
J. Desel, B. Pernici, and M. Weske (Eds.): BPM 2004, LNCS 3080, pp. 179–194, 2004.
© Springer-Verlag Berlin Heidelberg 2004

SMART: System Model Acquisition from
Requirements Text

Dov Dori, Nahum Korda, Avi Soffer, and Shalom Cohen

Technion, Israel institute of Technology
{dori@ie, korda@tx, asoffer@tx, shalom1@tx}.technion.ac.il

Abstract. Modeling of a business system has traditionally been based on free
text documents. This work describes an elaborate experiment that constitutes a
proof of concept to the idea that a system model can be acquired through an
automated process whose input is a corpus of technical free text requirement
documents and whose output is an OPM model, expressed both graphically,
through a set of Object-Process Diagrams, and textually in equivalent Object-
Process Language. Our experiment has yielded a high quality system model that
required a much smaller effort than what would have been needed in the tradi-
tional approach.

1 Introduction

Architecting systems in general and software systems in particular is a tedious task
that consumes significant time and expertise resources. Systematically transforming
unstructured, free text business specification and user requirements into precise and
formal system specifications is a laborious and complex operation, where instead of
focusing on the overall design, one often gets lost in a clutter of details. Automation
could be of great assistance here, not only because it can significantly lower the over-
all effort, but also because it allows system designers to focus on the system overview,
get the "big picture" much more quickly, and ultimately maximize the overall effi-
ciency of the system while minimizing its time to market.

While the vision of automating the modeling and architecting processes by ex-
tracting semantics from requirements expressed in free text may seem to make a lot of
sense, a wide semantic gap stands in the way of such automation. On one side of the
gap that we seek to bridge is free natural language text, while on its other side is a
formal, machine "understandable" and processable character stream. Documentation
that serves as a basis for architecting new systems or improving existing ones, such as
business process specifications or user requirements, is formulated in natural language
that is not even in a machine-readable, let alone machine-understandable format.

While formalization of freely expressed ideas, concepts, intentions, and desires
into rigorous specifications seems to be beyond the reach of current computing tech-
nologies, not all hope is lost. The emergence of the Semantic Web and ontology engi-
neering technologies may point the way to eventually bridge the semantic gap obsta-
cle. Although it still seems unrealistic to expect complete automation of the system

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 24000 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 10.0 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

180 D. Dori et al.

design, partial, semi-automatic solutions that operate under human supervision may
already be feasible and may prove to be extremely useful.

Our proposed strategy is to start bridging the semantic gap in parallel from its two
sides—the formal side and the natural language (NL) side—as follows:

1. On the formal side of the semantic gap, the need is for a paradigm and a tool that
is capable of human-oriented intuitive expression of complex system function,
structure, and behavior while at the same time being formal to a degree that a
machine can unambiguously process it. Object-Process Methodology (OPM) [1]
is obviously an excellent candidate for the task at hand, since Object-Process
Language (OPL), the textual modality of OPM, utilizes a constrained subset of
English, which brings it a significant step closer to the unconstrained natural lan-
guage that exists on the other side of the gap. The additional advantage of using
OPM is that its two semantically equivalent modalities, one graphic (Ob-
ject-Process Diagram) and the other textual (Object-Process Language), jointly
express the same OPM model. Accordingly, every verbal formulation (OPL) is
automatically paralleled by its graphic presentation, (OPD), and vice versa, such
that complete equivalence between the two presentations is guaranteed at any
point in time.

2. On the NL side of the semantic gap, information extraction technologies will be
utilized in order to achieve the following benefits:
• Extracting from unstructured text elements—entities and links—that are key

concepts for the domain and the problem at hand,
• Detecting and mapping alternative formulations of relevant ontological rela-

tions, and
• Deriving a semi-formalized presentation of the underlying documentation

that could be manually organized into a rigorous formal model of the re-
quired system.

To prove the concept of deriving an OPM model from unstructured technical text,
this paper describes an experiment in which we utilized information extraction tech-
niques in order to automatically generate OPL script—a structured subset of natural
English—from which the corresponding diagrammatic specification in the form of a
set of Object-Process Diagrams (OPDs) was constructed semi-automatically utilizing
the OPM-supporting CASE tool (OPCAT) [2]. The automatically derived OPL sen-
tences served as a basis for modeling the initial requirements. The automatically-
generated initial specification was elaborated upon by the system architect conferring
with the domain expert—the representative of the system beneficiary or user, and ob-
tained the expert's blessing. This initial OPM-based system specification can be fur-
ther developed into a complete formal system design with OPCAT, and automatically
documented, converted into a set of UML diagrams if so desired, and implemented as
a set of JAVA classes.

The experiment described in this paper is, to the best of our knowledge, a first suc-
cessful attempt to construct a system model in a semi-automatic way from the system's
free text documentation of the requirements. The experiment was based on GRACE
(Grid Search and Categorization Engine), a European Community Information Society
Technology (IST) project [3]. This complex software development project combines

SMART: System Model Acquisition from Requirements Text 181

Grid, ontology engineering, and knowledge management. GRACE was found to be
suitable for our experiment due to its extensive background documentation, which
includes user and system requirements. A subset of this documentation corpus served
as the free natural language text on which the automatic content extraction and OPM
model building was performed.

The rest of the paper is structured as follows: Section 2 includes a review of the
state-of-the-art in automating modeling from free text. This is followed by a descrip-
tion of OPM in Section 3 and application of OPM to model the architecture of our
SMART system in Section 4. The experiment is described in section 5, and section 6
presents our conclusions.

2 Automating Modeling from Text: State of the Art

Architectures of systems and their underlying software provide high-level abstractions
for representing the function, structure, behavior, and key properties of the system. A
first and crucial phase in system architecting is eliciting, gathering, analyzing, and
engineering the stakeholders' requirements. In spite of the clear and direct relation-
ships between requirements engineering and system architecture modeling, these two
activities have traditionally been pursued independently from one another.

2.1 From Requirements to Architecture

System requirements include the customer's expectations and vision of the desired
solution of the business problem at hand, and constraints on the solution. The re-
quirements documentation reflects interests of the different system's stakeholders—
customers, endusers, developers, and managers [4]. Requirements deal with concepts,
intentions (both explicit and implicit), goals, alternatives, conflicts, agreements, and
above all—desired functional and non-functional system features and properties.

Architecting a system from its requirements has not yet fully been understood. The
task of system architecting from its requirements is difficult due the complex nature of
the interdependencies and constraints between architectural elements and requirement
elements. A number of techniques have been proposed, though, to assist in this effort-
consuming and poorly understood task .For example, the Component Bus System, and
Properties (CBSP) approach [5, 6], also supported by tools [7, 8], is an analysis
method that operates through classification of system features and properties as re-
flected in the requirements and altering their representation using an intermediate lan-
guage.

Techniques that have been proposed so far to bridge the requirements-design gap
commonly involve human-driven conceptual analysis of the requirements—an itera-
tive, error-prone, and resource-consuming effort for extracting domain-knowledge
related information from the requirements. The CREWS project [9], which makes use
of language processing in scenario-based requirements engineering approach [10],
promotes guidance of the elicitation and validation of requirements that is based on
textual scenarios.

182 D. Dori et al.

2.2 Working from Business Specification and User Requirements

Another approach to supporting the requirements engineering (RE) process is based
on the fact that natural language plays an important role during the requirements stage.
It is argued [11] that acquisition of application domain knowledge is typically
achieved through language manipulation, either through document and text analyses or
by means of interviews. It has therefore been suggested there that RE should be sup-
ported by a CASE tool that is based on a linguistic approach. Such RE support envi-
ronment would generate the conceptual specification from a description of the prob-
lem space provided initially through natural language statements.

A complete and effective RE process, which naturally involves language manipu-
lation, includes the following steps: (1) acquisition of domain-dependent knowledge
using NL statements, an automated version of which [12] applies NL-processing-
based metadata extraction to automatically acquire user preferences, (2) graphic rep-
resentation of the semantic contents of the NL statements, which should be easy to
understand and manipulate, and (3) mapping of the real-world description to a con-
ceptual schema, or a requirements-level system model. Based on this analysis, an ap-
proach for tackling the inherent complexity of the RE process is proposed [13] that is
based on a CASE tool for the requirements engineering process. This CASE tool is
essentially a rule-based expert system, which is a highly technical environment that
requires substantial support in rule generation, adaptation, and checking.

2.3 Natural Language Processing

Industrial practice has shown that NL requirements are easier to evolve, maintain, and
discuss with (possibly non-technical) stakeholders. Recognizing the potential role of
natural language processing (NLP) in the requirements engineering process, efforts
(e.g., [14]) have been made to identify tasks where NLP may be usefully applied. At
the same time, however, a note of caution is sounded by noting the limitations of NLP
in requirements engineering [15].

A number of experiments have been reported on the use of NLP techniques in the
context of systems development. Lexical analysis was used [16] to find abstractions in
unstructured and un-interpreted text. Other studies applied NL parsing and under-
standing techniques to automatic extraction of models from NL requirements [17, 18,
19]. Several specific NLP tools and techniques, including [20, 21], have been intro-
duced for the purpose of analyzing and controlling software requirements. These tech-
niques rely on lexical analysis to extract abstractions from natural language text [22].
The use of NLP has also been reported in analogical reasoning technology for specifi-
cation reuse and validation [23]. Although the application of NLP techniques to han-
dling system requirements is appealing, it is often difficult to check and prove proper-
ties, such as correctness, consistency, and completeness on those requirements [24].
Abstract systems were suggested for detecting such ambiguities and under-
specifications [25] as well as requirement redundancies [26].

When moving from early requirement gathering, in which ideas, concepts, and in-
tentions are expressed with NL, to the analysis phase, the freely expressed NL-based

SMART: System Model Acquisition from Requirements Text 183

requirements need to be formalized. They need to be replaced by rigorous specifica-
tions, so coherence, consistency, and feasibility can be reasoned about, at least semi-
formally. Lightweight formal methods were used in [27] for partial validation of NL
requirement documents. Checking properties of models obtained by shallow parsing
of NL-expressed requirements, they concluded that automated analysis of require-
ments expressed in natural language is both feasible and useful.

The conclusion drawn from current research is that the RE process should be sup-
ported by a CASE tool that incorporates a linguistic approach. The tool should facili-
tate an RE-support environment that generates a conceptual specification from a de-
scription of the problem space provided through natural language statements. We dis-
tinguish between two different types of NL sentence analyses. One is the syntactic
analysis, which is based on finding the parts-of-speech in a sentence, including object,
subject, verb, adjective, adverb, etc. A notable method of syntactic analysis of this
form is Knowledge Query and Manipulation Language (KQML) language, proposed
by ARPA Knowledge Sharing Effort in 1992. It uses Knowledge Interchange Format
(KIF) [28] for content description through an ASCII representation of first order
predicate logic using a LISP-like syntax [29]. The other sentence analysis type is the
semantic approach, in which we seek the deep, underlying meaning of what the sen-
tence expresses in terms of detecting objects in the sentences and relations between
them, or a transformation to an object (its generation, consumption, or change of state)
that a process causes through its occurrence. These two different types of NL sentence
analyses were adopted by [30] to form their Word Class Function Machine aimed at
both the syntactic analysis and semantic analysis of NL. Performance of these analyses
has been an issue for Samuelsson [31] who optimized the analysis and generation ma-
chinery through the use of previously processed training examples [26].

This paper suggests the use of NLP in conjunction with Object-Process Methodol-
ogy (OPM) [1] and its supporting CASE tool (OPCAT) [2] for acquisition of applica-
tion domain knowledge. The proposed approach seeks to extract as much semantics as
possible automatically from a given corpus of related technical documents, such as
requirement documents, and build from this extracted semantics an initial conceptual
model in a semi-automatic way using OPM and its OPCAT support environment. We
next focus on OPM.

3 Object-Process Methodology

Most interesting and challenging systems are those in which structure and behavior are
highly intertwined and hard to separate. Object-Process Methodology (OPM) is a ho-
listic approach to the modeling, study, and development of systems. It integrates the
object-oriented and process-oriented paradigms into a single frame of reference.
Structure and behavior, the two major aspects that each system exhibits, co-exist in the
same graphic-NL bimodal OPM model without highlighting one at the expense of
suppressing the other.

The elements of the OPM ontology are entities (things and states) and links. A
thing is a generalization of an object and a process—the two basic building blocks of
any system expressed in OPM. Objects are (physical or informatical) things that exist,

184 D. Dori et al.

while processes are things that transform objects. In a specific point of time, an object
can be exactly in one state, and objects states are changed through occurrences of pro-
cesses. Links can be structural or procedural. Structural links express static relations
between pairs of entities. Aggregation, generalization, characterization, and instantia-
tion are the four fundamental structural relations. Procedural links connect entities
(objects, processes, and states) to describe the behavior of a system. The behavior is
manifested by processes that interact with objects in three major ways: (1) processes
can transform (generate, consume, or change the state of) objects; (2) objects can en-
able processes without being transformed by them; and (3) objects can trigger events
that invoke processes.

3.1 The Bimodal OPM Model Representation

Two semantically equivalent modalities, one graphic and the other textual, jointly ex-
press the same OPM model. A set of inter-related Object-Process Diagrams (OPDs)
constitute the graphical, visual OPM formalism. Each OPM element is denoted in an
OPD by a symbol, and the OPD syntax specifies correct and consistent ways by which
entities can be linked. The Object-Process Language (OPL), a subset of English for-
mally defined by a grammar, is the textual counterpart modality of the graphical OPD-
set. OPL is a dual-purpose language, oriented towards humans as well as machines.
Catering to human needs, OPL is designed as a constrained subset of English, which
serves domain experts and system architects engaged in analyzing and designing a
system. Every OPD construct is expressed by a semantically equivalent OPL sentence
or phrase. Designed also for machine interpretation through a well-defined set of pro-
duction rules, OPL has an XML-based notation that provides a solid basis for auto-
matically generating the designed application. This dual representation of OPM in-
creases the processing capability of humans.

3.2 OPM Refinement and Abstraction Mechanisms

Complexity management aims at balancing the tradeoff between two conflicting re-
quirements: completeness and clarity. Completeness requires that the system details be
stipulated to the fullest extent possible, while the need for clarity imposes an upper
limit on the level of complexity and does not allow for an OPD (or an OPL paragraph)
that is too cluttered or overloaded with entities and links among them. The seamless,
recursive, and selective refinement-abstraction mechanisms of OPM enable presenting
the system at various detail levels without losing the “big picture” and the comprehen-
sion of the system as a whole. The three built-in refinement/abstraction mechanisms
are: (1) unfolding/folding, which is used for refining/abstracting the structural hierar-
chy of a thing and is applied by default to objects; (2) in-zooming/out-zooming, which
exposes/hides the inner details of a thing within its frame and is applied primarily to
processes; and (3) state expressing/suppressing, which exposes/hides the states of an
object. Using flexible combinations of these three mechanisms, the achieved OPM
models are consistent by definition.

SMART: System Model Acquisition from Requirements Text 185

4 OPM Model of the SMART System

OPM is employed in this research at two levels: one is the specification of the System
Model Acquisition from Requirements Text (SMART) system, and the other is an
example of the GRACE system, which is the outcome of our proof-of-concept ex-
periment. Having introduced the basics of OPM we proceed to utilize it to model the
architecture of the SMART system using OPCAT. The SMART system consists of
various software tools that operate cooperatively in order to produce SMART's de-
sired output.

Fig. 1 shows the System Diagram (SD), i.e., the top-level Object-Process Diagram
(OPD) of the SMART system. The diagram depicts the high-level structure of the
SMART system, its main process, input and output, and the user, as well as their inter-
relations.

Fig. 1. SD – System Diagram (top-level view) of the SMART system OPM model

The graphical description of SMART—the OPD—is backed by corresponding
OPL specification, which OPCAT generates automatically in real time in response to
the user's graphic input. Table 1 presents the OPL paragraph that describes the OPD in
Fig. 1.

Table 1. The OPL paragraph describing the SMART system whose OPD is in Fig. 1

System Architecting Team handles System Model Acquisition.

SMART consists of Categorization Engine, OPCAT, and OPL Generator.

System Model Acquisition requires System Requirements Unstructured

Text, Categorization Engine, OPCAT, and OPL Generator.

System Model Acquisition yields System Model.

186 D. Dori et al.

The first sentence in the OPL paragraph expresses the fact that the System Archi-
tecting Team is in charge of, or is involved in the process. As Fig. 1 shows, it is con-
nected by an agent link, which triggers the process System Model Acquisition. The sec-
ond sentence expresses the structure of the SMART system. The major components of
the system, Categorization Engine, OPCAT, and OPL Generator, are related to the main
System Model Acquisition process by instrument links. The fourth and last sentence in
the OPL paragraph expresses the fact that System Model Acquisition generates as a re-
sult of its occurrence a new object called System Model.

In order to elaborate on the details of the System Model Acquisition process de-
picted in Fig. 1 we take advantage of OPM's complexity management capability.
Zooming into System Model Acquisition, OPCAT creates a new OPD shown in Fig. 2,
which is automatically labeled SD1 – System Model Acquisition in-zoomed. SD1 is one
level lower than SD in the OPD hierarchy.

Fig. 2. The in-zoomed System Model Acquisition process of Fig. 1 exposes subprocesses
and interim objects

The graphical description of SD1 is backed by another corresponding automati-
cally-generated OPL paragraph. The major subprocesses of SMART, their order of
operation (top to bottom), and the interim objects—Category List, Relation Set, and
OPL Sentence Set—are obvious from the diagram. The subprocesses and interim ob-
jects are also clearly listed in the third sentence in the OPL paragraph, which reads:

OPM Model Construction zooms into Category Extraction, List Editing, Relation

Formulating, OPL Sentence Generating, and OPD Constructing, as well as OPL

Sentence Set, Relation Set, and Category List.

SMART: System Model Acquisition from Requirements Text 187

Drilling down into lower levels in the model hierarchy using OPM's abstrac-
tion/refinement mechanisms (not shown here due to shortage of space) would reveal
further details on the system by showing sub-subprocesses and additional objects'
lower level parts and/or attributes. A detailed description of SMART is provided in
the next section.

5 The Proof-of-Concept SMART Experiment

Our experiment was aimed to provide proof of concept to the possibility of semi-
automatically constructing portions of a model of the system-to-be, as expressed in
free text of a corpus of requirement documents. The following is an account of the
experimental settings and procedures. As proof of concept, the experiment proceeded
while operating various software programs independently in different phases, rather
the attempting to produce a unifying application with a user-friendly graphic interface.

5.1 Automatic Extraction of Categories from Unstructured Text

Our document set of unstructured text consisted of half a dozen free text documents
from the GRACE corpus, with a total size of about 0.5 MB. We developed a LISP-
based, heuristics-directed categorization engine and utilized it to extract categories
from our document set. A category in our context is defined as an idiomatic phrase
(word sequence) reflecting the underlying topics in a given corpus of documents. Idi-
oms are expressions whose meaning cannot be deduced from the meaning of its indi-
vidual constituents, but rather from their consistent use in specific contexts.
Table 2 presents a few examples of categories that were automatically extracted from
the unstructured GRACE documentation text by our categorization engine.

Table 2. Examples of categories that were automatically extracted from our GRACE docu-
mentation

Search Results Advanced Searching Knowledge Managing
Content Sources Web Services Query Routing
Search Engine Document Storing Knowledge Sharing
User Profile Document Retrieving Frontend Application
Web Server Content Source Registering

Overall, the categorization engine extracted 109 categories, utilizing only its heu-
ristics. Many domains of human knowledge, in particular sciences, have very detailed
and precise nomenclatures and dictionaries that could be used for that purpose. We
could also calibrate the categorization engine to extract particular categories specified
in an external ontology, taxonomy, or thesaurus. Such combination of unconstrained
and ontology-guided extraction might generate better results, as the unconstrained
categorization could add to the domain vocabulary concepts and expressions that are
specific to a document corpus.

188 D. Dori et al.

5.2 Manual Editing of the Extracted Categories

SMART is intended for use by system engineers with some knowledge domain or pre-
vious involvement in similar efforts, since manual category editing requires some do-
main expertise. The extracted categories were next manually inspected to achieve the
following purposes:
Selection of those categories that can serve as things (objects or processes) in the
OPM model, and classifying them as either object or processes. For example, about
half of the extracted things in

1. Table 2 are objects, while the rest are processes. OPM favors processes in the
gerund form, i.e., those that end with the "ing" suffix. Indeed, all the processes in
the table have this form, but this is not necessarily the case. Fore example,
Document Retrieval would be classified as a process, synonym with Document Re-
trieving. A counterexample of the word Building, means either the object (house)
or the process of constructing the house, shows why automatic object-process
classification is difficult (but not impossible) to automate.

2. Clustering alternative formulations for the selected OPM things (for example,
Search Results and Retrieved Results) based on their semantic similarity, and

3. Optionally adding OPM things that did not show up among the extracted catego-
ries.

An important assistance to the manual editing of categories is the ability of the
categorization engine to present all the sentences from the processed corpus in which a
particular category appears. Using this feature, a system engineer can focus on the few
really relevant instances, in which a particular category occurs, saving the sifting
through hundreds of documentation pages. During this inspection, additional catego-
ries that were not automatically extracted but are nonetheless relevant for the design
may be detected in the text, or may simply come to mind and be manually added.

The system allows semantic clustering, i.e., grouping of categories into clusters
that share similar a meaning. This caters to the variety of natural language formula-
tions encountered in actual texts. Our experiment has revealed several typical situa-
tions in which such clustering is required:

1. Abbreviations and acronyms (e.g., European Data Grid and EDG),
2. Lexical variations (e.g., search results, retrieved documents, retrieved results),
3. Synonyms (e.g., screen, monitor, display),
4. Morphological variations (e.g., registering, registration), and
5. Orthographic variations (e.g., frontend, front-end, front end).

5.3 Automatic Search of OPM Relations

In order to extract OPL sentences from the unstructured text, SMART utilizes a set of
configurable, predefined templates. Each template consists of two things and the rela-
tion between them, expressed in alternative ways. For example, the result relation
between a process and an object, expressed in OPL by the verb yields, can also occur

SMART: System Model Acquisition from Requirements Text 189

as generates, results in, etc. SMART currently utilizes 50 predefined general tem-
plates and 20 domain-specific templates that were detected by inspecting various
contexts in which the selected categories occurred. These 70 templates were applied to
109 categories organized in 46 clusters. Since not all combinations of things and rela-
tions are allowed (for example, the OPM relation result cannot exist between two
OPM objects from the list of 109 categories, but only between a process and an ob-
ject, and in this order), the original document corpus was tested against a total of
234,320 templates.

We define second order regular expressions as regular expressions, in which the
basic unit is a word rather than a character. Instead of comparing character strings, a
program that uses second order regular expressions compares word sequences. The
program is implemented as a finite-state automaton that operates on suffix-tree index
consisting of tokens from the processed text. To guarantee the required expressiveness
of the framework, SMART manipulates second order regular expressions, allowing
them to be defined on any lexical or grammatical attribute of the processed text, such
as part-of-speech, capitalization, and punctuation. The extraction of OPM relations is
performed with these templates in two modes:

1. Constrained extraction, which is limited only to the pairs of categories defined as
OPM things in the manual editing process, systematically generates couples and
attempts to detect any possible relation between them in the text, and

2. Unconstrained extraction, which allows selection of any single OPM thing and
seeks all possible relations in which it occurs.

5.4 Automatic Generation of OPL Sentences

Since each template has a corresponding OPL formulation, every extracted natural
language sentence can be straight-forwardly translated into an OPL sentence. None-
theless, at this stage it is also possible to reformulate the outcome in order to better
reflect the underlying relations. This transformation is performed in two steps:

1. A custom relation is transformed into a process, for example: cached into is trans-
formed into Caching, and

2. A complex relation, such as Actual Documents Cached into Document Repositories,
is transformed into two equivalent simple sentences. In our case, (1) Caching re-
quires Actual Documents and (2) Caching yields Document Repositories.

These transformations do not modify the underlying semantics of the NL sentences
but allow the complex natural language formulations to be and simplified into concise
OPL sentences. The output set of the OPL sentences is listed in Table 3.

190 D. Dori et al.

Table 3. The OPL paragraph describing the GRACE system whose OPD is in Fig. 3.

Search Results consists of Actual Documents.
Knowledge Domain consists of Content Sources.
EDG Application Layer consists of Job Management Element and Data Management Element.
 Data Management Element retrieves User Profile.
 Data Management Element and Document Storage Service are interfaced.
 Data Management Element and Search Engine are interfaced.
NDF Repository consists of Documents NDF.
 Documents NDF are transferred to Document Storage Service.
Document Processing Service processes Actual Documents.
Frontend Application transfers Query Request.
Web Server and Frontend Application are interfaced.
Text Indexing requires Search Engine.
Query Routing consumes Query Request, Internal Content Sources, and External Content Sources.
Query Routing yields Actual Documents.
Downloading requires Document Processing Service.
Downloading consumes External Content Sources.
Downloading yields Actual Documents.
Cashing consumes Actual Documents and External Content Sources.
Cashing yields Content Sources.
Storing consumes Actual Documents.
Storing yields Internal Content Sources.
Retrieving requires Query Request.
Retrieving yields Search Results and Actual Documents.
Accessing requires EDG Application Layer.
Accessing affects NDF Repository and Document Repositories.

5.5 Manual Editing of the Results

The OPL sentences were fed into OPCAT one by one to obtain the OPD, which is
shown in Fig. 3 after manual beatification.

Both the OPL sentence set and the OPD are significantly simpler and more di-
gestible than the hundreds of NL documentation pages from which the model was ex-
tracted. OPCAT allows the results to be edited graphically in order to remove the in-
correct relations, organize the things and the relations into more complex
(multi-layered) structures, add undetected things and relations, etc. The graphic ma-
nipulation is much easier than text editing, and this ability is a great advantage of
OPCAT. Since complete equivalence between OPD and OPL presentations is granted,
every modification in the OPD is automatically reflected in the corresponding OPL
sentence(s). Several operations were applied to the results at this final step:

1. Corrections: Some non-semantic corrections were necessary due to the fact that the
extraction did not depict all of the existing or implied relations. These corrections fall
into the following categories:

1. Grouping of specialized elements into a general one (e.g., Internal Content
Sources and External Content Sources were grouped into Content Sources),

SMART: System Model Acquisition from Requirements Text 191

Fig. 3. The OPD that represents the OPL sentences generated from GRACE free text

2. Grouping of specialized elements into a general one (e.g., Internal Content
Sources and External Content Sources were grouped into Content Sources),

3. Associating unrelated elements (e.g., Text Indexing was associated with the
Document Processing Service),

4. Renaming elements (e.g., Storing was renamed more specifically as Grid Pub-
lishing),

5. Reapplying a relation transitively from a general object to its specialization
or from a whole to a part (e.g., transferring the instrument link attached to
Text Indexing from Search Engine to its Document Processing Service part).

2. Additions and Eliminations: Unlike corrections, additions and eliminations may
semantically modify the original output. Additions aim primarily at improving the de-
tail level and completing the implied structure based on common sense (e.g., by intro-
ducing User as the human agent that interacts with the system). Eliminations simplify
the results by removing superfluous or unessential detail.

3. Scaling: Scaling was applied in order to simplify the results without losing details.
Inspecting the OPD revealed that the documentation implicitly discusses two main
processes: (1) storage of documents into content sources and (2) their retrieval on de-
mand. The first process was conveniently renamed Grid Publishing and the second—
Information Retrieval. Fig. 4 presents the system diagram (SD)—the top-level view that
resulted from abstracting the original results.

192 D. Dori et al.

From here the editing process that was demonstrated at the top level proceeded
mostly through transferring the extracted things and relations to the most appropriate
level of detail. The final result consists of seven OPDs at three levels of detail.

Fig. 4. Manually abstracted system diagram of GRACE

6 Summary and Conclusions

The experiment described in this paper demonstrates the feasibility of automating the
most critical step in the system engineering process from unstructured business speci-
fication and user requirements to precise and formal system specifications. The ex-
periment was designed as a proof-of-concept offering the first hands-on experience
required for the development of a future full-scale industrial application. We drew the
following be conclusions from the experiment:
1. The proposed methodology significantly reduces the quantity of material that

would otherwise need to be processed manually.
2. Translating the original NL sentences into OPL reduces the initial level of con-

ceptual complexity. The variety in which a relation may be expressed in NL may
be surprisingly broad, leading to confusion, imprecision, and vagueness. This is
typical if the documentation was written by many authors from various profes-
sional backgrounds. OPL, on the other hand, introduces uniformity, which guar-
antees that the relations are expressed in a concise and unambiguous way.

3. The results depend critically on the quality of the processed documentation. The
more architectural information is contained in it, the better the results. Relevant
system components were often successfully extracted from the text as categories,
but very little information regarding their relations with other system components
was actually available. Obviously, no system can extract information that is not
there.

4. Even when the results still require significant editing, it is so much easier to un-
derstand and manipulate the dual OPM graphic or even textual presentations than
to work directly with the NL sources.

SMART: System Model Acquisition from Requirements Text 193

5. The quality, accuracy, and conciseness of the system architecture obtained fol-
lowing the SMART process is likely to be higher than that obtained through tra-
ditional model construction due to the discipline OPM introduces.

In order to become more useful, SMART needs significant improvements, in par-
ticular more sophisticated extraction templates and improved performance. Having
provided a proof-of-concept to the viability of automated extraction of system model
from free text, future research and development efforts will focus on enhancing the
level of automation of SMART and testing it against traditional model construction
processes in terms of both model quality and resource expenditure.

References

1. Dori, D.: Object-Process Methodology - A Holistic Systems Paradigm. Springer-Verlag,
Berlin Heidelberg New York (2002)

2. Dori, D., Reinhartz-Berger, I., Sturm, A.: Developing Complex Systems with Object-
Process Methodology using OPCAT. Lecture Notes in Computer Science, Vol. 2813.
Springer-Verlag, Berlin Heidelberg New York (2003) 570-572

3. GRACE: Grid Search and Categorization Engine. EU RTD Project in the 2002 Fifth
Framework. http://www.grace-ist.org/

4. Nuseibeh, B., Easterbrook, S.: Requirements Engineering: A Roadmap. Proc. Conference
on The Future of Software Engineering, Limerick, Ireland (2000) 35-46

5. Egyed, A., Grünbacher, P., Medvidovic, N.: Refinement and Evolution Issues in Bridging
Requirements and Architectures - The CBSP Approach. Proc. 1st International Workshops
From Requirements to Architecture, co-located with ICSE'01, Toronto, Canada (2001)

6. Grünbacher, P., Egyed, A., Medvidovic, N.: Reconciling Software Requirements and
Architectures: The CBSP Approach. Proc. 5th IEEE International Symposium on Re-
quirements Engineering (RE'01), Toronto, Canada (2001)

7. Grünbacher, P., Egyed, A., Medvidovic, N.: Dimensions of Concerns in Requirements
Negotiation and Architecture Modeling. The second workshop on multi-dimensional sepa-
ration of concerns in software engineering, co-located with ICSE'2000, Limerick, Ireland,
June 2000

8. Robinson, W., Fickas, S.: Automated Support for Requirements Negotiation. Proc. AAAI-
94 Workshop on Models of Conflicts on Conflict Management in Cooperative Problem
Solving (1994)

9. Ralyté, J., Rolland, C., Plihon, V.: Method Enhancement by Scenario Based Techniques.
Proc. 11th Conference on Advanced Information Systems Engineering (CAiSE'99), Lec-
ture Notes in Computer Science, Vol. 1626. Springer-Verlag, Berlin Heidelberg New
York (1999) 103-118

10. Ben Achour, C.: Linguistic Instruments for the Integration of Scenarios in Requirements
Engineering. Proc. 3rd International Workshop on Requirements Engineering: Founda-
tions of Software Quality (REFSQ'97), Barcelona (1997)

11. Rolland, C., Proix, C.: A Natural Language Approach for Requirements Engineering.
Proc. 4th International Conference on Advanced Information Systems Engineering
(CAiSE'92), Lecture Notes in Computer Science, Vol. 593. Springer-Verlag, Berlin Hei-
delberg New York (1992) 257-277

12. Paik. W., Yilmazel, S., Brown, E., Poulin, M., Dubon, S., Amice, C.: Applying Natural
Language Processing (NLP) Based Metadata Extraction to Automatically Acquire User
Preferences, Knowledge Capture - K-CAP’01, 2001.

194 D. Dori et al.

13. Si-Said, S., Rolland, C., Grosz, G.: MENTOR: A Computer Aided Requirements Engi-
neering Environment. Proc. 8th International Conference on Advances Information Sys-
tem Engineering (CAiSE'96), Lecture Notes in Computer Science, Vol. 1080. Springer-
Verlag, Berlin Heidelberg New York (1996) 22-43

14. Ambriola, V., Gervasi, V.: Processing Natural Language Requirements. Proc. 12th IEEE
Conference on Automated Software Engineering (ASE'97). IEEE Press (1997) 36-45

15. Ryan, K.: The Role of Natural Language in Requirements Engineering. Proc. IEEE Inter-
national Symposium on Requirements Engineering, San Diego, 1993

16. Goldin, L., Berry, D.M.: A Prototype Natural Language Text Abstraction Finder For Use
In Requirements Elicitation. Automated Software Engineering Journal 4, (4) 375-412,
1997

17. Macias, B., Pullman, S.B.: Natural Language Processing for Requirements Specification.
Safety-Critical Systems. Chapman and Hall, London (1993) 57-59

18. Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., Moreschini, P.: Assisting
Requirement Formalization by Means of Natural Language Translation. Formal Methods
in System Design, 4(3), 1994, 243-263

19. Juristo, N., Moreno, A.M., Lopez, M.: How to use Linguistic Instruments for Object-
Oriented Analysis. IEEE Software; 17(3), 2000, 80-89

20. Macias, B., Pullman, S.G.: A Method for Controlling the Production of Specifications in
Natural Language. The Computer Journal, 38(4), 1995, 310-318

21. Nelken, R., Francez, N.: Automatic translation of natural-language system specifications
into temporal logic. Proc. 8th Conference on Computer Aided Verification (CAV'96),
Lecture Notes in Computer Science, Vol. 1102. Springer-Verlag, Berlin Heidelberg New
York (1996) 360-371

22. Jarke, M., Bubenko, J., Rolland, C., Sutcliffe, A., Vassiliou, Y.: Theories Underlying Re-
quirements Engineering: An Overview of NATURE at Genesis. In: Proc.1st IEEE Sympo-
sium on Requirements Engineering, San Diego, 1993

23. Sutcliffe, A.G., Maiden, N.A.M.: Use of Domain Knowledge for Requirements Valida-
tion. Proc.Conference on Information System Development Process, 1993

24. Fabbrini, F., Fusani, M., Gervasi, V., Gnesi, S., Ruggirei, S.: Achieving Quality in Natural
Language Requirements. Proc. 11th International Software Quality Week, 1998

25. Huyck, C., Abbas, F.: Natural Language Processing and Requirements Engineering: a
Linguistics Perspective, Proc 1st Asia-Pacific Conference on Software Quality, 2000

26. Natt, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: A Feasibility Study of
Automated Natural Language Requirements Analysis in Market-Driven Development,
Requirements Engineering 7, 2002, 20-33

27. Gervasi, V., Nuseibeh, B.: Lightweight Validation of Natural Language Requirements.
Proc. 4th IEEE International Conference on Requirements Engineering (ICRE),
Schaumburg, Il, 2000

28. Genesereth, M.R.: Knowledge Interchange Format (KIF), http://logic.stanford.edu/kif/kif.
html, 1998

29. Finin, T., Fritzson, R.: KQML as an Agent Communication Language, Proc. 3rd Interna-
tional Conference on Information and Knowledge Management (CIKM'94), ACM Press
(1994)

30. Helbig, H., Hartrumpf, S.: Word Class Functions for Syntactic-Semantic Analysis, Proc.
2nd International Conference on Recent Advances in Natural Language Processing, 1997,
312-317

31. Samuelsson, C., Optimizing Analysis and Generation in Natural Language Processing,
Computational Lingustics – ERCIM, 1996.

	Introduction
	Automating Modeling from Text: State of the Art
	From Requirements to Architecture
	Working from Business Specification and User Requirements
	Natural Language Processing

	Object-Process Methodology
	The Bimodal OPM Model Representation
	OPM Refinement and Abstraction Mechanisms

	OPM Model of the SMART System
	The Proof-of-Concept SMART Experiment
	Automatic Extraction of Categories from Unstructured Text
	Manual Editing of the Extracted Categories
	Automatic Search of OPM Relations
	Automatic Generation of OPL Sentences
	Manual Editing of the Results

	Summary and Conclusions
	References

