study properties
of the system (reachability in this case) without the need
to compute the flow explicitly. The method is applicable
to a large class of hybrid systems, including those with
nonlinear continuous dynamics, uncertain inputs, uncertain
parameters, and constraints — even dynamic constraints
such as integral quadratic constraints (IQCs).

When the vector fields of the system are polynomials
and the sets in the system description are semialgebraic
(i.e., described by polynomial equalities and inequalities),
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a tractable computational method using the sum of squares
decomposition [16] and semidefinite programming [23] can
be utilized for constructing a polynomial barrier certificate,
e.g., using the software [20]. For fixed polynomial degrees,
the complexity of this construction grows polynomially with
respect to the state dimension. Hence we expect our method
to be more scalable than many other existing methods.

In the present paper, we will consider safety verification
of stochastic continuous and hybrid systems. The stochas-
ticity of a continuous system may originate from random
inputs to the dynamics, which can be taken into account
by considering stochastic differential equations. In the case
of stochastic hybrid systems, stochasticity may also be
induced by randomness in the discrete transitions. Study
of systems modelled by stochastic differential equations
has a long history and readers can find relevant references
e.g. in [15], [12]. On the other hand, only quite recently
have people started to consider stochastic hybrid systems.
See e.g. [7], [14], [11], [17], [10]. When stochasticity is
present in the system, answering the safety verification
question in a worst-case non-stochastic manner (i.e., to
verify whether or not a trajectory of the system can reach
the unsafe set) will usually lead to a very conservative
and restrictive answer, since in most cases there is no
hard bound on the value of stochastic input. Indeed it is
more natural to formulate and consider a safety verification
problem that has a probabilistic interpretation. For example,
it may be of interest to prove that the probability of the
system trajectories reaching the unsafe region is lower than
a certain safety margin. For some recent work on stochastic
reachability analysis, readers are referred to [5], [24], [4].

The approach that we take to solve the stochastic safety
verification problem still relies on barrier certificates. How-
ever, instead of using a barrier certificate whose zero level
set separates the unsafe region from all possible system
trajectories, we will use a barrier certificate that is a
supermartingale (i.e., its expected value is non-increasing
along time) under the given system dynamics. In addition,
we ask that the value of the barrier certificate at the initial
state be lower than its value at the unsafe region. The
probability of reaching the unsafe region is then bounded
from above using a Chebyshev-like inequality for super-
martingales. We derive the conditions that are satisfied
by barrier certificates for stochastic continuous systems
and a class of stochastic hybrid systems, namely that of
switching diffusion processes, and we will briefly discuss
possible extension of this method to handle other classes of
hybrid systems. Similar to their non-stochastic counterpart,
barrier certificates for stochastic polynomial systems can
be computed using the sum of squares decomposition and
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semidefinite programming.
For the above classes of systems, our method can be

used to efficiently compute an exactly guaranteed upper
bound on the probability that the system trajectories reach
the unsafe set. The references [5], [4], for example, suggest
ways to calculate such a probability, yet have not provided
a computational technique for that. On the other hand,
the work in [24] does provide a computational method to
approximate the above probability for the class of stochastic
discrete time systems, but since their method is based on
randomized algorithm, there has been no guarantee on the
accuracy of the computed probability.

The paper is organized as follows. In Section II we
present a brief review of our previous results on non-
stochastic safety verification using barrier certificates. We
will consider verification of stochastic continuous systems
in Section III and verification of stochastic hybrid systems
in Section IV. Section V contains some examples, and
finally the paper is ended by conclusions in Section VI.

II. REVIEW OF PREVIOUS RESULTS

A. Non-stochastic Verification Using Barrier Certificates

Let us consider the continuous system

ẋ(t) = f(x(t), d(t)), (1)

where x(t) ∈ X is the state of the system, and d(t) ∈
D is a collection of uncertain disturbance inputs (usually
corresponding to a bounded D). We assume that the system
trajectories start at some x(0) ∈ X0. Additionally, denote
the unsafe region by Xu.

In worst-case non-stochastic safety verification, we are
interested in proving that for all possible disturbance signals
d : [0,∞) → D, the system trajectories starting at any
x(0) ∈ X0 never reach the unsafe set Xu. This safety
property can be shown by the existence of a barrier cer-
tificate [18], [19]. Proposition 1 states the conditions that
are satisfied by a barrier certificate B(x). Such a certificate
proves that the system is safe by depicting a ‘barrier’ which
separates possible system trajectories and the unsafe region
— in the formulation below, the ‘barrier’ is provided by the
zero level set of B(x).

Proposition 1: Let the system (1) and the sets X , D,
X0 and Xu be given. Suppose there exists a continuously
differentiable function B : X → R such that

B(x) > 0 ∀x ∈ Xu, (2)

B(x) ≤ 0 ∀x ∈ X0, (3)
∂B

∂x
(x)f(x, d) ≤ 0 ∀(x, d) ∈ X × D, (4)

then the safety of the system (1) is guaranteed. That is, there
exists no trajectory of the system contained in X that starts
from an initial state in X0 and reaches another state in Xu.

Safety verification of hybrid systems can also be handled
using this methodology. We refer the reader to [19] for
details and examples.

B. Computation of Barrier Certificates

Construction of barrier certificates is generally not easy.
However, for systems whose vector fields are polynomial
and whose initial sets, safety sets, etc. are semialgebraic
(i.e., described by polynomial equalities and inequalities),
a tractable computational method exists if we also postu-
late the barrier certificate to be polynomial. The method
uses the sum of squares decomposition of multivariate
polynomials [16] and semidefinite programming [23]. Here
real coefficients c1, ..., cm are used to parameterize a set
of candidate barrier certificates in an affine manner, e.g.,
B = {B(x) : B(x) =

∑m

i=1 cibi(x), ci ∈ R}, where the
bi(x)’s are some monomials in x. For example, one can
arbitrarily determine an upper bound on the degree of the
barrier certificate, and then include all monomials whose
degrees are less than or equal to the bound. The search for
a barrier certificate B(x) ∈ B (or equivalently coefficients
ci’s) such that the conditions in Proposition 1 are satisfied
can be formulated as the following sum of squares problem,
which can then be solved by semidefinite programming, e.g.
using the software SOSTOOLS [20].

Proposition 2: Let the system (1) be given, the sets X ,
X0, Xu, and D be described by X = {x ∈ R

n : gX (x) ≥
0}, X0 = {x ∈ R

n : gX0
(x) ≥ 0}, Xu = {x ∈ R

n :
gXu

(x) ≥ 0}, D = {d ∈ R
m : gD(d) ≥ 0}, where the g’s

are polynomials, and the parameterization of candidate bar-
rier certificates B be given. Suppose there exists B(x) ∈ B,
a positive number ε, and SOS polynomials σXu

(x), σX0
(x),

σX (x, d), σD(x, d) that satisfy the following conditions:

B(x) − ε − σXu
(x)gXu

(x) is SOS,

− B(x) − σX0
(x)gX0

(x) is SOS,

−
∂B

∂x
f(x, d) − σX (x, d)gX (x) − σD(x, d)gD(d) is SOS,

then the safety of the system is guaranteed.
Given the above formulation, the software SOSTOOLS

can compute a B(x) ∈ B and multipliers σ’s satisfying all
the required conditions, or tell if there is no feasible solution
in the given set of candidates — note however that the latter
does not necessarily imply that the system is unsafe.

III. SAFETY VERIFICATION OF STOCHASTIC

CONTINUOUS SYSTEMS

Consider a complete probability space (Ω,F , P ) and
a standard R

m-valued Wiener process w defined on this
space. In this section, we will be dealing with stochastic
differential equations of the form

dx(t) = f(x(t))dt + g(x(t))dw(t), (5)

where x(t) ∈ R
n for all t ≥ 0. We denote the state space,

the initial set, and the unsafe set respectively by X , X0, and
Xu, all of which are subsets of R

n and assumed compact.
To guarantee the existence and uniqueness of solution, we
will also assume that both f and g satisfy the local Lipschitz
condition and the linear growth condition on X [15]. For
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bounded X , the last condition can be replaced by the
boundedness of f and g on X .

It can be shown that the process x(t) described above is
a strong Markov process. We have the following definition
for the infinitesimal generator A of the process x(t) — see
e.g. [15].

Definition 3: The infinitesimal generator A of the pro-
cess x(t) is defined by

AB(x0) = lim
t↓0

E[B(x(t)) | x(0) = x0] − B(x0)

t
,

and the domain of the generator is the set of all functions
B : R

n → R such that the above limit exists for all x0.
Since in general the process x(t) is not guaranteed to

always lie inside the set X , we define the stopped process
corresponding to x(t) and X as follows [12].

Definition 4: Suppose that τ is the first time of exit of
x(t) from the open set Int(X ). The stopped process x̃(t) is
defined by

x̃(t) =

{
x(t), for t < τ

x(τ), for t ≥ τ.

The stopped process x̃(t) satisfies various properties.
For example, it inherits the right continuity and strong
Markovian property of x(t). Furthermore, in most cases
the infinitesimal generator corresponding to x̃(t) is identical
to the one corresponding to x(t) on the set Int(X ), and
is equal to zero outside of the set [12]. This will be
implicitly assumed throughout the paper. Having defined
the system and the stopped process x̃(t), we can now state
the stochastic safety verification problem as follows.

Problem 5: Given the system (5) and the sets X , X0 and
Xu, compute an upper bound for the probability of a process
x̃(t) starting at X0 to reach Xu. In other words, find γ ∈
[0, 1] such that P{x̃(t) ∈ Xu for some t ≥ 0 | x̃(0)} ≤ γ.
for all x̃(0) ∈ X0.

Obviously, the ultimate objective of safety verification
is to show that the above probability is small enough, for
example less than some safety margin. Hence it is of interest
to obtain an upper bound γ that is as tight as possible.

In this paper, our approach to solve the above problem
is based on finding an appropriate barrier certificate B(x)
from which we can deduce an upper bound γ. As in the non-
stochastic case, the approach is again analogous to using
Lyapunov functions for proving stability (see e.g. [12] for
some notions of stochastic stability and stochastic Lyapunov
functions). However, instead of requiring the value of B(x)
to decrease along the trajectory of the system, we ask that
the expected value of B(x) decreases or stays constant
as time increases. A function satisfying such a property
is called a supermartingale (see [15] for the technical
definition). For nonnegative supermartingales, there exists
the following result [12], [8], which will be used several
times in this paper.

Lemma 6: Let B(x̃(t)) be a supermartingale of the pro-
cess x̃(t) and be nonnegative on X . Then, for any initial

condition x̃(0) ∈ X ,

P

{
sup

0≤t<∞

B(x̃(t)) ≥ λ

∣∣∣∣ x̃(0)

}
≤

B(x̃(0))

λ
. (6)

At this point, we are ready to state and prove our first
main result.

Theorem 7: Let the stochastic differential equation (5)
and the sets X , X0, Xu be given, and consider the stopped
process x̃(t) starting at some x̃(0) ∈ X0. Suppose there
exists a twice continuously differentiable function B : X →
R, such that

B(x) ≥ 0 ∀x ∈ X , (7)

B(x) ≥ 1 ∀x ∈ Xu, (8)

B(x) ≤ γ ∀x ∈ X0, (9)

∂B

∂x
f(x) +

1

2
Trace

(
gT (x)

∂2B

∂x2
g(x)

)
≤ 0 ∀x ∈ X ,

(10)

then P{x̃(t) ∈ Xu for some t ≥ 0 | x̃(0)} ≤ γ.
Proof: For the stochastic differential equation (5), the

infinitesimal generator of the process is given by [15]

AB(x) =
∂B

∂x
f(x) +

1

2
Trace

(
gT (x)

∂2B

∂x2
g(x)

)
,

where B belongs to the domain of the generator (i.e.,
is twice continuously differentiable). Now, using Dynkin’s
formula [15], we have for 0 ≤ t1 ≤ t2 < ∞

E[B(x̃(t2))|x̃(t1)] = B(x̃(t1)) + E[

∫ t2

t1

AB(x̃(t))dt],

and therefore (10) will imply that B is a supermartingale.
By (7) and Lemma 6 we conclude that (6) holds. Finally, use
(9) and the fact that Xu ⊆ {x : B(x) ≥ 1}, which follows
from (8), to obtain the following series of inequalities:

P{x̃(t) ∈ Xu for some t ≥ 0 | x̃(0)}

≤ P

{
sup

0≤t<∞

B(x̃(t)) ≥ 1

∣∣∣∣ x̃(0)

}
≤ B(x̃(0)) ≤ γ,

and thus the probability bound is proven.
Note that it is possible to choose γ to be at most equal

to one, since when γ = 1, the function B(x) = 1 will
satisfy (7)–(10). The intuitive idea behind the theorem is
clear. The function B(x) is a supermartingale of the process,
and therefore its value is likely to stay constant or decrease
as time increases. When we start from a lower initial value
of B(x) (i.e., as γ gets smaller) it becomes less likely for
the trajectory to reach the unsafe set, on which the value of
B(x) is greater than or equal to one. This is quantified by
Lemma 6, which provides a Chebyshev-like inequality for
bounding the probability of the distribution tail.

With regard to computation, an upper bound γ and a
barrier certificate B(x) which certifies the upper bound
can be computed by formulating conditions (7)–(10) as a
sum of squares optimization problem, similar to the one in
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Section II-B. Furthermore, γ can be chosen as the objective
function whose value is to be minimized. The minimum
value of γ obtained from the optimization will be the
tightest upper bound for a given polynomial and sum of
squares parameterization. Obviously we may get a better
bound as we expand the parameterization, for example,
when we use higher degree barrier certificates. However,
there is a trade-off between using a larger set of candidate
barrier certificates and the computational complexity of
finding a true certificate within it.

Sometimes an initial probability measure µ0 (whose
support is in X0) is known for x̃(0), and we may want to
estimate the total (unconditional) probability of the system
trajectories reaching the unsafe set. In this case, (9) can be
replaced by

∫
X0

B(x)dµ0(x) ≤ γ and γ is then minimized
to obtain a tight bound. Computation of γ and B(x) can
still be performed using sum of squares decomposition and
semidefinite programming, since the left hand side of the
above inequality is simply an affine function of the unknown
coefficients in B(x). See also the next section.

IV. SAFETY VERIFICATION OF STOCHASTIC

HYBRID SYSTEMS

The idea used in Section III can also be applied to
stochastic hybrid systems. In this section, we will consider
a class of stochastic hybrid systems called the switching
diffusion processes [9], [14], [17]. Systems in this class have
both continuous and discrete states, where the continuous
state evolves according to a stochastic differential equation
that depends on the discrete state, and the discrete trajectory
is a Markov chain whose transition matrix depends on
the continuous state. As implied by the name, they are
switching systems, meaning that the value of the continuous
state does not change during a discrete transition.

Formally, a switching diffusion process is a tuple H =
(X , L, µ0, f, g, λij) with the following components [17]:

• X ⊆ R
n is the continuous state space.

• L is a finite set of locations. The overall state space of
the system is X = L × X , and a state of the system
is denoted by (l, x) ∈ L ×X .

• µ0 : B(L × X ) → [0, 1] is an initial probability
measure, with its support in X0 ⊆ X .

• f : X → R
n is the drift vector field.

• g : X → R
n×m, where the i-th column of g

corresponds to the i-th component of the R
m-valued

Wiener process w.
• λij : X → R, i, j ∈ L are a set of x-dependent

transition rates, with λij(x) ≥ 0 for all x if i �= j,
and

∑
j λij(x) = 0 for all i ∈ L.

A trajectory of the system starts with an initial condi-
tion drawn from the initial probability measure µ0. As
mentioned above, the continuous part of the state evolves
according to a stochastic differential equation, which at
location l is given by

dx(t) = f(l, x(t))dt + g(l, x(t))dw(t).

On the other hand, the dynamics of the discrete state is
described by the following transition probability:

P{l(t + ∆) = j | l(t) = i}

=

{
λij(x(t))∆ + o(∆), if i �= j,

1 + λii(x(t))∆ + o(∆), if i = j,
(11)

with ∆ > 0. During a discrete jump, the value of the
continuous state is held constant. It is assumed that the
discrete jump is independent from the Wiener process w(t).
In addition, we assume that f , g, and λij are bounded
and Lipschitz continuous with respect to x on X . Under
these assumptions, the solution to the stochastic differential
equation at each location exists and is unique, and also
that almost every sample path of l(t) is a right continuous
function [9], [17].

To obtain a bound like what we have in the previous
section, it is crucial to know the following infinitesimal
generator of the process (l(t), x(t)) [9]:

AB(l, x) =
∂B

∂x
(l, x)f(l, x) +

∑
l′∈L

λll′(x)B(l′, x)

+
1

2
Trace

(
gT (l, x)

∂2B

∂x2
(l, x)g(l, x)

)

for B(l, x) in the domain of the generator. For our purpose,
it is enough to consider B(l, x) that is twice continuously
differentiable in the second argument for each l ∈ L.
Similar to the continuous case, we stop the process when
x(t) goes out from Int(X ).

For this class of systems, the barrier certificate B(l, x)
will be constructed from several functions Bl(x), where
each Bl(x) corresponds to a discrete location and we define
B(l, x) = Bl(x). The conditions that are satisfied by the
barrier certificate are stated in the following theorem.

Theorem 8: Let the switching diffusion process H be
given, and define X0,l = {x ∈ X : (l, x) ∈ X0}. Suppose
there exists a collection of twice differentiable functions
Bl(x), which for each l ∈ L, satisfy

Bl(x) ≥ 0 ∀x ∈ X , (12)

Bl(x) ≥ 1 ∀x ∈ Xu, (13)

∂Bl

∂x
f(l, x) +

1

2
Trace

(
gT (l, x)

∂2Bl

∂x2
g(l, x)

)

+
∑
l′∈L

λll′(x)Bl′(x) ≤ 0 ∀x ∈ X , (14)

and in addition,∑
l∈L

∫
X0,l

Bl(x)dµ0(l, x) ≤ γ. (15)

Then P{x̃(t) ∈ Xu for some t ≥ 0} ≤ γ.
Proof: Define B(l, x) = Bl(x). In this case, Dynkin’s

formula

E[B(l̃(t2), x̃(t2))|(l̃(t1), x̃(t1))] = B(l̃(t1), x̃(t1))

+ E[

∫ t2

t1

AB(l̃(t), x̃(t))dt],
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and (14) again imply that B(l̃(t), x̃(t)) is a supermartingale.
Since it is also nonnegative (as implied by (12)), Lemma 6
can be applied, and therefore we have

P{x̃(t) ∈ Xu for some t ≥ 0 | (l̃(0), x̃(0))}

≤ P

{
sup

0≤t<∞

B(l̃(t), x̃(t)) ≥ 1

∣∣∣∣ (l̃(0), x̃(0))

}

≤ B(l̃(0), x̃(0)).

Now use the law of total probability and (15) to obtain

P{x̃(t) ∈ Xu for some t ≥ 0} ≤

∫
X0

B(l, x)dµ0(l, x)

=
∑
l∈L

∫
X0,l

Bl(x)dµ0(l, x) ≤ γ,

hence finishing the proof.
In principle, other classes of stochastic hybrid systems

such as the ones in [11], [17], [10] can be handled in a
similar fashion, by using the suitable infinitesimal generator
for each class and modifying the other conditions for Bl(x)
appropriately. This will be considered in the future.

V. EXAMPLES

A. Example 1: Continuous System

Consider the nonlinear stochastic differential equation

dx1(t) = x2(t)dt,

dx2(t) = (−x1(t) − x2(t) − 0.5x3
1(t))dt + σdw(t),

where the diffusion coefficient σ is assumed to be a
constant. In this case, the corresponding deterministic sys-
tem ẋ(t) = f(x(t)) has a globally asymptotically stable
equilibrium at the origin, as can be proven by a quartic
Lyapunov function. Because of the asymptotic stability of
the deterministic system, we expect that for small enough
noise the trajectories of the stochastic system will also
evolve to a region around the origin.

We use X0 = {(x1, x2) : (x1 + 2)2 + x2
2 ≤ 0.12} as

the initial set, and X = {(x1, x2) : −3 ≤ x1 ≤ 3,−3 ≤
x2 ≤ 3, x2

1 + x2
2 ≥ 0.52} as the state space. Since the

stochastic input dw(t) drives the system persistently, we
stop the process when (x1, x2) gets near to the origin.
Finally, the set Xu = {(x1, x2) ∈ X : x2 ≥ 2.25} will be
regarded as the unsafe set. Some realizations of the process
x̃(t) are shown in Figure 1.

We will compute an upper bound γ on the probability
that a stopped process starting from X0 intersects Xu, as
the state evolves toward the origin. For example, this may
correspond to the control objective of keeping the value of
x2 lower than the given threshold. Using the theory and the
computational method described in Sections III and II-B, we
are able to compute upper bounds as well as polynomial
barrier certificates that prove these upper bounds. The
verification results for various degrees of barrier certificates
and various values of σ are given in Table I. As we include
more candidates in the set of candidate barrier certificates

Fig. 1. Black curves are some realizations of the stopped process x̃(t)
in Section V-A for σ = 0.5, all starting at x̃(0) = (−2, 0); we stop the
process x(t) when it enters {x : x2

1
(t)+x2

2
(t) ≤ 0.52}, the region whose

boundary is depicted by the dash-dotted curve. The shaded region at the
top is the unsafe set. Shown as dashed curves are the level sets B(x) = 1
(outer) and B(x) = 0.792 (inner) of the degree eight barrier certificate
that proves the upper bound γ = 0.792 (cf. Table I).

Degree= 4 Degree= 6 Degree= 8 Degree= 10

σ = 0.5 γ = 1 γ = 0.847 γ = 0.792 γ = 0.771
σ = 0.25 γ = 0.848 γ = 0.616 γ = 0.472 γ = 0.412
σ = 0.1 γ = 0.824 γ = 0.450 γ = 0.257 γ = 0.157

TABLE I

STOCHASTIC SAFETY VERIFICATION RESULTS IN SECTION V-A.

to be searched (i.e., as we increase the degree of the barrier
certificate), we are able to obtain a better upper bound.
However, the computational complexity of solving the sum
of squares problem also increases. When we decrease σ,
the probability of reaching the unsafe set decreases as well
— this agrees with our intuition, as the system is safe when
there is no stochastic input.

B. Example 2: Switching Diffusion Process

In this example we use the system dx(t) = Al(t)x(t) +
σ(x(t))dw(t), where l(t) ∈ {1, 2} for each t and

A1 =

[
−5 −4
−1 −2

]
; A2 =

[
−2 −4
20 −2

]
.

It can be shown using a common polynomial Lyapunov
function of degree six that the deterministic system cor-
responding to σ(x) = 0 is globally asymptotically stable
under arbitrary switching.

We assume that the initial condition is given by l(0) = 1
or 2, with equal probability for both locations, and x(0) =
(0, 3). For the initial continuous condition x(0) = (0, 3),
trajectories of the deterministic system corresponding to the
first and second locations are shown in Figure 2. The set
{(x1, x2) ∈ R

2 : x2
1 ≤ 42,−1.5 ≤ x2 ≤ 4} is chosen as

the continuous state space X , and the unsafe set is given
by Xu = {(x1, x2) ∈ X : x2 ≤ −1}. We are interested in
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Fig. 2. Trajectories of the systems ẋ = A1x (dashed curve) and ẋ = A2x
(dash-dotted curve) in Section V-B starting at x(0) = (0, 3) are shown. A
realization x̃(t) of the switching diffusion process for λ = 10 is depicted
by the solid curve. Shaded region at the bottom of the figure is the unsafe
set. Larger λ makes it less likely for the trajectory to reach the unsafe set.

verifying the safety of the stochastic system with σ(x) =[
0 0.5x2

]T
and transition rates λ11 = −0.5, λ12 = 0.5,

λ21 = λ, λ22 = −λ, where the nonnegative parameter λ

will be varied. Larger λ means that from location 2 the
system tends to switch to location 1 faster.

This problem can be given the following interpretation.
Although in both locations the system will evolve toward
the origin, location 2 is different from location 1 in the
sense that it has an oscillatory response which tends to
bring the system to the unsafe region whereas the trajectory
corresponding to location 1 will evolve directly to the origin
without going through the unsafe region. In the verification,
we will show that by using a large λ, i.e., making the system
be in location 1 for most of the time, the probability of
reaching the unsafe set can be kept small.

Using polynomial barrier certificates of degree 10, we can
prove that the probability of reaching the unsafe region is
bounded by γ = 0.346 for λ = 10, γ = 0.145 for λ = 20,
and γ = 0.069 for λ = 30. As expected, the probability
bound decreases when we increase λ.

VI. CONCLUSIONS

We proposed a new approach to safety verification of
stochastic continuous and hybrid systems. Based on suitable
barrier certificates, our method provides an upper bound on
the probability that a system trajectory reaches the unsafe
region. For polynomial systems, computation of barrier cer-
tificates can be performed in a tractable fashion by convex
optimization, utilizing the sum of squares decomposition of
multivariate polynomials and semidefinite programming.

In this paper, we considered continuous stochastic sys-
tems and switching diffusion processes, and presented some
examples to illustrate the use of our method. Other classes
of stochastic hybrid systems can also be handled by using

the appropriate infinitesimal generator for each class, which
we hope to address in the future.
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