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DS-CDMA System with Joint Channel Estimation
and MAP Detection in Time-Selective Fading
Channels

Shiauhe TsaiMember, IEEETan F. Wong Member, IEEEand James S. LehneRellow, IEEE

~ Abstract—in this paper, maximum a posteriori(MAP) detection ~ frequency can make the fading channel characteristics change
is applied to a direct-sequence code-division multiple-accessrapidly over time. For example, if a 2-GHz carrier modulated
(DS-CDMA) system jointly with identification and estimation of by 10-kb/s data is transmitted to a mobile receiver moving at

time-selective fading channels. By sampling the outputs of the . . .
matched filter and combining antenna array elements, strong and 100 km/h, the autocorrelation of the received envelope will have

time-varying multiple-access interference (MAI) is characterized Z€ro crossings every 20 symbols, according to the mobile radio
and suppressed instantaneously. The decision statistics for MAP channel model in [4] and [5], and other models [6], [7] for time-
detection are obtained from the conditional probability density yarying, uplink antenna array channels. In such situations, the
function of prediction error. The prediction is accomplished by = o\ 2qne| can neither be assumed stationary, nor slowly varying.
approximating the fading channel with a constrained nor_mnear H timati dd ic tracki fthe ch I iati
state model. Unknown parameters such as auto-regressive (AR) M€NCE, estimation and dynamic tracking ofthe channel variation
process coefficients, noise covariance matrices, and the antennabecomes necessary.
array vector are estimated based on received sample vectors only.  To estimate and mitigate effects from fast-varying channels,
Also, differential modulation is applied to eliminate the need for gne commonly used technique is pilot symbol-assisted mod-
pilot |nstertlogiz'Fl'ahroughfcomdputer simulations, near-optimum bit ulation (PSAM) [8]. In PSAM systems, the receiver derives
error rates s) are found. s . T . )
( ) o _ unknown channel coefficients by interpolating distortions on
Index Terms—Antenna arrays, code-division multiple-ac- the pilots and then rotates decision boundaries accordingly.
cess, Kalman filtering, MAP estimation, parameter estimation, anpaytical bit-error-rate (BER) expressions for PSAM were
pseudonoise coded communication, time-varying channels. given in [8] for different SNRs and Doppler spreads. In addition
to PSAM, a linear predictive receiver, which jointly estimates
|. INTRODUCTION the fading channel and detects the data symbol, was proposed
. . . in [9] for a continuous phase modulation (CPM) signal over
MON.G various technologies for mqpllg ceIIuIar Cornmufrequency—flat Rayleigh fading channels. The basic idea of
hications, direct-sequence code-division multiple-acCepg 1< oen extended to numerous narrowband systems. For
ggﬁ;ig\%’gl ';‘ dvsgigngg?liogﬁtshlzgio(m:‘taﬁgg?(l)f-trzatarﬁis L:]ltfsir]gle-user spread-spectrum systems, a joint channel state esti-
9 : ! 9 ator and maximum likelihood (ML) detector with code delay

quency-reuse factor, and efficient use of voice activity. HOV\@ timation was developed in [10]. The channel estimation was

ever, pecause of asynchronism in DS-CDMA systems, SIgNGleced on a standard Kalman filter (KF) with given parameters,

from Q|ﬁerent USers canno'g be kept orthogpnal anq multiple-g nd the pseudonoise (PN) code delay estimation was based on an

(rfslf'-ln;irrf?jreiggte'c)(llqvwr)]'i[}lfibo:rijzlm[lzo]natr? dtthriz Eé?g;ré&tended Kalman filter (EKF) because of the nonlinearity in the
ut-u 1on, which IS cov y SBserved output. In the area of multiuser detection, synchronous

cited therein. The other is the conventional single-user deteCs 1 <\ ctoms using a standard KE to track fast channel vari-
tion with power control, which is adopted by the current Nortg Y 9

. ) tions were proposed in [11]-[13]. Given crosscorrelations
Amencap DS-CDMA digital ce'llular system (IS'.95 [31). Here'among all users, the receiver first performs decorrelation under
we consider the approach of single-user detection.

o . . . different symbol hypotheses. The likelihood of hypotheses
In addition to the MAI,_the uncertain properties of mOb'k? then computed from the prediction error and its covariance
radio channels pose a serious challenge for wireless DS-CD

X . . ; ; rovided by the standard KF, where parameters of the associated
systems. Especially, fast-moving transceivers with a high carr flear state model were knovarpriori

A decision-directed MAP detection, assuming known

" o \ed Feb 14, 2000: revised N ber 1 2000 Tc_hannel statistics, was proposed in [14] for the single-user
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channel is estimated by a moving average (MA) linear predictor j 3
with pilots to avoid cycle slipping. Results in [14] have shown data ) signaling Ly spreading || wireless
a BER that is close to ideal coherent BPSK. However, the channel
MA parameters were assumed franpriori spectral analysis, — Y z
causing a major drawback for the method in [14]. In this paper, Joint channel < _ | matched J array
no a priori knowledge of the channel statistics is assumed, MAP detector filter .~ antenna
and regardless of strong interference, information about the
fast-varying, antenna-array channel is derived only from (@
received samples. Given a training sequence, the propose?
algorithm only assumes knowledge of the spreading sequenc MAI
and timing of the desired user. The real-time channel identifi- Gk o) dr LA S

1 tim _ fi-: g [ () >
cation is based on a complex state model with undetermineg T *
parameters. Such modeling can approximate nonsymmetri | ) £ 1~
Doppler spectra and more general time-varying characteristics v() &h v () ZTTI, h,
Because nonlinearities exist in both state and measuremer ..
equations, the principle of the EKF is applied as part of the continuous-time channel and
solution to the problem of real-time identification. In addition, antenna array
considering two quantities not included in the EKF (the noise (b)

variance and the phase array constraints) a complete soluiQN;  system model. (a) Block diagram of CDMA system with antenna array.
is proposed without significantly increasing the computational) Continuous-time and discrete-time model.

complexity. As a result, the estimation of average signal and

noise power is integrated to the identification algorithm suchBPSK (or QPSK with minor changes) symbolSetith cardi-
that no SNR information is required. At the same time, MAhality |S|. The Cartesian product efsymbols is denoted b§".
suppression similar to minimum mean-square-error (MM ch possible symbol from a particular signal set is sent with
beamforming is accomplished through the combination of MAdqual probability. The input information bi is related to the
characterization and array vector estimation. Furthermoggansmitted symbols by, = Fdy,digr) = (1= dydyp1)/2 for
using differentially coherent detection, pilot symbols are rjiferentially encoded BPSK, arig = f(ds, dip1) = (1—dy)/2

moved to increase the spectral efficiency. Simulation results g} -onerent BPSK. The symbol is spread by the waveform
BER are compared with the ideal and the fixed-design PSAM

in an MAIl-free channel as benchmarks. The performance Ny
degradation due to estimation error and the removal of pilots u(t) = Z \/—N61N+n1/)(t =T - T,)
is found to be small. n=0

'This paper is organized as follows. In Section II,.the b'°9\%here{cn} is the quadriphase random signature sequence with
diagram of a DS-CDMA system and the corresponding contip: 12 _ ;- (t) is the time-limited chip waveform with dura-

uous-time and disc:etﬁ-time models are established. Using fi 0,7.), and [T= |(t)|? dt = 1. The spreading gain is
?i(ljs:riit?jgrrir\]/g dmiﬁdgécttic?nn:IEIIXIX]r&gocsgggﬁgl(ggm;%ﬁzn enoted byV, and the spreading waveform is normalized such
. +1)T 2 o . . .
MAP detection scheme is then developed in Section IV withatflT . |U’(t.)| dt = 1 L!keW|se, the spreading waveform
. . . : L . . of each interfering usék is given by
detailed discussions on parameter identification. Simulation re-
sults for the system performance are presented in Section V, and N-1oy

conclusions are drawn in Section VI. oM () = > ©) ot — 1T — nT, — +*))
n=0

\/—N CIN+n

wherer(®) ¢ [0,77.) is the relative chip delay of thith user. In
the following, all quantities involving interfering users are de-

The block diagram of the aperiodic DS-CDMA system witfoted with the superscriff, wherek € {1, ..., K}, and those
an antenna array is shown in Fig. 1(a). In the remaining partig¥olving the desired user are denoted without the superscript.
this section, we describe the continuous-time baseband modehfter spreading, each user transmits to the receiver through a
and the discrete-time receiver output model, where the forniéireless channel independently from the other users. In the fol-

reflects practical system operation, and the latter accommodd®@4ng, we assume a single-path, time-selective fading channel
digital processing. for simplicity. This assumption does not preclude the applica-

bility of the techniques developed here to multipath fading chan-
nels. Note that if multiple paths are mutually independent and
resolvable by a Rake receiver [1], we can use the algorithm
The continuous-time baseband system model is illustrateddn concatenating the received vectors at different Rake fingers
Fig. 1(b). The modulation by a carrier is not shown in Fig. 1(lip form a single large vector. This generalization to multipath
because the phase error is incorporated into the complex chamfennels is straightforward. The single-path channel is equiva-
coefficient. There aré( + 1 users transmitting to the receiverent to a time-varying, multiplicative distortion. For the example
with the desired user denoted as the Oth user. At each timeimSection I, the autocorrelation can be greater than 0.997 within
terval[IT, (I4-1)T], the desired user generates a symh@dlom one symbol duration, although there are zero-crossings every 20

Il. SYSTEM MODEL FORAPERIODICDS-CDMA

A. Continuous-Time Model
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symbols. Therefore, the distortion on each symbol can be siffihe parametegl(k) denotes the approximated channel coeffi-
plified to the multiplication by a complex constagt In Sec- cient for thekth user during the time interv@ll’, (I 4 1)T7. For
tion IV, we show that the channel effects on interfering users caotational convenience, we define
be estimated symbol-by-symbol, regardless of whether they are L (K)
time-varying or stationary. Gi=19" -9 '}
The signal at the receiver in complex representation is giveihe set of channel coefficients; affecting interfering users
by makes the MAI characterization different from the standard
o0 Gaussian approximation. For example, interfering signals
Z qudyo(t hl+z > g u®®h® 4 u(t)  might also pass through fast-varying fadlng channels, and
k=1 l=—ococ the overall interference of each usg}k m ) becomes the
(1) product of two random variables. In [11]-[13], the tevyﬁ)
is given by symbol hypotheses and known crosscorrelations so
that the observations of all users can be simplified as jointly
u(t) = [y (t) - upm(®]F Gaussian. This is not achievable for a single-user receiver
because crosscorrelations among different users are random
whereM is the number of array elements, apd(¢)} are i.i.d. variables, which can only be characterized statistically. In
complex additive white Gaussian noise (AWGN) processes witbntrast to the multiuser case, if we cond|t|on on the set of
in-phase and quadrature power spectral densities eq¥al®  channel coefficient&;, the linear combination cﬁ 77( ) can
In addition, the array vector is given by be approximated as conditionally Gaussian. Mathematically
ho=[1 2R/ N)sing | ion(M=1)(A/N) Sing]T rigorous arguments can be fo_und in [16] and [17]: if th% set of
channel coefficient&;, the ratiok /N, and the delay$r*)}
where ), 6, and A are the carrier wavelength, the incidencef interfering users are given, then the MAI of the MF output is
angle, and the antenna separation, respectively. For the beasymptotically zero-mean Gaussian/ds— co. Given thatVv
forming purpose, we assume a linear-phase array with closeyjlarge enough, the MAI-plus-AWGN vector at each sampling
spaced elements. Notice that interferers’ data symbols &iree (I + 1)7" can be characterized as
omitted in (1) because they are multiplied by random spreading

in which

K
sequences, and hence, the statistical properties of the products n; = w + Z gl(k)m(k)hgk) 3)
do not depend on the data. |
B. Discrete-Time Model where the random vectar; under the given conditio=; is
' _ _ _ _ o denoted as
The received signal is processed as depicted in Fig. 1. The re-
ceiver performs the matched filtering during thie symbol in- n|G; ~ N(0y;,Uy)
terval and samples the output at tifde- 1)7" to form a statistic,
given by and
K
+nT k) (k k), (k)2
= [ o Ui = Noly + £ {Z o7 Py g \Gl} )
T k=1
The statistia; can be expressed as whereI,; denotes thell x M identity matrix. If the covari-

ance matriXUU; is estimated during the period of time when the
number of users and channel conditions remain unchanged, the
conditions required above can be satisfied. The implementation
of this conditional Gaussian approximation (CGA) is described
in Sections Il and IV.

r; = digih; + Z g(k) l('“)hE’“) +u 2
k=1
where the random vectar; accounts for the effect of the com-
plex AWGN with meanO and covariancéVyl ;. The sum of
random vectori 1 gl(") (")h(") accounts for effects from i
the total MAI, in which thekth mterfenng user contributes

. M AP DETECTION

In terms of minimizing error probability, MAP detection is

N-1 . . . .
77(k) _ Z NN f?.(r(’“)) an optimal criterion for symbol-by-symbol detection [18]. By
! ~ IN4n HNAn characterizing probabilities of each symbol, MAP detection
N_1 also delivers reliability information about its decision. Strictly
+ Z c§A2+n,+1 CiNn R(r®)) speakl_ng, the optimum MAP detector requires al! observa_ltlc_ms
= as sufficient statistics. However, to meet the practical restriction

on complexity, MAP detection is usually achieved by using the

. up-to-date observation with a fixed delay. The derivation of the

_ / - Gt — Ty (t) dt and coherentD-lag MAP algorithm is given in [14]. TheD-lag
differentially coherent MAP detection rule is

where for0 < 7 < T,

- / Wit 4T — ) (8) dt. b = axg maxx Pr(bi_p|Ry. I') (5)
0 I—-D
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wherel’; = {Gg, Gy,...,G;} andR; = {rg,ry,...,r;} de- Step 2) Make thé-lag MAP decision according to (7), and
note interferers’ channel coefficients and MF output vectors up select the survival set of conditional probabilitig’s.
to time !, respectively. For the following derivation, some se- d;(D—-1) e8P
guences of symbol hypotheses are denoted as X
p(Rq|di(D - 1),d;—p, I7)
di ={di,di_1, ..., do} — max_ p(Ry|dy(D — 1), di_p,di_p_1,I7). (9)
dl(D) :{dladl—la---adl—D} di-pes

di ={d-p+1,di-p}, and The righthand side of (9) indicates that the feedback is not based
dj ={di(D - 2),ds—p—1}. on the decision ob;_p but the likelihood that symbaof;_p,
leads to the same stafg({D — 1). The selection of the survival
Then, according to Bayes' rule, the probability mass functiagequence in the proposed algorithm is similar to that in the sub-

(pmf) in (5) can be written as optimal soft-output algorithm [19] or the max-log-MAP algo-
rithm [20]. What remains is the computation of the conditional
Pr(bi_p|Ry, I't) probability density function (pdf)
> > p(didj, Ry, I7) )
_ fd)=b_p &S p(riRe—1,di(D),dip-1,Gr) (10)
B p(Ry, I7)

Z Z p(Ry|dy, d}, I) Pr(d;, d}) for the MAP detecti(?n. _ _
F@ )b p djeS .From (2) and (3) in Section I anq the pdf in (10), the con-

= R ditional characterization of the receiver output random vector
PRt can be decomposed into two parts: characteriziggh; given

_{Rl,d(D),&l_D_l} and characterizing; given G,. By def-

inition, d;g;h; is independent ofx;, and if the current inter-

dgrers’ channel coefficients are givem, is independent of the

desired user’s symbols and past received vectors. From (3), we

inwhichp(Ry|I;) is independent of the information bit hypoth
esisb;— p, and Pr(d,, d}) is constant over all hypotheseAs a
result, the MAP detection rule is equivalent to the maximizati

problem . :
have already characterizag using the CGA. The termi; g;h,
H = however, needs further interpretation. First, when conditioned
b — = arg a R d d/ F . ! !
(- = arg juax 2. >, PR, di 1) on each symbol hypothesék (D), the transmitted symbal;

f(d)=b_p dj8 1 ; ;
can be viewed as given. Second, the array vector can be treated

(6) as a set of unknown constants because of its slow variation. For

_ ) example, if the transmitter is 300 m from the base station (BS)
Nevertheless, the number of terms summed in (6) increases gx g moving at 100 km/hr, the incidence angle will change at

ponentially with time. To reduc_:e the complexity, we adopt thr‘?mst 0.5 for 0.1 s (1000 symbols at 10 kb/s). Because of the

ML sequence feedback technique stated next. Suppose the g, 1ar spread, the separation between antenna elements must

tual symbol sequenat; ., is given, then (6) becomes be kept small to avoid any reduction in correlation. Since the
antenna array is used for the purpose of beamforming, nonper-

bip = arg pax Z fectly correlated array elements will significantly reduce dimen-
Fd)=bi_p sions that are available to form directional nulls toward inter-
Z p(Ry|dy(D),dy_p_1,I7). (7) ference. To ensure nearly perfect correlations among array el-

ements, the array sizeV/ — 1)A should not exceed if the
angular spread is°1[21]. For the above example, the max-
As shown above, (7) only sums over the pBst 1 symbol hy- imum change of phase difference among array elements will
pothesesl;( D) € SP+1; hence, the complexity of the MAP de-be 27 sin(0.5°) = 5.4831 x 102 for 1000 symbols. There-
tection in (6) is reduced and fixed }6|” 1. In practice, we ap- fore, h; is assumed to be quasistationary. However, it is gener-
proximated,_,_1 by feeding back the ML symbol sequenceglly more difficult to ascertain the channel coefficignfor fast
d;_p_1, leading to the samé;(D — 1). Moreover, with these fading. To make a systematic channel characterization possible,
feedback sequences, (7) can be recursively computed by the ¥¢& compromise between accuracy and tractability by using a

d;(D—2)esP-1

lowing steps: model-based estimation. In fact, the goal of such modeling is not
Step 1) Attimel, update the conditional probabilities of allt® achieve an exact channel d_escription, but instead to achieve
hypotheses. That i¥, dy(D) € SP+1 a good system performance with a reasonable amount of com-
putation. Furthermore, becauseandR, are jointly Gaussian
p(Ry|dy(D),di_p_1,T7) conditioned onGy, the pdf in (10) is completely characterized

A by the conditional mean
= p(ri|Ry—1,dy(D),di_p_1,Gy)- y

p(Ri1|di—1(D — 1), di—p—1,L1-1). 8 Fuies = E{ri[Re_1,dy(D), d b 1,Go)

2Definitions of f(s), S'~1, and|S| can be found in Section II-A. =d F{gh|Ry_1,di(D), (_Tll,D,l} (11)
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Receiver | whereg; = [gi,- .., qi—p+1]* denotes the channel state vector
Output at timel. We assume the initial condition of the chanpgglis
-— MH I\i“‘;"'l H Extended Gaussian distributed and independent of the zero-mean white
PPIO- ode Kalman Filter Gaussian model noise; with varianceo?, . The vectora; =
Channel X [a1,--..a,1])" represents undetermined complex AR model
SM;IJ;::; ] Estimator | Prediction pdf Mnnovation | coefficients. Such modeling ano_l its identification algorithm de-
Hypotheses — — veloped here extend the work in [10]-[13] to the current sce-
Decision or Probability of each . . N .
Sequence Feedback hypothetical sequence nario. In the previous work, tha priori given real AR coef-
MAP Detection St e symbol (or the data) that ficient can only apply to cases where the Doppler spread is
CLectIon  yaximizes the a posteriori probability | fixed and thez-transform of the channel has a single real pole
or a complex conjugate pair of poles. This limits the applica-
Fig. 2. Joint channel estimation and MAP detection. tion to strictly time-invariant, symmetric Doppler spectra. In
reality, empirical data support nonsymmetric Doppler spectra,
and the conditional covariance such as COST1, COST2, or one-sided ex.ponential spectrum
[23], [24]. The complex AR-channel modeling and the adap-
1 = E{(re -ty ) (r — f‘z|171)H tive estlmgtlon of coefflqents can accommodate more general
R spectra with slowly varying Doppler spread. The ability to track
| Ri—1, (D), di—p-1, Gi}- (12)  slowly varying Doppler spread is shown in the simulation.

Combining (13) and (2), the time-varying fading process and
As shown in (11), a Bayesian channel estimator [22] is requirdite received array vectors can be described by a nonlinear state

to characterize the pdf in (10). model with the state equation
In summary, the computation of the pdf in (10) involves the
following two parts of the channel estimation. First, singe 81 Fio1gi-1
andR;_, are jointly Gaussian gived; andGy, the conditional X1 = | & | = -1 +wi [02 +M_J
mean in (11) is equal to the mmse predictionrpfSecond, by b, by ! (2p+a)x1
(11), the conditional covariance is equivalent to the error co- =F(xi—1) +wie;

variance of the mmse predictor. Since the Ggtis unknown,
an estimator of the error covariance in (12) is necessary. In i
next section, estimators for these two parts are established. For - l al' | ]
-1 =
p

ere

notational convenience, we omit the given conditions in the fol-

lowing and simply write the three quantities associated with the

pdfin (10) asry;—1, gy—1hy—1, andny, respectively. andO, denotes the x 1 zero-vector. The measurement equa-
tion is given by

L_.0,_
p1|p1p><

V. JOINT CHANNEL ESTIMATION AND MAP DETECTION

. o L . =dih; O _

Joint channel estimation and MAP detection is outlined re=difbe Onrpnlgr +mu

in Fig. 2. The recursive computation of the pdfs needed in =diH(x) +my

.M AP. symbpl detect|on.has already beeq shown. Wg Sh(.?/\\’/\fth the nonlinear, nondifferentiable constraint

in this section how to implement the estimator required in

Section 1ll. The goal is to remove the assumptiona)pr_iori _ h=[hoy hig - ha_1a”
channel_ knowledge_and _tc_) wnplement the_ MAP Qetectlon_ VYIth homt =k, form=0,....M—1, and
a real-time model identification. To achieve this goal, joint ’ :

channel estimation using an EKF [9], [20}s investigated in ol =[Pl = - = [har—1| = 1. (14)

this section. To estimate the unknown model parameters, the principle of

A. Auto-Regressive Channel Approximation and Nonlinear EKF is applied as part of the solution.

State Model B. Linear Perturbation Model and EKF
The fading channel coefficientsy;} are modeled by ath We define the vector operator by
order auto-regressive (AR) process. Let the first element of the

channel state vector be \ VA “ i .. L
=
8371 8372 8x2p+;\4

p
Q= Z @i 101 +w = a; g1 +uwy (13) and define the first-order derivatives by

i=1

T
3The use of Kalman filtering for channel estimation and ML sequence de- Fy _8& Opo
tection was first suggested, although not applied, in [9]. Kalman filtering was Op—l Xp
not applied because some recursion quantities for state vectors, such as cgfy — VxF(X)|x=xz =
ditional mean and estimation error covariance, were redundant in the problem 0p><p Ip Opo
formulated in [9]. Roughly at the same time, the use of the EKF with joint ML
detection was published in [10]. OM><p OM><p Iy
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and
U = ViH(X)|x=x, = [17|Onsx(2p—1)|9:1as1]

where O is the zero-matrix. By Taylor's expansion, if the
second-order error is negligible, the extended state model ca

be approximated by the linear perturbation model V\_/\\/\A/\/\[\/\,\}\N\,\/.\/\/_\/\/\/\J
AX1|171 = (Xl - >A<l|171) /\J [\'\/\/'

%VXF(X)|X=§(1,1U,1(XI*1 — )A(l_lll_l) +wlel T T T ---------- T T T
=4A5171|171AX171|171 + wiey (15) N ’
l'l ‘}(’)J= 1,...’1} rl+1

Fig. 3. Sampling of MF outputs.

and

Elli—1 =T — -1
2 dy Vo H(X) ey (X0 — Rpm1) + 1y Since the estimation is done in one symbol time, during which
N the channel condition is almost constant, (19) can be viewed
= ¥y AXy—y + 1. (16)  asthe sample covariance of independent identically distributed
By a recursive mmse procedure similar to the standard KF, tﬂé‘d') rand(_)m trials oy, conditional OnG." In :_addmon, abrupt
EKF algorithm is obtained as follows: changgs mlght ogcur betwe_enandrl+1 if an interferer starts
transmission during the periddl + 1)T", (I + 1)T + noJ1,].

Kip—1 =F(&i_1j-1) Nevertheless, this can be monitored by the squared norm of the
. H off-peak sample vectors. If large, abrupt changes are observed,
i—r =¥ Py ¥y + U the estimate ofUU; can be replaced by the previous estimate
~H _
K; = lel|l—1y71|17121|11_1 (17) Uit
g =1 — diH(X;;_1) =r; — )1 and D. Estimation of AR Model Noise Variance
X =% + Key (18)  In[10]-[13], the model noise varianed, was givera priori.

, L , ) However, in the channel identification problem, it is unreason-
Wh'ereP”,,.é I?jtlhe estimation error covariance with a CompUs | 14 assume the model noise variance is known, while the AR
tation provided later. parameters are not. The above EKF algorithm can only estimate
C. Estimation of Conditional MAI-plus-AWGN Covariaride the AR parameters becaus_e the model noise variance Is not re-
] . ] ~lated to the Taylor expansion of the state equation. Given the
In the expression for the Kalman gain matrix, the condition@bcond-order AR coefficients, a simple expression for the nor-
MAI-plus-AWGN covariancel; plays a critical role in MAI y3)ized model noise variance can be found in [11]. However,
suppression. Smc.e th(_a Kalman gain matrix is a(_:tually_aW|er]§arrequireS a perfect estimate of the average signal péwer.
solution to the estimation akx;;_, frome;;, the inclusion of |ess stringent power estimate is also required in [14]. To get an
.U’ in the matrix inversion acts as an mmse notch .fllt_er to th?stimate o2, without a power estimate, we observe that the
interference. In the context of an antenna array, this is equiandel noise variance approximately fits the following relations.

lent to nulling out the strong directional interference by mmsgyst, if the difference between the true state vector and its esti-
beamforming. Based on oversampling the output of the matd}?ﬁtex”l_l is negligible, i.e.,

filter, an estimation scheme fdd; has been proposed in [25]
for slowly varying fading channels. From the characterization x; = F(Xi_1i—1) + Kiggiy
(4), the time-selective fading channel requires that the estima-
tion of U; = E{nm{’|G;} be done within the snapshot ofthen
each symbol time. This can be accomplished by takirgam-

ples between the two MF output peaksandr;;, as shown in

Fig. 3. The vector{’’ denotes the off-peak sample taken at timgiso, if the model parameters are correct, the variance of the

AXg—1 = X — Xy—1 ~ Kiggos

(I + )T + jnoTe, whereng > 2, andj = 1,...,J. Since the model noisew; dominates the prediction error. Therefore
MAI-plus-AWGN components in the terms(,’ ) are asymptoti- ) ) . "
cally uncorrelated a8’ gets large, they can be approximated as oy, =t {oyeer } = E{Axy,_ Axy1 ). (20)

jointly independent by the CGA. The magnitude of the desired = = | i .
user component is suppressed by the processing gain. Th(_::l—lté@ intuition of this approximation comes from the feedback of

fore, the conditional covariandg, can be estimated by aVer_mnovations used in [26]. There are two reasons for not using
aging outer products of the off-peak samples, i.e the modified EKF in [26]. First, the Kalman gain matrix must

4Using notation in this paper, [11, (42)] should 88 = ([(1 + a2)? —

<~

1 NN N a3](1 — a1))/(1 + a2)E{|g:|*}, where the average power of the received
U~ — rgj)rgj) 1<J< | —| -1 (19)  signalE{|g:|*} is normalized to % priori by the assumption of perfect power
J 7o estimation.
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also be included in the state vector, increasing its dimensiorwhich f’”l is the submatrix taken from,; corresponding to
from 2p + M to 2p + M + pM. In addition, the Kalman gain

matrix is considered as a fixed set of parameters in [26]. Since £ Aay); (A&7 AR/

the MAI-plus-AWGN covariance is time-varying and estimated Ay du e

at each sampling time, the assumption of a fixed Kalman gain

matrix cannot reflect the instantaneous interference properthe matrixB; is chosen in this way for numerical reasons [26].
Therefore, an estimator ef;, for the Py;,_; recursion [pro- Usually,¢ is chosen to be small (G in our simulations).

vided later in (22)] is introduced to complete the computation

of K; in (17). Using a weighted average to account for theé Constraints on the Array Vectdr,

changing dynamics of the channel, the estimation}fis

4
l—iH H
E P Z51|1_11<1 Klel|l—1
2 _ =l 7
w,l -
! @

&

in which

V=Y +€ﬁl_1K{{K151|171a70 =0

In addition, the constraint on the array vedigrgiven in (14)
must be considered. However, because (14) is not a differen-
tiable equality, the constrained mmse solution to (17) forms a
difficult mathematical problem. To work around this difficulty,
we normalize the estimated array vedﬁqq after each EKF up-
date ofx;;_; to X;;. That is, after (17), we perform

~

A "~ gll "~ hll
g — ||hl|z||\/—1{—4 and hy; — VM||f1| I (23)
10

The intuition behind this normalization is to prevent the magni-

tude of the estimated array veciorfrom being unconstrained.
If the magnitude oh,; were unconstrainedy; andh;; could

wherep is the forgetting factor. The advantage of this estimat&r ift without bound b_e_cause the mmse CF"eT"_’” applies t_o_ the
is that the estimation of the average received power is im|%r_oduct of the quantities and_ not to the |np||V|duaI guantities.
grated into the algorithm. Unlike most MAP receivers, sinc@ecalése of th? as_sumed nmsc; structure in &‘T’l) band the pre-
the MAI-plus-AWGN covariance estimator is obtained by a2umed approximation in (20), the estimategpiwill become
eraging outer products of off-peak samples, the proposed al ytremely noisy when its magnitude drops significantly. Since
rithm does not need any SNR information from the automatic® IprOdUCtgl”l;l” is kept _closle4tobthe_ trugll;l by thﬁ EKF,

gain control (AGC) unit. One drawback of the above estimatdf® IeaAve fOUt the I(_:o_nstramt (. 3 ut fmstea Iuse the ?m? on
is that it might result in biased estimates of AR coefficients [26F¢2'@l9: 1O équalizing magnitudes of array elements. By this
however, the bit error rate (BER) performance of MAP detecti mple, albeit suboptimal, normalization, the channel estimate

is consistent over the entire simulated range of signal-to-noi&# W'Hl stay at:\ rea}shonzable Iebvel SO that the EKF cag. work
ratio (SNR) (see simulations in Section V). In fact, as long as thECPEMY- Nc;tet atwith ( 3)’53 matricesify, corresponding
|} andE{Ahy; Ay, } must be scaled before com-

prediction error of the true data sequence is consistently smaff?—:ﬁ_{ |Agq: A . ) .
than those of other hypotheses, the MAP detection can still m fing (22). The der|vat|(_)n for the scaling procedure is straight-
correct decisions in spite of the biased AR coefficients. orward and, hence, omitted.

@ =pg-1+1, and g =0

E. Recursion of Estimation Error Covariance G. Joint MAP Detection Using Innovations

. . o . From the previous section, the channel output prediction
The recursion of the state-error covariance is divided into two is an mmse estimate of, conditioned on the past
steps in the EKF process. The purpose for doing so is to ensgﬁéa—ﬁnel OULDUR, Becauser ;ndR are conditiongll
the invertibility of the innovation covariance matric&%;;. By PDUtL—1- y ! y

- . ; jointly Gaussiant;;_, is also the ML estimate of;|R;_;.
(15)—(18), the recursion can be expressed as follows: Accordingly, the random vectar; conditioned onRq_; has

. the pdf given b
Py = Topynr — Ki¥y—1)Pyi—y  and (21) palg Y

A ~H - 1
Pyt =2y Py + By (22)  p(riRiy) = |
-1
where exp[—(rl — f'l|l—1)HEl_|ll_1(rl — f'l|l—1)]- (24)
P X p matrix ‘ The above equation is equivalent to the pdf in (10) defined in
Py = ‘ P (8) of Section lll. Therefore, the recursive MAP detection for-
- Y 1 d@pranyx(2pran) mulated in (8) and (9) can be completed as follows:
=E{Ax A%} and Step 1) Attimel,V d;(D) € SP*1, perform the following:
r 62 » EKF: (17), (18), and (21).
B - 0, « Normalization: (23) and
I ‘ —g“f’l?ll Py — ScalingPy;
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first symbol time second symbol time SNR = 20dB
90 40 12 90_40 50 ——== SNR= 1008
g 60 ¢ : %0 —-=-= SNR= 0dB

. 207

0
third symbol time 300th symbol time
90 40 90 50
B R 60

270 270

Fig. 5. Directional pattern of the three-element array formed by first row of

) . ) . Kalman gain matrix.
Fig. 4. Beamforming process of the five-element array gain pattern.

101 T T T T

» Conditional pdf computation: (24) and (8) EE §§§E§§§g

» Estimation error covariance update: (22)
Step 2) D-lag MAP detection and decision feedback: (7) and  1° 1

(9).

Finally, although different from the channel interpolation in WWWMWW
PSAM, the estimation still requires pilots if coherent detectionis &g} ]
applied. Notice that during a deep fade, a sequence of phase-res
versed symbol hypotheses can have smaller prediction errors &
Once a wrong decision is made, a cycle slipping may persist in 52
subsequent detections if those detections are performed withou
the assistance of pilots. With the MAP detection proposed in

Section Ill, differential encoding eliminates the use of pilots that

. . . . 3 L L L L '
are needed for the prevention of cycle slipping in coherent sys- 7 500 1000 1500 2000 2500 3000
. . . . Number of symbols
tems. The performance of pilot-assisted and differentially en-
coded systems will be compared in the next section. Fig. 6. MF output prediction error averaged over 3 antenna elements through
300 runs.

V. SIMULATION RESULTS The directional interference rejection capability of the

In this section, simulation results of the proposed algorithohannel estimator described in Section IV is presented in
are presented. The Rayleigh fading channel is produced by #igs. 4 and 5, which show the squared inner product of the first
Jakes simulator [4] for simplicity. In fact, since the Jakes simuew of the Kalman gain matrix and the phase array vectors
lator produces a random process with a nonrational power spegrresponding to different incidence angles. The first row of the
trum, it can also verify the validity of the AR channel approxkKalman gain matrix represents the mmse estimatakgf; |
imation. The processing gain is 128 (21 dB) and the normdfem the observatiore;;_,. Because the MAI-plus-AWGN
ized Doppler spread (Doppler shift multiplied by the symbalectorn; in ¢;;_, does not contain information for estimating
duration) is chosen to be 0.01. For the AR channel model, wee desired user’s channel, the first row ofthe KF should be
assume first- and second-order models for simplicity. The fadesigned to suppress strong MAI by nulling it directionally.
getting factorp is set at 0.95 in order to track the model noisén contrast, the channel prediction error at the desired user’s
variancev,il effectively. The separation of MF output samplinglirection should be extracted so that the estimator can keep
(ng) is four, and the number of sample$)(for estimating the adapting to the latest channel variations. The effect of such
MAI-plus-AWGN covariance is 30. The decision deldyis extraction and suppression can be clearly demonstrated by
equal to six. polar plots as in Figs. 4 and 5, where the gain is expressed
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0 50 100 150 200 250 300 350 400 450 500
Number of symbols

2
1
0
1
2 555 2685 595 2665 2907 2675 298 2085 209 2995 Fig. 8 Estimated incidence angle of desired user: relative phase difference to
«1d the first antenna element (averaged over 100 runs).

©

SNR settings. The incidence angle of the desired user remains
the same, and those of interferers aré 4bd—30°. Interferers
are set to be 30 dB stronger than the desired user in this case.
Because the number of users exceeds the degrees of freedom
0 50 100 150 200 250 300 350 400 460 500 (M — 1), there is some loss in the direction of the desired user.
(d) The remaining simulation results are all based on the setup
1.5 - - - ' ‘ - . - » in Fig. 5. The second result is to show the performance of the
T ” ™~ channel estimator. The channel coefficient prediction errors at
05 # 1 different £, /Ny are plotted in Fig. 6, which indicates the con-
of = ] vergence rate of the channel estimator. The length of the training
08500 7ss0 7600 7680 7700 7750 7a00 7eso 7e00 7es0 8000 Sequence is set to be 500 symbols to ensure the proper identi-
(e) fication of model parameters, although the convergence shown
015 : : . : : , . , , in Fig. 6 indicates possibilities for shorter training. The sudden
increment of estimation error after the training period at 0 dB
025} reflects the effect of error propagation. As can be seen from the
03} two curves at 20 and 40 dB, this effect has negligible impact on
03345 1455 146 1465 147 1475 148 1485 149 1495 15 the performance of the channel estimation.
x16 The ability to track slowly varying Doppler spread is
" illustrated in Fig. 7, where channel coefficients and their
Fig. 7. Dashed line: actual. Solid line: estimated. Tracking of fading chanr@ftimates with both increasing and decreasing Doppler spreads
with slowly varying doppler spread. Real parts of the actual and estimated fadape plotted. At the symbol rate of 10 kHz and the SNR of 20
channel coefficients are shown. dB, Figs. 7(a)-7(c) and Figs. 7(d)—(f) correspond to Doppler
spreads from 0 up to 0.01 in 3 s and from 0.01 down to O
radially in decibels, with the minimum gain subtracted. Thim 1.5 s, respectively. The capability of finding the desired
plots in Fig. 4 show the beamforming process of a five-elememser’s incidence angle is shown in Fig. 8 by the difference of
array. The incidence angle of the desired user t5 46d those estimated phases between array elements, which converges
of the interferers are 5 0°, and—30°. All interfering users in 250 symbols. From results shown in Fig. 7 and 8, the
are 25 dB stronger than the desired user. Notice that in the figgtasistationary assumption made in the previous sections is
two symbols, because the initial condition of the array vectorjigstified because the adaptation is sufficient for such variations.
an all-ones vector, the direction of the desired signal is roughyso, the estimated AR model coefficients are compared with
pointing at 0. Consequently, the null of the antenna pattern an analysis result in Fig. 9 that is not done in real-time. The
0° is not obvious for the first two symbols. Nevertheless, nulison-real-time analysis uses the forward-backward approach
at 153 and—30° appear immediately once the algorithm start$27] on the noise-free fading process. The curves showing the
showing the instantaneous MAI suppression ability. As theal parts are labeled in Fig. 9, and those showing the imaginary
adaptation progresses, the direction of the array vector moyests are overlapped on the horizontal line corresponding to
to the right direction at 45and results in an mmse gain patternzero. At low SNR, we can observe the bias in AR coefficients,
The gain pattern of a three-element array is shown in Fig. Byt the corresponding BER performance is consistent with that
which is averaged over the first 250-symbol period at differeat high SNR (see Fig. 10).

-0.2
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05| Simimiem e ] 104
A
0 105 L Ty
05 . . . . . . . . . 166 . . s . . s .
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Number of symbols SNR: dB
@) Fig. 10. BER performance of coherent and differentially coherent EKF-MAP
06 . T T . . . T r r algorithm.
0.4 T e L 7 . .
et T EKF-MAP algorithm can attain a BER performance 3 dB from
t . .
02f, T 1 the ideal coherent BPSK and 1dB from the ideal PSAM. BER
i/ ‘ A curves of the differential EKF-MAP algorithm with both the
O S~ first- and the second-order models are also plotted. Compared
oo T e with the coherent EKF-MAP algorithm, the proposed differen-
real p

tial algorithm can achieve a higher spectral efficiency with a

Value of coefficient
. =)
N
T

04r 1 small performance degradation. This is unachievable for fixed
05l | PSAM [8] with pilot rate 1/11, even in an interference-free en-
' vironment.
08k real part
* -~ Off-line analysis
e . R VI. ConcLusion

real part A joint channel estimation and MAP detection algorithm for

o 100 200 300 46r3umb5§r°of i) oIS7'oo 800 900 1000 DS-CDMA systems in a time-selective fading channel is devel-
oped in this paper. Using the MF output characteristics and the

(b) extra spatial dimensions provided by an antenna array, strong

Fig. 9. Comparison of estimated AR coefficient and off-line analysitnterference can be extracted and suppressed. In order to pro-
(averaged over 100 runs). (a) First order coefficieni: real and imaginary yide a real-time estimation, the fast-varying channel is approxi-
parts. (b) Second order coefficien.: real and imaginary parts. mated by an AR model with a total number of parameters that is
'gmch smaller than the previously proposed MA model. Also, we

detection scheme. For comparison, performance curves of b'@aIUde the unknown antenna array vector and apply extended

ideal coherent BPSK and ideal PSAM with no interference arg- o fllterlngtechnlqge_s to |C!en_t|fy t_he unknown cha_nnel pa-
rameters. From the statistical distribution of the prediction error

cmai_nnovations), we have proposed that the differential MAP de-
tection be performed jointly with channel estimation so that a

Finally, we present the BER performance of the EKF-MA

plotted. By [1], the average BER of ideal coherent BPSK ¢
munication in a flat fading channel is

— pilot-free transmission becomes possible. Withanpriori in-
P, = 2 1-— T M (25) formation, this approach achieves a near-ideal coherent system
Vb performance.

wherey, = E{|g:|?>/No}. Since exact values of the channel co-
efficients are assumed in (25), the BER of (25) is unreachable in

practice. For ideal PSAM, the BER is obtained from solving a [1] R. L. Peterson, R. E. Ziemer, and D. E. Borthiroduction to Spread
Spectrum CommunicationsEnglewood Cliffs, NJ: Prentice-Hall,

normal equation, which involves known Doppler spread, known  jg95
SNR, and the Oth-order Bessel function of the first kind [8]. [2] S. Verdd, Multiuser Detection Cambridge, U.K.: Cambridge Univ.

For practical applications, fixed-design PSAM optimized forthe __ Press, 1998. . -
[3] Mobile Station-Base Station Compatibility Standard for Dual Mode

worst-case Doppler and a prespecified SNRis proposed in [8] Wideband Spread Spectrum Cellular Systdi#\/EIA/IS-95 Interim

Nevertheless, ideal PSAM can still serve as a benchmark. For  stand., July 1993. _ o .
the tested coherent EKF-MAP algorithm, the pilot insertion rate [4] W. C. JakesMictowave Mobile Communications Piscataway, N.:
is 1/7, and the AR model order is chosen to be 1. As Fig. 10[5] W.C.Y. Lee’,MobiI.e Communications Engineering: Theory and Appli-

shows, even in the presence of strong interference, the coherent cations 2nd ed. New York, NY: McGraw-Hill, 1997.
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