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DS-CDMA System with Joint Channel Estimation
and MAP Detection in Time-Selective Fading
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Abstract—In this paper, maximum a posteriori(MAP) detection
is applied to a direct-sequence code-division multiple-access
(DS-CDMA) system jointly with identification and estimation of
time-selective fading channels. By sampling the outputs of the
matched filter and combining antenna array elements, strong and
time-varying multiple-access interference (MAI) is characterized
and suppressed instantaneously. The decision statistics for MAP
detection are obtained from the conditional probability density
function of prediction error. The prediction is accomplished by
approximating the fading channel with a constrained nonlinear
state model. Unknown parameters such as auto-regressive (AR)
process coefficients, noise covariance matrices, and the antenna
array vector are estimated based on received sample vectors only.
Also, differential modulation is applied to eliminate the need for
pilot insertion. Through computer simulations, near-optimum bit
error rates (BERs) are found.

Index Terms—Antenna arrays, code-division multiple-ac-
cess, Kalman filtering, MAP estimation, parameter estimation,
pseudonoise coded communication, time-varying channels.

I. INTRODUCTION

A MONG various technologies for mobile cellular commu-
nications, direct-sequence code-division multiple-access

(DS-CDMA) is well-known for its large capacity that results
from several advantages [1], such as soft handoffs, a high fre-
quency-reuse factor, and efficient use of voice activity. How-
ever, because of asynchronism in DS-CDMA systems, signals
from different users cannot be kept orthogonal and multiple-ac-
cess interference (MAI) arises. One solution to this problem is
multi-user detection, which is covered by [2] and the references
cited therein. The other is the conventional single-user detec-
tion with power control, which is adopted by the current North
American DS-CDMA digital cellular system (IS-95 [3]). Here,
we consider the approach of single-user detection.

In addition to the MAI, the uncertain properties of mobile
radio channels pose a serious challenge for wireless DS-CDMA
systems. Especially, fast-moving transceivers with a high carrier

Manuscript received February 14, 2000; revised November 1, 2000. This
work was supported in part by the US government DARPA GloMo Project AO
F383, AFRL Contract F30602–97–C-0314. This paper was presented in part
at the IEEE Wireless Communications and Networking Conference (WCNC),
New Orleans, LA, Sept. 21–24, 1999.

S. Tsai is with Ericsson Wireless Communications, San Diego, CA 92121
USA.

T. F. Wong is with the Department of Electrical and Computer Engineering,
University of Florida, Gainesville, FL 32611 USA.

J. S. Lehnert is with the Department of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907-1285 USA.

Publisher Item Identifier S 0733-8716(01)00962-3.

frequency can make the fading channel characteristics change
rapidly over time. For example, if a 2-GHz carrier modulated
by 10-kb/s data is transmitted to a mobile receiver moving at
100 km/h, the autocorrelation of the received envelope will have
zero crossings every 20 symbols, according to the mobile radio
channel model in [4] and [5], and other models [6], [7] for time-
varying, uplink antenna array channels. In such situations, the
channel can neither be assumed stationary, nor slowly varying.
Hence, estimation and dynamic tracking of the channel variation
becomes necessary.

To estimate and mitigate effects from fast-varying channels,
one commonly used technique is pilot symbol-assisted mod-
ulation (PSAM) [8]. In PSAM systems, the receiver derives
unknown channel coefficients by interpolating distortions on
the pilots and then rotates decision boundaries accordingly.
Analytical bit-error-rate (BER) expressions for PSAM were
given in [8] for different SNRs and Doppler spreads. In addition
to PSAM, a linear predictive receiver, which jointly estimates
the fading channel and detects the data symbol, was proposed
in [9] for a continuous phase modulation (CPM) signal over
frequency-flat Rayleigh fading channels. The basic idea of
[9] has been extended to numerous narrowband systems. For
single-user spread-spectrum systems, a joint channel state esti-
mator and maximum likelihood (ML) detector with code delay
estimation was developed in [10]. The channel estimation was
based on a standard Kalman filter (KF) with given parameters,
and the pseudonoise (PN) code delay estimation was based on an
extended Kalman filter (EKF) because of the nonlinearity in the
observed output. In the area of multiuser detection, synchronous
CDMA systems using a standard KF to track fast channel vari-
ations were proposed in [11]–[13]. Given crosscorrelations
among all users, the receiver first performs decorrelation under
different symbol hypotheses. The likelihood of hypotheses
is then computed from the prediction error and its covariance
provided by the standard KF, where parameters of the associated
linear state model were knowna priori.

A decision-directed MAP detection, assuming known
channel statistics, was proposed in [14] for the single-user
receiver of CDMA systems with aperiodic random sequences.1

Unlike the multiuser receiver, crosscorrelations among users
are random variables, and the MAI must be characterized
statistically. While the MAI is suppressed through time-do-
main noise whitening by oversampling the sequence matched
filter (MF) output [14], the frequency-flat, fast-varying fading

1The IS-95 system uses an m-sequence with an extremely long period to ap-
proximate a random sequence. Some reasons for adopting random signature se-
quences can be found in [15]
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channel is estimated by a moving average (MA) linear predictor
with pilots to avoid cycle slipping. Results in [14] have shown
a BER that is close to ideal coherent BPSK. However, the
MA parameters were assumed froma priori spectral analysis,
causing a major drawback for the method in [14]. In this paper,
no a priori knowledge of the channel statistics is assumed,
and regardless of strong interference, information about the
fast-varying, antenna-array channel is derived only from
received samples. Given a training sequence, the proposed
algorithm only assumes knowledge of the spreading sequence
and timing of the desired user. The real-time channel identifi-
cation is based on a complex state model with undetermined
parameters. Such modeling can approximate nonsymmetric
Doppler spectra and more general time-varying characteristics.
Because nonlinearities exist in both state and measurement
equations, the principle of the EKF is applied as part of the
solution to the problem of real-time identification. In addition,
considering two quantities not included in the EKF (the noise
variance and the phase array constraints) a complete solution
is proposed without significantly increasing the computational
complexity. As a result, the estimation of average signal and
noise power is integrated to the identification algorithm such
that no SNR information is required. At the same time, MAI
suppression similar to minimum mean-square-error (mmse)
beamforming is accomplished through the combination of MAI
characterization and array vector estimation. Furthermore,
using differentially coherent detection, pilot symbols are re-
moved to increase the spectral efficiency. Simulation results on
BER are compared with the ideal and the fixed-design PSAM
in an MAI-free channel as benchmarks. The performance
degradation due to estimation error and the removal of pilots
is found to be small.

This paper is organized as follows. In Section II, the block
diagram of a DS-CDMA system and the corresponding contin-
uous-time and discrete-time models are established. Using the
discrete-time model, the maximuma posteriori(MAP) detec-
tion is derived in Section III. A joint channel estimation and
MAP detection scheme is then developed in Section IV with
detailed discussions on parameter identification. Simulation re-
sults for the system performance are presented in Section V, and
conclusions are drawn in Section VI.

II. SYSTEM MODEL FORAPERIODICDS-CDMA

The block diagram of the aperiodic DS-CDMA system with
an antenna array is shown in Fig. 1(a). In the remaining part of
this section, we describe the continuous-time baseband model
and the discrete-time receiver output model, where the former
reflects practical system operation, and the latter accommodates
digital processing.

A. Continuous-Time Model

The continuous-time baseband system model is illustrated in
Fig. 1(b). The modulation by a carrier is not shown in Fig. 1(b)
because the phase error is incorporated into the complex channel
coefficient. There are users transmitting to the receiver
with the desired user denoted as the 0th user. At each time in-
terval , the desired user generates a symbolfrom

(a)

(b)

Fig. 1. System model. (a) Block diagram of CDMA system with antenna array.
(b) Continuous-time and discrete-time model.

a BPSK (or QPSK with minor changes) symbol setwith cardi-
nality . The Cartesian product ofsymbols is denoted by .
Each possible symbol from a particular signal set is sent with
equal probability. The input information bit is related to the
transmitted symbols by for
differentially encoded BPSK, and
for coherent BPSK. The symbol is spread by the waveform

where is the quadriphase random signature sequence with
, is the time-limited chip waveform with dura-

tion , and . The spreading gain is
denoted by , and the spreading waveform is normalized such
that . Likewise, the spreading waveform
of each interfering user is given by

where is the relative chip delay of theth user. In
the following, all quantities involving interfering users are de-
noted with the superscript , where , and those
involving the desired user are denoted without the superscript.

After spreading, each user transmits to the receiver through a
wireless channel independently from the other users. In the fol-
lowing, we assume a single-path, time-selective fading channel
for simplicity. This assumption does not preclude the applica-
bility of the techniques developed here to multipath fading chan-
nels. Note that if multiple paths are mutually independent and
resolvable by a Rake receiver [1], we can use the algorithm
by concatenating the received vectors at different Rake fingers
to form a single large vector. This generalization to multipath
channels is straightforward. The single-path channel is equiva-
lent to a time-varying, multiplicative distortion. For the example
in Section I, the autocorrelation can be greater than 0.997 within
one symbol duration, although there are zero-crossings every 20
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symbols. Therefore, the distortion on each symbol can be sim-
plified to the multiplication by a complex constant. In Sec-
tion IV, we show that the channel effects on interfering users can
be estimated symbol-by-symbol, regardless of whether they are
time-varying or stationary.

The signal at the receiver in complex representation is given
by

(1)

in which

where is the number of array elements, and are i.i.d.
complex additive white Gaussian noise (AWGN) processes with
in-phase and quadrature power spectral densities equal to.
In addition, the array vector is given by

where , , and are the carrier wavelength, the incidence
angle, and the antenna separation, respectively. For the beam-
forming purpose, we assume a linear-phase array with closely
spaced elements. Notice that interferers’ data symbols are
omitted in (1) because they are multiplied by random spreading
sequences, and hence, the statistical properties of the products
do not depend on the data.

B. Discrete-Time Model

The received signal is processed as depicted in Fig. 1. The re-
ceiver performs the matched filtering during theth symbol in-
terval and samples the output at time to form a statistic,
given by

The statistic can be expressed as

(2)

where the random vector accounts for the effect of the com-
plex AWGN with mean and covariance . The sum of
random vectors accounts for effects from
the total MAI, in which the th interfering user contributes

where for

and

The parameter denotes the approximated channel coeffi-
cient for the th user during the time interval . For
notational convenience, we define

The set of channel coefficients affecting interfering users
makes the MAI characterization different from the standard
Gaussian approximation. For example, interfering signals
might also pass through fast-varying fading channels, and
the overall interference of each user becomes the
product of two random variables. In [11]–[13], the term
is given by symbol hypotheses and known crosscorrelations so
that the observations of all users can be simplified as jointly
Gaussian. This is not achievable for a single-user receiver
because crosscorrelations among different users are random
variables, which can only be characterized statistically. In
contrast to the multiuser case, if we condition on the set of
channel coefficients , the linear combination of can
be approximated as conditionally Gaussian. Mathematically
rigorous arguments can be found in [16] and [17]: if the set of
channel coefficients , the ratio , and the delays
of interfering users are given, then the MAI of the MF output is
asymptotically zero-mean Gaussian as . Given that
is large enough, the MAI-plus-AWGN vector at each sampling
time can be characterized as

(3)

where the random vector under the given condition is
denoted as

and

(4)

where denotes the identity matrix. If the covari-
ance matrix is estimated during the period of time when the
number of users and channel conditions remain unchanged, the
conditions required above can be satisfied. The implementation
of this conditional Gaussian approximation (CGA) is described
in Sections III and IV.

III. M AP DETECTION

In terms of minimizing error probability, MAP detection is
an optimal criterion for symbol-by-symbol detection [18]. By
characterizing probabilities of each symbol, MAP detection
also delivers reliability information about its decision. Strictly
speaking, the optimum MAP detector requires all observations
as sufficient statistics. However, to meet the practical restriction
on complexity, MAP detection is usually achieved by using the
up-to-date observation with a fixed delay. The derivation of the
coherent -lag MAP algorithm is given in [14]. The -lag
differentially coherent MAP detection rule is

Pr (5)
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where and de-
note interferers’ channel coefficients and MF output vectors up
to time , respectively. For the following derivation, some se-
quences of symbol hypotheses are denoted as

and

Then, according to Bayes’ rule, the probability mass function
(pmf) in (5) can be written as

Pr

Pr

in which is independent of the information bit hypoth-
esis , and Pr is constant over all hypotheses.2 As a
result, the MAP detection rule is equivalent to the maximization
problem

(6)

Nevertheless, the number of terms summed in (6) increases ex-
ponentially with time. To reduce the complexity, we adopt the
ML sequence feedback technique stated next. Suppose the ac-
tual symbol sequence is given, then (6) becomes

(7)

As shown above, (7) only sums over the past symbol hy-
potheses ; hence, the complexity of the MAP de-
tection in (6) is reduced and fixed to . In practice, we ap-
proximate by feeding back the ML symbol sequences

, leading to the same . Moreover, with these
feedback sequences, (7) can be recursively computed by the fol-
lowing steps:

Step 1) At time , update the conditional probabilities of all
hypotheses. That is,

(8)

2Definitions off(�), S , andjSj can be found in Section II-A.

Step 2) Make the -lag MAP decision according to (7), and
select the survival set of conditional probabilities.

(9)

The righthand side of (9) indicates that the feedback is not based
on the decision of but the likelihood that symbol
leads to the same state . The selection of the survival
sequence in the proposed algorithm is similar to that in the sub-
optimal soft-output algorithm [19] or the max-log-MAP algo-
rithm [20]. What remains is the computation of the conditional
probability density function (pdf)

(10)

for the MAP detection.
From (2) and (3) in Section II and the pdf in (10), the con-

ditional characterization of the receiver output random vector
can be decomposed into two parts: characterizing given

and characterizing given . By def-
inition, is independent of , and if the current inter-
ferers’ channel coefficients are given, is independent of the
desired user’s symbols and past received vectors. From (3), we
have already characterizedusing the CGA. The term, ,
however, needs further interpretation. First, when conditioned
on each symbol hypothesis , the transmitted symbol
can be viewed as given. Second, the array vector can be treated
as a set of unknown constants because of its slow variation. For
example, if the transmitter is 300 m from the base station (BS)
and is moving at 100 km/hr, the incidence angle will change at
most 0.5 for 0.1 s (1000 symbols at 10 kb/s). Because of the
angular spread, the separation between antenna elements must
be kept small to avoid any reduction in correlation. Since the
antenna array is used for the purpose of beamforming, nonper-
fectly correlated array elements will significantly reduce dimen-
sions that are available to form directional nulls toward inter-
ference. To ensure nearly perfect correlations among array el-
ements, the array size should not exceed if the
angular spread is 1[21]. For the above example, the max-
imum change of phase difference among array elements will
be for 1000 symbols. There-
fore, is assumed to be quasistationary. However, it is gener-
ally more difficult to ascertain the channel coefficientfor fast
fading. To make a systematic channel characterization possible,
we compromise between accuracy and tractability by using a
model-based estimation. In fact, the goal of such modeling is not
to achieve an exact channel description, but instead to achieve
a good system performance with a reasonable amount of com-
putation. Furthermore, becauseand are jointly Gaussian
conditioned on , the pdf in (10) is completely characterized
by the conditional mean

(11)
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Fig. 2. Joint channel estimation and MAP detection.

and the conditional covariance

(12)

As shown in (11), a Bayesian channel estimator [22] is required
to characterize the pdf in (10).

In summary, the computation of the pdf in (10) involves the
following two parts of the channel estimation. First, since
and are jointly Gaussian given and , the conditional
mean in (11) is equal to the mmse prediction of. Second, by
(11), the conditional covariance is equivalent to the error co-
variance of the mmse predictor. Since the setis unknown,
an estimator of the error covariance in (12) is necessary. In the
next section, estimators for these two parts are established. For
notational convenience, we omit the given conditions in the fol-
lowing and simply write the three quantities associated with the
pdf in (10) as , , and , respectively.

IV. JOINT CHANNEL ESTIMATION AND MAP DETECTION

Joint channel estimation and MAP detection is outlined
in Fig. 2. The recursive computation of the pdfs needed in
MAP symbol detection has already been shown. We show
in this section how to implement the estimator required in
Section III. The goal is to remove the assumption ona priori
channel knowledge and to implement the MAP detection with
a real-time model identification. To achieve this goal, joint
channel estimation using an EKF [9], [10]3 is investigated in
this section.

A. Auto-Regressive Channel Approximation and Nonlinear
State Model

The fading channel coefficients are modeled by ath
order auto-regressive (AR) process. Let the first element of the
channel state vector be

(13)

3The use of Kalman filtering for channel estimation and ML sequence de-
tection was first suggested, although not applied, in [9]. Kalman filtering was
not applied because some recursion quantities for state vectors, such as con-
ditional mean and estimation error covariance, were redundant in the problem
formulated in [9]. Roughly at the same time, the use of the EKF with joint ML
detection was published in [10].

where denotes the channel state vector
at time . We assume the initial condition of the channelis
Gaussian distributed and independent of the zero-mean white
Gaussian model noise with variance . The vector

represents undetermined complex AR model
coefficients. Such modeling and its identification algorithm de-
veloped here extend the work in [10]–[13] to the current sce-
nario. In the previous work, thea priori given real AR coef-
ficient can only apply to cases where the Doppler spread is
fixed and the -transform of the channel has a single real pole
or a complex conjugate pair of poles. This limits the applica-
tion to strictly time-invariant, symmetric Doppler spectra. In
reality, empirical data support nonsymmetric Doppler spectra,
such as COST1, COST2, or one-sided exponential spectrum
[23], [24]. The complex AR-channel modeling and the adap-
tive estimation of coefficients can accommodate more general
spectra with slowly varying Doppler spread. The ability to track
slowly varying Doppler spread is shown in the simulation.

Combining (13) and (2), the time-varying fading process and
the received array vectors can be described by a nonlinear state
model with the state equation

where

and denotes the zero-vector. The measurement equa-
tion is given by

with the nonlinear, nondifferentiable constraint

for and

(14)

To estimate the unknown model parameters, the principle of
EKF is applied as part of the solution.

B. Linear Perturbation Model and EKF

We define the vector operator by

and define the first-order derivatives by
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and

where is the zero-matrix. By Taylor’s expansion, if the
second-order error is negligible, the extended state model can
be approximated by the linear perturbation model

(15)

and

(16)

By a recursive mmse procedure similar to the standard KF, the
EKF algorithm is obtained as follows:

(17)

and

(18)

where is the estimation error covariance with a compu-
tation provided later.

C. Estimation of Conditional MAI-plus-AWGN Covariance

In the expression for the Kalman gain matrix, the conditional
MAI-plus-AWGN covariance plays a critical role in MAI
suppression. Since the Kalman gain matrix is actually a Wiener
solution to the estimation of from , the inclusion of

in the matrix inversion acts as an mmse notch filter to the
interference. In the context of an antenna array, this is equiva-
lent to nulling out the strong directional interference by mmse
beamforming. Based on oversampling the output of the matched
filter, an estimation scheme for has been proposed in [25]
for slowly varying fading channels. From the characterization
(4), the time-selective fading channel requires that the estima-
tion of be done within the snapshot of
each symbol time. This can be accomplished by takingsam-
ples between the two MF output peaksand , as shown in
Fig. 3. The vector denotes the off-peak sample taken at time

, where , and . Since the
MAI-plus-AWGN components in the terms are asymptoti-
cally uncorrelated as gets large, they can be approximated as
jointly independent by the CGA. The magnitude of the desired
user component is suppressed by the processing gain. There-
fore, the conditional covariance can be estimated by aver-
aging outer products of the off-peak samples, i.e.,

(19)

Fig. 3. Sampling of MF outputs.

Since the estimation is done in one symbol time, during which
the channel condition is almost constant, (19) can be viewed
as the sample covariance of independent identically distributed
(i.i.d.) random trials of conditional on . In addition, abrupt
changes might occur betweenand if an interferer starts
transmission during the period .
Nevertheless, this can be monitored by the squared norm of the
off-peak sample vectors. If large, abrupt changes are observed,
the estimate of can be replaced by the previous estimate

.

D. Estimation of AR Model Noise Variance

In [10]–[13], the model noise variance was givena priori.
However, in the channel identification problem, it is unreason-
able to assume the model noise variance is known, while the AR
parameters are not. The above EKF algorithm can only estimate
the AR parameters because the model noise variance is not re-
lated to the Taylor expansion of the state equation. Given the
second-order AR coefficients, a simple expression for the nor-
malized model noise variance can be found in [11]. However,
it requires a perfect estimate of the average signal power.4 A
less stringent power estimate is also required in [14]. To get an
estimate of without a power estimate, we observe that the
model noise variance approximately fits the following relations.
First, if the difference between the true state vector and its esti-
mate is negligible, i.e.,

then

Also, if the model parameters are correct, the variance of the
model noise dominates the prediction error. Therefore

tr (20)

The intuition of this approximation comes from the feedback of
innovations used in [26]. There are two reasons for not using
the modified EKF in [26]. First, the Kalman gain matrix must

4Using notation in this paper, [11, (42)] should be�̂ = ([(1 + a ) �

a ](1 � a ))=(1 + a )Efjg j g, where the average power of the received
signalEfjg j g is normalized to 1a priori by the assumption of perfect power
estimation.
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also be included in the state vector, increasing its dimension
from to . In addition, the Kalman gain
matrix is considered as a fixed set of parameters in [26]. Since
the MAI-plus-AWGN covariance is time-varying and estimated
at each sampling time, the assumption of a fixed Kalman gain
matrix cannot reflect the instantaneous interference property.
Therefore, an estimator of for the recursion [pro-
vided later in (22)] is introduced to complete the computation
of in (17). Using a weighted average to account for the
changing dynamics of the channel, the estimation ofis

in which

and

where is the forgetting factor. The advantage of this estimator
is that the estimation of the average received power is inte-
grated into the algorithm. Unlike most MAP receivers, since
the MAI-plus-AWGN covariance estimator is obtained by av-
eraging outer products of off-peak samples, the proposed algo-
rithm does not need any SNR information from the automatic
gain control (AGC) unit. One drawback of the above estimator
is that it might result in biased estimates of AR coefficients [26];
however, the bit error rate (BER) performance of MAP detection
is consistent over the entire simulated range of signal-to-noise
ratio (SNR) (see simulations in Section V). In fact, as long as the
prediction error of the true data sequence is consistently smaller
than those of other hypotheses, the MAP detection can still make
correct decisions in spite of the biased AR coefficients.

E. Recursion of Estimation Error Covariance

The recursion of the state-error covariance is divided into two
steps in the EKF process. The purpose for doing so is to ensure
the invertibility of the innovation covariance matrices . By
(15)–(18), the recursion can be expressed as follows:

and (21)

(22)

where

matrix

and

in which is the submatrix taken from corresponding to

The matrix is chosen in this way for numerical reasons [26].
Usually, is chosen to be small (10 in our simulations).

F. Constraints on the Array Vector

In addition, the constraint on the array vectorgiven in (14)
must be considered. However, because (14) is not a differen-
tiable equality, the constrained mmse solution to (17) forms a
difficult mathematical problem. To work around this difficulty,
we normalize the estimated array vector after each EKF up-
date of to . That is, after (17), we perform

and (23)

The intuition behind this normalization is to prevent the magni-
tude of the estimated array vectorfrom being unconstrained.
If the magnitude of were unconstrained, and could
drift without bound because the mmse criterion applies to the
product of the quantities and not to the individual quantities.
Because of the assumed noise structure in (15) and the pre-
sumed approximation in (20), the estimate ofwill become
extremely noisy when its magnitude drops significantly. Since
the product is kept close to the true by the EKF,
we leave out the constraint (14) but instead use the common
scalar for equalizing magnitudes of array elements. By this
simple, albeit suboptimal, normalization, the channel estimate

will stay at a reasonable level so that the EKF can work
properly. Note that with (23), submatrices in corresponding
to and must be scaled before com-
puting (22). The derivation for the scaling procedure is straight-
forward and, hence, omitted.

G. Joint MAP Detection Using Innovations

From the previous section, the channel output prediction
is an mmse estimate of conditioned on the past

channel output . Because and are conditionally
jointly Gaussian, is also the ML estimate of .
Accordingly, the random vector conditioned on has
the pdf given by

(24)

The above equation is equivalent to the pdf in (10) defined in
(8) of Section III. Therefore, the recursive MAP detection for-
mulated in (8) and (9) can be completed as follows:

Step 1) At time , , perform the following:
• EKF: (17), (18), and (21).
• Normalization: (23) and

Scaling
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Fig. 4. Beamforming process of the five-element array gain pattern.

• Conditional pdf computation: (24) and (8)
• Estimation error covariance update: (22)

Step 2) D-lag MAP detection and decision feedback: (7) and
(9).

Finally, although different from the channel interpolation in
PSAM, the estimation still requires pilots if coherent detection is
applied. Notice that during a deep fade, a sequence of phase-re-
versed symbol hypotheses can have smaller prediction errors.
Once a wrong decision is made, a cycle slipping may persist in
subsequent detections if those detections are performed without
the assistance of pilots. With the MAP detection proposed in
Section III, differential encoding eliminates the use of pilots that
are needed for the prevention of cycle slipping in coherent sys-
tems. The performance of pilot-assisted and differentially en-
coded systems will be compared in the next section.

V. SIMULATION RESULTS

In this section, simulation results of the proposed algorithm
are presented. The Rayleigh fading channel is produced by the
Jakes simulator [4] for simplicity. In fact, since the Jakes simu-
lator produces a random process with a nonrational power spec-
trum, it can also verify the validity of the AR channel approx-
imation. The processing gain is 128 (21 dB) and the normal-
ized Doppler spread (Doppler shift multiplied by the symbol
duration) is chosen to be 0.01. For the AR channel model, we
assume first- and second-order models for simplicity. The for-
getting factor is set at 0.95 in order to track the model noise
variance effectively. The separation of MF output sampling
( ) is four, and the number of samples () for estimating the
MAI-plus-AWGN covariance is 30. The decision delay is
equal to six.

Fig. 5. Directional pattern of the three-element array formed by first row of
Kalman gain matrix.

Fig. 6. MF output prediction error averaged over 3 antenna elements through
300 runs.

The directional interference rejection capability of the
channel estimator described in Section IV is presented in
Figs. 4 and 5, which show the squared inner product of the first
row of the Kalman gain matrix and the phase array vectors
corresponding to different incidence angles. The first row of the
Kalman gain matrix represents the mmse estimator of
from the observation . Because the MAI-plus-AWGN
vector in does not contain information for estimating
the desired user’s channel, the first row ofthe KF should be
designed to suppress strong MAI by nulling it directionally.
In contrast, the channel prediction error at the desired user’s
direction should be extracted so that the estimator can keep
adapting to the latest channel variations. The effect of such
extraction and suppression can be clearly demonstrated by
polar plots as in Figs. 4 and 5, where the gain is expressed
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7. Dashed line: actual. Solid line: estimated. Tracking of fading channel
with slowly varying doppler spread. Real parts of the actual and estimated fading
channel coefficients are shown.

radially in decibels, with the minimum gain subtracted. The
plots in Fig. 4 show the beamforming process of a five-element
array. The incidence angle of the desired user is 45, and those
of the interferers are 15, 0 , and . All interfering users
are 25 dB stronger than the desired user. Notice that in the first
two symbols, because the initial condition of the array vector is
an all-ones vector, the direction of the desired signal is roughly
pointing at 0 . Consequently, the null of the antenna pattern at
0 is not obvious for the first two symbols. Nevertheless, nulls
at 15 and appear immediately once the algorithm starts,
showing the instantaneous MAI suppression ability. As the
adaptation progresses, the direction of the array vector moves
to the right direction at 45and results in an mmse gain pattern.
The gain pattern of a three-element array is shown in Fig. 5,
which is averaged over the first 250-symbol period at different

Fig. 8. Estimated incidence angle of desired user: relative phase difference to
the first antenna element (averaged over 100 runs).

SNR settings. The incidence angle of the desired user remains
the same, and those of interferers are 15and . Interferers
are set to be 30 dB stronger than the desired user in this case.
Because the number of users exceeds the degrees of freedom
( ), there is some loss in the direction of the desired user.

The remaining simulation results are all based on the setup
in Fig. 5. The second result is to show the performance of the
channel estimator. The channel coefficient prediction errors at
different are plotted in Fig. 6, which indicates the con-
vergence rate of the channel estimator. The length of the training
sequence is set to be 500 symbols to ensure the proper identi-
fication of model parameters, although the convergence shown
in Fig. 6 indicates possibilities for shorter training. The sudden
increment of estimation error after the training period at 0 dB
reflects the effect of error propagation. As can be seen from the
two curves at 20 and 40 dB, this effect has negligible impact on
the performance of the channel estimation.

The ability to track slowly varying Doppler spread is
illustrated in Fig. 7, where channel coefficients and their
estimates with both increasing and decreasing Doppler spreads
are plotted. At the symbol rate of 10 kHz and the SNR of 20
dB, Figs. 7(a)–7(c) and Figs. 7(d)–(f) correspond to Doppler
spreads from 0 up to 0.01 in 3 s and from 0.01 down to 0
in 1.5 s, respectively. The capability of finding the desired
user’s incidence angle is shown in Fig. 8 by the difference of
estimated phases between array elements, which converges
in 250 symbols. From results shown in Fig. 7 and 8, the
quasistationary assumption made in the previous sections is
justified because the adaptation is sufficient for such variations.
Also, the estimated AR model coefficients are compared with
an analysis result in Fig. 9 that is not done in real-time. The
non-real-time analysis uses the forward-backward approach
[27] on the noise-free fading process. The curves showing the
real parts are labeled in Fig. 9, and those showing the imaginary
parts are overlapped on the horizontal line corresponding to
zero. At low SNR, we can observe the bias in AR coefficients,
but the corresponding BER performance is consistent with that
at high SNR (see Fig. 10).
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(a)

(b)

Fig. 9. Comparison of estimated AR coefficient and off-line analysis
(averaged over 100 runs). (a) First order coefficientâ : real and imaginary
parts. (b) Second order coefficientâ : real and imaginary parts.

Finally, we present the BER performance of the EKF-MAP
detection scheme. For comparison, performance curves of both
ideal coherent BPSK and ideal PSAM with no interference are
plotted. By [1], the average BER of ideal coherent BPSK com-
munication in a flat fading channel is

(25)

where . Since exact values of the channel co-
efficients are assumed in (25), the BER of (25) is unreachable in
practice. For ideal PSAM, the BER is obtained from solving a
normal equation, which involves known Doppler spread, known
SNR, and the 0th-order Bessel function of the first kind [8].
For practical applications, fixed-design PSAM optimized for the
worst-case Doppler and a prespecified SNR is proposed in [8].
Nevertheless, ideal PSAM can still serve as a benchmark. For
the tested coherent EKF-MAP algorithm, the pilot insertion rate
is 1/7, and the AR model order is chosen to be 1. As Fig. 10
shows, even in the presence of strong interference, the coherent

Fig. 10. BER performance of coherent and differentially coherent EKF-MAP
algorithm.

EKF-MAP algorithm can attain a BER performance 3 dB from
the ideal coherent BPSK and 1dB from the ideal PSAM. BER
curves of the differential EKF-MAP algorithm with both the
first- and the second-order models are also plotted. Compared
with the coherent EKF-MAP algorithm, the proposed differen-
tial algorithm can achieve a higher spectral efficiency with a
small performance degradation. This is unachievable for fixed
PSAM [8] with pilot rate 1/11, even in an interference-free en-
vironment.

VI. CONCLUSION

A joint channel estimation and MAP detection algorithm for
DS-CDMA systems in a time-selective fading channel is devel-
oped in this paper. Using the MF output characteristics and the
extra spatial dimensions provided by an antenna array, strong
interference can be extracted and suppressed. In order to pro-
vide a real-time estimation, the fast-varying channel is approxi-
mated by an AR model with a total number of parameters that is
much smaller than the previously proposed MA model. Also, we
include the unknown antenna array vector and apply extended
Kalman filtering techniques to identify the unknown channel pa-
rameters. From the statistical distribution of the prediction error
(innovations), we have proposed that the differential MAP de-
tection be performed jointly with channel estimation so that a
pilot-free transmission becomes possible. With noa priori in-
formation, this approach achieves a near-ideal coherent system
performance.
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