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Heterogeneous networking will soon become a reality.
Even though new technologies, such as asynchronous
transfer mode (ATM), inherently guarantee Quality of
Service provisioning, they will continue to use protocols
from the TCP/IP world. Consequently, the Internet

world needs QoS provisioning.
System developers recently have proposed Internet extensions, such as

the resource reservation protocol (RSVP),1,2 to guarantee real-time ser-
vices while simultaneously relaxing requirements for reliable communi-
cation. Unfortunately, network resources, such as routers, have yet to
fully support RSVP reservation, and it is unlikely all future routers will
support it. Furthermore, their rather basic functions fail to provide more
application-oriented support for QoS provisioning.2 (For more infor-
mation, see the “Quality of Service” and “RSVP” sidebars.) A more com-
plete solution would require additional effort. 

We propose using agent technologies based on open programmable
networks.3 Though tailored to complement RSVP as a defective Internet
protocol-based reservation mechanism, the agent approach also promises
to complement incomplete reservation techniques that might arise in the
future. Software agents offer an attractive foundation for these networks
because they are already arranged to operate in a distributed manner, and
they permit flexible communication and cooperation schemes. 

Our procedure relies on distributed mechanisms that implement coop-
erative monitoring techniques to

• monitor system behavior and determine the performance level, 
• use system-status information to establish a QoS negotiation phase

and distribute application requirements on system resources, and
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This agent-based ap-
proach for improved
Quality of Service pro-
visioning follows the open
programmable networks
paradigm for comple-
menting still-defective
Internet reservation
schemes. It provides more
complete QoS provision-
ing in a flexible, highly
scalable manner. The
authors’ Java-based
agent platform might
work especially well in
heterogeneous environ-
ments, which distributed
multimedia systems are
most likely to face. 
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• interact with reservation entities within the RSVP
routers.

We try to exploit the interaction among properly
defined software entities—continuously running inside
the system—to implement QoS monitoring, reserva-
tion, and adaptation capabilities.4

The tunnel problem 

Introducing RSVP requires changing the operation of
IP routers, while some routers within the Internet will
never support RSVP. The RSVP protocol that handles
the exchange of control messages simply ignores non-

RSVP routers (routers unable to support RSVP). It for-
wards RSVP messages through a cloud of non-RSVP
routers and merely performs reservation outside the
cloud. However, because non-RSVP routers can
degrade the perceived QoS in an uncontrolled way,
there is no end-to-end guarantee. RSVP application on
the remaining part of the path is still considered bene-
ficial, because the performance of the non-RSVP routers
might sufficiently fulfil the demanded QoS level.

Aside from communicating RSVP control messages
through such a cloud of non-RSVP routers, further
action is not taken within the RSVP framework to han-
dle such a situation; RSVP tells the application that the
QoS values are only approximate. 

The deployment of multimedia ser-
vices in data telecommunication net-
works has introduced the concept of
Quality of Service to data networking.
Transmitting time-related data, such
as digital audio and video, demands
stringent timeliness in the process of
data transmission but usually allows
occasional data loss or corruption.
Therefore, in a network that supports
QoS, a QoS negotiaton is part of the
connection setup procedure.1 QoS

parameters—such as data error rates,
packet loss rates, throughput, end-to-
end delay and delay variation (delay
jitter)—usually express QoS for data-
transmission services. 

In a QoS contract between a service
user and a service provider, the service
provider commits itself to outperform
the agreed-on limit given that the ser-
vice user imposes a load not exceeding
an agreed-on traffic specification.1 To
achieve this, the service provider re-
serves a sufficient share of its resources
for the connection under concern. In

addition, it can monitor the user data
traffic to comply with the traffic spec-
ification, and if the agreed-on QoS
cannot be achieved, it indicates this to
the user, and a media self adaptation,
such as a change in the mode of com-
pression, can be initiated.
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Quality of Service

RSVP is a framework for resource
reservation and QoS provisioning
mechanisms within the Internet. The
framework is an extension of classical
IP routers, including RSVP-message
processing as well as a more con-
trolled packet-forwarding operation.
It is designed to operate inside non-
fully RSVP-based networks. If non-
RSVP-capable nodes belong to the
path of an established session for
which the user wants a certain QoS,
RSVP tries to reserve adequate
resources on the nodes where this is
possible and relies on a best-effort
strategy in the remaining cases. Of
course, in such cases no global guar-
antees can be given.

The RSVP protocol merely defines
the exchange of control messages to
build up and maintain a shared knowl-
edge of the reservation state; however,

several QoS-supporting integrated ser-
vices are defined within that frame-
work, complementing the protocol
with detailed definitions of router 
behavior. Two such services are con-
trolled-load and guaranteed. The inte-
grated-services working group char-
acterizes the former service as follows:

Controlled-load service provides
the client data flow with a qual-
ity of service closely approximat-
ing the QoS that same flow
would receive from an unloaded
network element, but uses capac-
ity (admission) control to assure
that this service is received even
when the network element is
overloaded.1

While this form of QoS provision
might be sufficient for self-adapting
applications, more advanced reserva-
tions schemes are necessary if giving
QoS guarantees. The latter service is

characterized as follows:

Guaranteed service provides
firm (mathematically provable)
bounds on end-to-end data-
gram queueing delays. The ser-
vice makes it possible to provide
a service that guarantees both
delay and bandwidth.2

Our agent-based approach deploys
a guaranteed service within this RSVP
framework.
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Our approach deals with tunnels that lead through a
so-called cloud of non-RSVP-capable network entities.
We define a tunnel as a set of routers constituting the
subpath within a cloud of non-RSVP routers; a tunnel
router refers to a single router within the tunnel. We
aim to improve the end-to-end quality by monitoring
the tunnel and providing feedback to enhance the reser-
vation scheme.

An agent-based approach 

The crucial part of our reference scenario is the tunnel
representing an entity with nonpredictable QoS behav-
ior. Adequately monitoring tunnel behavior spreads
information throughout the system, carrying out net-
work adaptation to compensate for excessive QoS bud-
get consumption within the tunnel. Agent technology
works well because of its high-level flexibility and inter-
action, as well as its inherent capacity of remote process
execution. 

We can define an agent as a software module, even-
tually equipped with AI mechanisms, capable of solv-
ing—autonomously or in cooperation with other
agents—a certain problem or carrying out a particular
task.5,6 Because an agent should be autonomous, com-
petent, and reliable, it is required to

• operate without direct human action and perform a
certain level of control over its own actions,

• properly manage a given situation and improve its
behavior by accumulating experience in specific
situations, and

• guarantee that its evolution will lead to choices and
behavior that will conform to user preferences.

Some researchers—especially in the field of AI—
claim that there are other desirable characteristics, such
as personality and adaptivity. Mobility, however, is prob-
ably the most important.6,7 Mobile agents—agents capa-
ble of migrating from one machine to another within a
heterogeneous computer network—easily and effec-
tively help build distributed applications. Some areas
widely applying such technology are

• distributed management: mobile agents let system
designers delegate management functions to remote
nodes, reducing the workload on the central station
and improving exploitation of available resources;8

• distributed computation: with the ability to pilot the
node on which mobile agents execute, agent tech-
nology offers a new paradigm for parallel computa-
tion in a distributed network of workstations; and

• collaborative applications: mobile agents support

Sun devised Java—its object-oriented,
portable, interpreted, multithreaded
programming language—to develop
safe, robust applications in heteroge-
neous network environments.1,2

Adopting a two-stage code-genera-
tion process achieves independence
from the underlying architecture. A
Java compiler compiles the source
code, which does not generate a
machine code directly but a so-called
bytecode—a high-level architecture-
independent code for the hypotheti-
cal machine that the Java interpreter
and its runtime system implement:
Java Virtual Machine. A Java inter-
preter can then execute the bytecode
on any machine. 
Sun produced the JVM for a number
of platforms, thus ensuring that a Java
application can be executed on any
platform on the market. Architecture-
independence is not only useful for
applications used in networks, but also
for problems related to distributing
software on different platforms: a pro-

grammer no longer has to worry about
developing various versions for differ-
ent machines and operating systems.

Modern network-based applications
typically need to do several things at
the same time. The Java multithread-
ing capability provides the means to
build applications with many concur-
rent threads of activity. Although
recent operating systems provide
libraries for multithreading, their diffi-
culty and dependence on a particular
architecture have prevented many pro-
grammers from using them. Java, on
the other hand, supports multithread-
ing at the language level, providing
sophisticated synchronization primi-
tives based on the concepts of monitor
and condition variables.

A basic concept of the Java archi-
tecture is that of class loaders, which
allow the Java runtime system to load
classes without any knowledge of the
underlying file system. All JVMs
include a default class loader that loads
the classes of the local file system, but

Java lets users define their own class
loader, thus overriding the behavior of
the default loader. This makes it pos-
sible to load classes from various sour-
ces—for example, in applets, which
load classes from a Web server using
the http protocol.

Java 1.1 has introduced an interest-
ing feature called object serialization,
which lets users take an object and
write its state to a byte stream. De-
serializing the sequence of previously
saved bytes restores the object. By
means of this mechanism, users can
implement object persistence: an ob-
ject’s lifetime is not determined by
whether or not a program is execut-
ing, because it can live between dif-
ferent program invocations.
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sharing data and any kind of documents by offering
a flexible architecture and letting users share various
network resources.

SOFTWARE-AGENT FUNCTIONS

We chose an agent-based infrastructure to manage QoS,
because it effectively implements adaptation strategies
to rearrange available resources and maintain user sat-
isfaction. These strategies exploit agents’ cooperation
abilities for optimization purposes.9 Although each
agent locally performs reasoning and decision-making
processes, agents coordinate themselves by communi-
cating with each other about certain events and inter-
nal status information. Consequently, each agent influ-
ences every other agent.

To solve the tunnel problem, we need software agents
that can

• monitor system status by combining and filtering
data to reduce message overhead between managed
components and management applications,

• cooperate with other agents by exchanging data and
synchronization messages, and

• migrate from one node to another and execute
remotely with transparent use of the available hard-
ware and software resources.

At the University of Catania, we have developed a
computing platform to help implement these functions,
particularly agent retrievability and mobility (available
at http://sun195.iit.unict.it/MAP).10 The platform pro-
vides a sort of homogeneity among different hardware
and software platforms, adopting Java as its underlying
framework. Java allows modular system development:
users can easily write their own agents from the classes
the platform provides.11 Java guarantees code portabil-
ity across an ever-increasing number of software and
hardware platforms. (See the “Java language” sidebar
for more information.) 

We developed a specialized version of this platform
for QoS management, comprising specific nodes that
collect QoS applications.12,13 We identify such nodes as
servers of applications and assume they store QoS appli-
cations we can download and execute on demand.

REFERENCE ARCHITECTURE

Figure 1 depicts our reference architecture. A user on
the client system interacts with the QoS management
component through an appropriate user agent. This
agent is specific for each service the user requires, and
users can specify and negotiate desired QoS parameters. 

The system agent provides information about the
client’s system state; it relies on the services provided
by the host machine’s operating system to control the
QoS on the client. The service agents—present on each
server node—monitor whether the QoS parameters (for
each service the clients require) are respected. It keeps
track of the users logged in and their occupied resources
to optimize available resources. This agent also main-
tains the knowledge of the server’s capabilities.

Network agents implement the control functions by

• reserving suitable network resources,
• monitoring system parameters,
• initiating corrective QoS adaptation activities if vio-

lations are detected, and
• interacting with the network management system to

obtain additional resources and optimize their use.

Tunnel agents 
The primary goal of tunnel agents is to monitor tunnel
properties, interacting with the RSVP routers for assur-
ing the end-to-end QoS to the user.

TUNNEL SETUP

When an application on a receiving node requests a
reservation, RSVP carries the request through the net-
work, visiting each node belonging to the routing path
between the receiving machine and sender. On each
intermediate node, RSVP tries to reserve adequate
resources to guarantee the desired QoS. If there are
enough resources on each router, and if the admission
test succeeds, the data stream starts flowing on the pre-
established path with the negotiated QoS. However,
some non-RSVP nodes, referred to as a tunnel, might be
located along the route (see Figure 2 ).

Network
A

Server Client

Network
A

Network
B

Network
Agent

Servers of
applications

Network
C

User
agent

Service
agent

System
Agent

Figure 1. Our reference architecture in which we
classify software agents according to their specific
functions.
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Our agent approach monitors the tunnel behavior
and obtains performance indices to characterize the
delay in tunnel crossing. Two particular network
agents—tunnel agents—are associated with each tunnel.
Figure 3 shows tunnel agents located on the RSVP
nodes at each tunnel’s edge—we refer to these nodes as
edge routers. An RSVP router can be an edge router for
two adjacent tunnels, if surrounded by non-RSVP
routers. In this case, two instances of a tunnel agent are
located on the edge router. We assume that each RSVP
node is able to execute our agents. 

Furthermore, we assume all nodes, including non-
RSVP nodes, support standard network management
protocols, such as SNMP, to provide some form of
monitoring.14 In an extreme scenario, none of the
routers support RSVP and the tunnel spans over the
entire path. In this case, the tunnel agents are located
on the application hosts and provide the application with
useful performance-monitoring data to adopt traffic vol-
ume and encoding. Tunnel agents running on edge
routers are not resource-consuming, although the edge
routers are already performing RSVP functions. The
tunnel agents simply manage infrequent events, while
a router continuously performs packet forwarding. 

A generic node, playing the role of a QoS-application
server, maintains the agent code. Once a tunnel is iden-
tified, the user agent located on the receiving application
node sends a request to the nearest QoS-application
server to upload the tunnel-agent code on the edge
router, where it then dynamically executes.10 

This approach avoids code installation on each node:
a tunnel’s location depends on dynamic factors, such as
the existence and location of the session path, as well as
more static properties, such as the nodes’ RSVP capa-
bility. A node might never be at the edge of a tunnel. A
tunnel agent installed on such a node would not be use-
ful and would only consume node resources. The exis-
tence of simple mechanisms for code retrieval and
downloading is thus a useful feature for our specific
problem. 

Our approach also exploits agent migration when the
Internet’s dynamic routing algorithms relocate the ses-
sion path. When an already instantiated tunnel agent
migrates, it carries some knowledge of flow require-
ments to the new node. 

SETUP PROCEDURES

RSVP packets are sent as raw IP datagrams with the path
end-point destination IP address. Each RSVP Path mes-
sage and Resv message also carries the last RSVP
router’s IP sender address. RSVP packets are slightly
modified each time they cross an RSVP router; the TTL
field of the IP header (IP-TTL) is copied into the RSVP
header’s Send_TTL field. A non-RSVP router does not
modify an RSVP message but forwards it to the follow-
ing router along the path with a decremented IP-TTL.
If a receiving RSVP router discovers a mismatch be-
tween IP-TTL and Send_TTL, it assumes there is at
least one non-RSVP router between the last RSVP
router and itself. It then is aware of a tunnel and of the
edge router’s IP address at the other side of that tun-
nel.15 When the receiving application becomes aware
of non-RSVP routers along the path, its user agent ini-
tiates the tunnel setup procedure. 

First, the agent must determine the exact tunnel loca-
tion, using one of the following methods. 

• Query the RSVP routers, using SNMP, for their
respective RSVP neighbors and direct IP connectiv-
ity. If an RSVP router has no direct IP connectivity
to one of its neighbors, it is an edge router. The user
agent then follows the chain of RSVP neighbors to
learn about the RSVP and edge routers along the
path. Because an SNMP request or reply involves
only two UDP (user datagram protocol) packets, it
is the best solution for small networks. However,
because this method scales poorly, it is more appro-
priate for short end-to-end paths.

• Use a discovery agent sent by the receiving-applica-
tion host. This agent migrates among RSVP routers
and issues local SNMP requests, learning about the
RSVP-neighborhood relation and the directly con-
nected routers. Finally, the agent returns the col-
lected information to the application host. This solu-
tion needs only linear time and is therefore more
suitable for longer end-to-end paths.

RSVP router

Non-RSVP router

Physical link

Flow of data

Cloud

Tunnel

Figure 2. An example of non-RSVP routers constituting
tunnels. 
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ReceiverTunnel
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Figure 3. Tunnel agents located on the RSVP nodes at
each tunnel’s edge. 
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• Extend the RSVP code installed on the RSVP
routers. Because each RSVP router knows whether or
not it’s an edge router, each could send a message to
the application host. However, this requires extend-
ing the functionality provided by the RSVP module
on each router, which can be difficult.

Selecting either the first or second tunnel-discovery
method can be done adaptively, based on the number
of RSVP hops.

After determining the tunnel location, a tunnel-agent
instance is uploaded to each edge router from a server
of applications. Each tunnel agent located on an up-
stream edge router starts a trace-route procedure to
learn about the non-RSVP routers constituting its tun-
nel. This information is communicated to the corre-
sponding downstream tunnel (a multicast tunnel can
have more than one downstream edge). All tunnel agents
monitor the tunnel behavior and eventually interact with
the RSVP protocol.

TUNNEL AGENTS INTERACTING WITH TUNNELS

Tunnel agents must make decisions on how to achieve
network reconfiguration. These decisions are based on
information concerning the tunnel structure and state.
The tunnel agents determine the topological structure
of the tunnel—the set and connectivity of non-RSVP
routers—using a trace-route procedure and SNMP, as
described above. They also use SNMP to monitor basic
performance measures of the tunnel routers, such as
interface utilization, discard rates, or queue lengths, by
polling the respective MIB (management information
base) entries.

Additionally, the set of agents at the tunnel’s edge use
cooperative monitoring techniques to monitor traffic
going through the tunnel and its received QoS (see the
“Network management” sidebar). For example, a pair
of tunnel agents can measure tunnel-end-to-tunnel-end
delay by sending time stamped probe messages. Mes-

sages, which are time stamped at the sender side of the
entire path, cannot measure tunnel-end-to-tunnel-end
delay without additional message exchange between the
tunnel agents.

Inter-agent communication is not as sensitive to QoS
degradations as the realtime user data. Because control
traffic is mostly sensitive to loss, well-established meth-
ods of timeout and retransmission in the Internet can
protect it. A slower transmission of a control packet or
the additional delay caused by its retransmission in case
of a loss will cause the adaptation mechanism to work
more slowly. However, after a short time the adaptation
will be complete, limiting the QoS degradation to a tran-
sient one. Using forward-error correction techniques
also enhances control-traffic transmission. By using a
redundant encoding scheme, we can tolerate a limited
number of losses. Because the bandwidth demand of the
control traffic is much lower than that of user data, this
additional traffic is not likely to further enhance net-
work congestion. 

Much of the control traffic will be exchanged between
the (last) downstream tunnel agent and the user agent on
the receiving node, as well as between tunnel agents of
neighboring tunnels. Because this traffic runs entirely
over RSVP-capable nodes, it can be highly prioritized
and thus protected from QoS degradations.

TUNNEL AGENTS INTERACTING WITH RSVP
The total end-to-end delay is the sum of all delays
encountered along the transmission path. Therefore, a
bound on end-to-end delays required by an application
is considered as a QoS budget that the involved inter-
mediate node can arbitrarily spend. 

Because the RSVP-guaranteed service relies on a
fluid-flow and leaky-bucket approach, a reservation of
a minimum service rate R is used to distribute the delay
budget. Each RSVP router reserves resources sufficient
to support rate R. This sets a bound on each local queu-
ing delay, which bounds the sum of all local queuing

Network management can be defined
as a collection of additional function-
alities of a data telecommunication
network that enables the management
of that network.1 A network manage-
ment protocol, such as Internet’s simple
network management protocol (SNMP),
exchanges the necessary control infor-
mation to manage network-operation
aspects—for example, failures, perfor-
mance, configuration, security, and
accounting. Management actions are
carried out by control communication
between a remote network manage-

ment station (control console) and sev-
eral network management agents that 
have direct access to the relevant soft-
ware and hardware components of the 
network. 

Unlike the mobile agents, network
management agents are hardware-
dependent, colocated with the com-
ponents they make accessible, and thus
immobile. To logically organize the
manageable information in a network
management system, the managed
objects are organized in a conceptual
database called management informa-

tion base that is subdivided into indi-
vidual MIBs for individual software
and hardware components. With the
abstraction of a conceptual database,
network management actions can be
interpreted as query and update oper-
ations in a distributed database system. 
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delays to a given value.16 The receiver calculates R so
that the resulting end-to-end delay meets the QoS
demands. However, without agent support this calcu-
lation would turn on the assumption that all routers
along the path were RSVP-capable—even if it detects
non-RSVP routers.

Our agent-based approach uses a higher rate, R′ = R
+ d , to set aside some additional delay budget not dis-
tributed among the RSVP routers. The user agent cal-
culates R′ in cooperation with the application and the
state information provided by the tunnel agents. The
additional delay budget, characterized by the difference
between the original rate R and the announced rate R′,
is subsequently also communicated to the tunnel agents.
If more than one tunnel is present along the path
between a sender and a receiver, all tunnel agents agree
on how to distribute the additional delay budget, using
a distributed inter-agent negotiation procedure.

By monitoring the tunnel behavior, the agents verify
if the QoS budgets currently consumed by the tunnel
matches the value assigned to that tunnel. In case of a
mismatch, the tunnel agent initiates horizontal renego-
tiation. First, it renegotiates the partitioning of the set-
aside delay budget by reiteration of the interagent nego-
tiation procedure. If there is only one tunnel or if the
inter-agent renegotiation fails, it renegotiates the QoS
parameters in the RSVP routers along the path. It also
communicates the additional need for a delay budget to
the user agent, which recalculates R′ and informs the
application to change its RSVP reservation messages
accordingly.

Reassigning budgets attempts to compensate for the
adverse effect of the tunnel routers. Of course, the oppo-
site is also true: if traffic fluctuation enhances the tun-
nel, it initiates the horizontal renegotiation to relax
unnecessarily stringent requirements on the RSVP
routers.

The renegotiation phase can fail due to a lack of
resources. In this case, the standard RSVP protocol
mechanism sends an indication to the application; in
turn, the application can adapt to the lower-level QoS
or simply terminate.

TUNNEL-AGENT MIGRATION

Routing in the Internet is a dynamic process, and a route
can change during connection time, which can exploit
an agent’s ability to migrate between routers. For exam-
ple, in Figure 4 a stream of data flows from routers A
through F. When the connection between C and D
breaks, the usual routing algorithms of IP-based net-
works find an alternative route—via G, H, and I, for
example. The RSVP-protocol mechanisms relying on
IP routing also follow this alternative route and estab-
lish a reservation state along the new path.

The tunnel agent located on B will notice that it is no
longer at the edge of an active tunnel and will initiate a
relocation procedure. This procedure operates in coop-
eration with the agent on the other end of the tunnel or
with the user agent on the application host—depend-
ing on whether the upstream or downstream end of a
tunnel has moved. Applying algorithms similar to the
tunnel-detection procedure discovers the new tunnel
topology. If only one edge of the tunnel has moved, the
tunnel agent initiates its own migration to the new tun-
nel-edge location. If RSVP routers are located along the
new path between G and F, the new tunnel actually con-
sists of a sequence of tunnels. Then new tunnel agents
must be started in addition to the migration of one tun-
nel agent.

In Figure 4, tunnel routers D and E both belong to the
old route as well as the new route and therefore constitute
part of the new tunnel. The tunnel agent migrates from
routers B to G to save information about the old tunnel,
and it reuses that information when managing the new
tunnel. It can keep topological information and, to a cer-
tain extent, load-information on the unmodified parts.

Of course, a route change can also cause a tunnel to
completely disappear. If the tunnel agents detect they
are now connected by a continuous chain of RSVP
routers, they inform the other tunnel agents along the
path—if there are any—as well as the user agents on the
application hosts, and terminate.

Implementation issues 

We use Java as the programming language for our
agents because of its modularity and portability features,
ability to dynamically load classes from different sources,
and object-serialization capabilities.17 (See the “Java lan-
guage” sidebar.) We make extensive use of these basic
mechanisms, because they support the procedures for
tunnel identification and tunnel-agent migration inside
the network.
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Figure 4. Agent migration after route change.
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AGENT MOBILITY

Mobility allows tunnel and discovery agents to move
from one router to another to achieve their goals. One
feature lets an agent move with its state, resuming exe-
cution from the point where it was interrupted before
the migration.

An agent in execution consists of the code (program
state), variables content (data state), and stack (execution
state). In general, a complete migration requires trans-
fering all three components. Yet, even if program and
data state can be managed with a limited effort, the cap-
ture, transfer, and restoration of the execution state can
cause considerable problems. In particular, in the case
of an interpreted language such as Java, the interpreter
state includes a portion of the execution state, and cap-
turing this state without modifying the interpreter is
practically impossible. The specific application in ques-
tion gives the agents a high level of competence, so
migration never initiates from outside but is started by
the agent itself when specific conditions occur.

For example, consider the mechanisms that identify
tunnels through discovery agents, and tunnel-agent
migration already instantiated due to relocating the ses-
sion path. Both cases require agent-migration capabil-
ities and status information. More specifically, a dis-
covery agent has a list of routers already visited and
indicates with a flag whether or not the router supports
RSVP capabilities; after a route reconfiguration, a tun-
nel agent needs information characterizing routers
within the unchanged part of the original tunnel.
Because the agent is responsible for the migration, it
can save information required for correct execution
resumption within some of the object variables. Because
these variables belong to the data state, they can be
transferred and later restored when the agent execution
is resumed in the site of destination.

The mobility of tunnel and discovery agents is based
on the object serialization facility present in Java (version
1.1). Object serialization can represent an object as a
stream of bytes. It saves all the object variables within
the serialized object representation, together with the
references to objects contained within it.

When an object is serialized, Java does not store the
bytecode of the class to which the object belongs in the
byte stream. Thus, because in our system the classes
needed are not always in the destination nodes, we had
to exploit another Java characteristic: the ability to load
some classes dynamically at runtime from different
sources. 

We used the NetworkClassLoader to load the classes

necessary for agent execution. If the class needed is not
present locally, the NetworkClassLoader searches for
it within the nodes contained in a list specified during
the configuration and the startup of routers, but that
can be updated at runtime, thanks to some information
brought by the agents. Such a mechanism effectively
exploits the network. Transferring the class bytecode
occurs only when required (when several instances of
the same agent migrate, we do not need to transfer the
same class); in any case, we can also perform the trans-
fer from the closest node—not necessarily from the orig-
inal agent node. 

This transfer feature helps once our system reaches a
steady-state condition, because the majority of the classes
are already present on the routers and downloading
actions do not occur very often. Furthermore, this mech-
anism avoids downloading onto routers huge amounts
of software that might not be used. It is also easy to sup-
port extensions for new types of agents: we can auto-
matically download classes that new agents might
require, thus guaranteeing future system extension.

COMMUNICATION MECHANISMS

Our system also supports an agent’s ability to commu-
nicate with other agents. The communication among
the agents takes place through the exchange of syn-
chronous or asynchronous messages. This solution
(unlike some mechanisms based on RPCs) is flexible and
permits implementation of several schemes of commu-
nication and synchronization among agents.

Encoding and transmitting messages takes place in
the same way as agent migration. In fact, the mecha-
nism selected for transferring messages is object serial-
ization, which allows complex objects to be sent among
different agents.

With a synchronous message, we obtain a behavior
similar to an RPC. The sending agent calls a communi-
cation primitive, passing the message and destination-
agent identifier as parameters, and then it waits for a reply
message. Conversely, in the case of an asynchronous mes-
sage, the sending agent invokes another primitive and,
after sending the message, continues with its execution.

Asynchronous communication is used for interaction
among tunnel agents. Once a tunnel has been identi-
fied, the tunnel agents on the edges communicate with
each other, sharing information concerning the tunnel
behavior. To retrieve information from the routers
within the tunnel, a tunnel agent uses synchronous com-
munication. Sending a query to the local SNMP agent
implements this retrieval.
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AGENT-EXECUTION ENVIRONMENT

We now review the software environment that must be
present on a router to allow agent execution. Figure 5
shows the logical organization of a router’s main func-
tional entities. With routing functionalities, we indicate
the basic mechanisms for routing packets, which depend
on the router itself. These mechanisms can be imple-
mented directly in hardware or emulated through ade-
quate software. In the current implementation state, a
software approach executes routing functionalities; we
use simple PCs configured as routers, running Unix
FreeBSD-2.2.5 (available at http://www.freebsd.org). 

We require an SNMP agent to monitor and retrieve
information about the status of the router and the dif-
ferent connections going through it. The RSVP module
lets the router eventually use this protocol to commu-
nicate with other routers for resource-reservation pur-
poses. It currently uses RSVP version 1, as implemented
by the ISI rsvpd Release 4.2a1 (available at http://
www.isi.edu/rsvp/), and the packet scheduler mechanism,
provided by ALTQ version 0.4.1 (available at http://
www.csl.sony.co.jp/person/kjc/software.html). 

An agent server is also instantiated on a router, which
represents the agents’ execution environment. Because
these agents are written in Java, a Java Virtual Machine
is active on the routers using JDK 1.1 (Java Develop-
ment Kit) for FreeBSD (available at http://www.
freebsd.org/java/). The reference structure depicted in
Figure 6 helps analyze the agent-server components.

The daemon constantly listens to an input port, waiting

for tunnel or discovery agents to migrate from other
nodes or receiving messages to be delivered to local
agents. Both messages and agents travel in a serialized
form. Each time a stream arrives from the network, the
daemon creates a specific entity called Instancer, which
instances the serialized object, whether it is an agent or a
message. In both cases, it passes the object, once
instanced, to the Context, which makes it run (if it is an
agent) or sends it to the receiver agent (if it is a message).

The Context object knows all the agents currently
instantiated on the node and provides all the function-
alities needed for their management. It owns specific
methods for creating, executing, suspending, deactivat-
ing, reactivating, and killing an agent. Each serialized
object arriving from the network always passes to the
Context. If this object is an agent, the Context initializes
it, providing a reference to the Context itself: it then
starts its execution and updates the list of the agents run-
ning locally. If the object is a message, the Context will
deliver it to the destination agent, after verifying its abil-
ity to receive the message.

The NetworkClassLoader lets tunnel agents execute
on an agent server even if their class is not present.
When a class referenced by the agent is not locally pres-
ent, the NetworkClassLoader downloads it from one of
the agent servers indicated in a list that the Context
manages. The class is then stored in the global cache of
the Context, and it is then accessible from the other
agents currently executing on the server.

The Context also contains an object named code server,
dynamically created each time a NetworkClassLoader
requests a class. Its goal is to make the requested classes
accessible if locally present. The Code Server contains
a table listing the classes available on the node.

IMPLEMENTING QOS MEASUREMENTS

For the tunnel agents to carry out the QoS measure-
ments, the transport protocol should include mecha-
nisms supporting this task. Therefore, we designed and
implemented a simple, yet flexible transport protocol
for realtime user data. The Protocol Data Units
(PDUs) of the Flexible Continuous Media Transfer Pro-
tocol can be configured to contain timestamps or redun-
dant data, such as sequence numbers or checksums, to
easily monitor delays, loss, and error rates. Because we
can also use these protocol mechanisms for the usual
protocol functionalities, we are investigating an inte-
grated concept focused on continuous media transmis-
sion. The design of the protocol, however, is beyond
the scope of this article.

Java virtual machine

SNMP RSVP

Agent server

Agent

Agent

Code server

Context

Network
class loader

Daemon

Routing functionalities

Figure 5. Software modules required on a router.
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Instancer
Daemon
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Agent server

Network-
ClassLoader
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Figure 6. An agent server.
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Our approach, based on intelligent soft-
ware agents, complements still-defective
reservation schemes, such as RSVP in the
Internet. We can thus achieve more
complete QoS provisioning in a flexible

and highly scalable way. Future telecommunication net-
works will be increasingly open, so we will be able to
deliberately add services such as QoS-management
functionalities. A Java-based agent platform seems par-
ticularly promising in a heterogeneous environment,
which distributed multimedia systems will probably face.
We are still investigating our system’s implementation
efficiency. In particular, we are trying to determine
agent-control strategies to avoid oscillation effects and
provide limits for timely agent response.
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