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Abstract—At-speed testing of gigahertz processors using One of the most widely researched self-testing techniques is
external testers may not be technically and economically feasible. pyilt-in self-test (BIST) [2], which uses embedded hardware

Hence,therg is an emerging need for low-cost high-quality self-test test generators and test response analyzers to generate and
methodologies that can be used by processors to test themselves v test patt hib at th d of the circuit. thereb
at-speed. Currently, built-in self-test (BIST) is the primary apply test patterns on-chip at the speed or the circuit, thereby

self-test methodology available. While memory BIST is commonly €liminating the need for an external tester. Memory BIST has
used for testing embedded memory cores, complex logic designsbeen commonly used for testing embedded memory compo-
such as microprocessors are rarely tested with logic BIST. In this nents, as it performs well due to the deterministic nature of
paper, we first analyze the issues associated with current hard- memory tests facilitated by the regular structure of memory

ware-based logic-BIST methodologies by applying a commercial .
logic-BIST tool to two processor cores. We then propose a hew components. Logic BIST, however, faces many challenges

software-based self-testing methodology for processors, which Pecause it relies on the generation and application of pseudo-
uses a software tester embedded in the processor memory as aandom test patterns.

vehicle for applying structural tests. The software tester consists . L
of programs for test generation and test application. Prior to the 1) For random-pattern-resistant circuits, the fault coverage

test, structural tests are prepared for processor components in achieved by pseudorandom testing may be low.
the form of self-test signatures. During the process of self-test,  2) The insertion of the BIST circuitry used for generating
the test generation program expands the self-test signatures into and applying pseudorandom patterns may result in sig-

test sets and the test application program applies the tests to the o
components under test at the speed of the processor. Application nificant afea .and performance overhead. .
of the novel software-based self-test method demonstrates its 3) 1he application of random test patterns often results in

significant cost/fault coverage benefits and its ability to apply excessive power consumption in the BIST mode [3], pos-
at-speed test while alleviating the need for high-speed testers. sibly damaging the circuit under test.

Index Terms—At-speed testing, instructions, processors, 4) The application of random test patterns may drive the cir-
self-test, structural test. cuit under test into nonfunctional mode in which the free

flow of test data can be impeded by problems such as bus
contentions. Thus, the circuit under test is required to be
BIST-ready [4] (e.g., immune to problems such as bus
S THE SPEED of microprocessors approaches the giga- contentions even when pseudorandom test patterns are
hertz range, at-speed testing is becoming increasingly crit-  applied).
ical. However, testers with speed matching the speed of giga-To address the above issues, many solutions have been pro-
hertz processors will be increasingly costly. According to [1], fosed. The low fault coverage due to random-pattern resistance
the current testing techniques are to be continued, the test equigy be improved with techniques such as deterministic BIST
ment cost can rise toward $20 million. Moreover, due to the in5], [6] or weighted random patterns [7]-[9]. The BIST over-
herent inaccuracy of testers, at-speed testing of high-speed pi@ad may be reduced by generating pseudorandom test patterns
cessors may result in an unacceptably high yield loss of 48% bying existing circuits such as accumulators [6], [10], [11], em-
2012. To ensure the economic viability of the industry to mamedded processors [5], or any sequential circuits in general [12].
ufacture high-performance processors, alternative testing tefiscan-based BIST, the test overhead may also be reduced by
niques are needed. Hence, the recent focus on self-testing—ghgial scan [13]. The excessive power consumption in the BIST
ability of a circuit to test itself. By generating the required teshode may be reduced by techniques such as test scheduling [3],
patterns on-chip and applying the tests at the speed of the circkitiucing input activities [14], or filtering nondetecting vectors
a gigahertz processor can test itself without relying on prohiit5]. BIST readiness may be achieved by design changes [4],
tively expensive high-speed external testers. [16], [17].

The feasibility of logic BIST on industrial circuits has been
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effective on a number of industrial circuits, provided that thedester embedded in the processor memory as a vehicle for
circuits are made BIST-ready beforehand. applying structural tests. The software tester consists of a
While logic BIST may perform well on industrial applicationprogram for generating pseudorandom test patterns (test pattern
specfied integrated circuits (ASICs), its feasibility on microprageneration program) and a program for applying these patterns
cessorsisyetto be investigated. First, the design changes nedtisd pattern application program). Since software has the
for making a microprocessor BIST-ready may come with unaadvantage of programmability and flexibility, the test pattern
ceptable cost, such as substantial manual effort and significgeheration program can be used to generate desirable random
performance degradation. In addition, microprocessors are &st sets on-chip without any hardware overhead. In addition,
pecially random-pattern resistant. Due to the timing-critical néhe test pattern application program enables on-chip test
ture of microprocessors, test points may not be acceptable apglication by guiding the test patterns through the complex
solution to this problem, as they could introduce performancentrol structure of the processor rather than with the help of
degradation on critical paths. Deterministic BIST, on the othecan chains and boundary-scan chains as is done in the case of
hand, may lead to unacceptable area overhead, as the size ohtrdware-based logic BIST.
on-chip hardware for encoding deterministic test patterns de-To circumvent the low fault coverage associated with
pends on the testability of the circuit [17]. random-pattern testing of processors, our approach first de-
An alternative to hardware-based self-testing techniquesmines the structural test needs of the components in the
such as BIST is software-based self-testing, which involv@socessor, which are usually much less complex than the full
the testing of microprocessors using processor instructiopsocessor and, hence, much more amenable to random-pattern
Whereas hardware-based self-test must be applied in the nisting. At the processor level, the instructions of the processor
functional BIST mode, software-based self-test can be appliate used to apply the tests to each component at-speed. Since
in the normal operational mode of the processor withotite instructions satisfy the complex control flow of the pro-
requiring any design changes or the insertion of any additioradssor, the flow of test data to/from the component under test
hardware structures. will not be impeded, as in the case of hardware BIST applying
Software-based testing has a long history as an ad hoc tednrdom patterns to the entire processor.
nique for testing processors. Computer systems are regularlffhe proposed approach fisndamentally differenfrom any
equipped with software programs to perform in-field testingrevious approaches that apply functional tests using random-
The tests done are typically used for checking the functioired instructions [19]-[21]. Unlike previous approaches, it
ality of the system, but not for detecting manufacturing defecigims at structural faults from the very beginning by preparing
Functional validation suites have been used regularly to perfostnuctural tests for theomponentén the processor. Moreover,
manufacturing testing of processors [18]. However, its applictre instructions in the software tester are not randomly chosen,
tion relies on external testers and its results in terms of maraut carefully crafted in order to deliver the previously prepared
facturing fault coverage are low, as the validation suites are rattuctural tests to the desired components.
targeted at structural faults. To reach a desirable fault coverageln Section Il, we first analyze the issues associated with
functional validation suites are often supplemented with deterurrent hardware-based logic BIST by applying a commercial
ministic structural tests or additional handcrafted tests. logic-BIST tool to two processor cores. We will then describe
Recently, researchers have started investigating functiotiaé¢ proposed software-based self-testing methodology in
tests specifically designed for manufacturing testing [19]-[21%ection IIl. The performance of the software-based approach is
Some propose to apply the tests with external testers [18}aluated and compared to that of the logic-BIST tool.
others allow the processors to test themselves with self-test pro-
grams [20], [21]. A common characteristic of these approachtﬁs
is to apply randomized instructions to the processor under test.
However, although processors are more amenable to random
instruction tests than to random-pattern tests, it is difficult to As we have discussed before, at-speed testing of gigahertz
target structural faults by applying random instructions at thprocessors can be enabled by self-test. Current hardware-based
processor level. logic-BIST techniques are based on the application of pseu-
In this paper, we first analyze the strengths and limitatiomrandom test patterns. Although the low fault coverage due
of current hardware-based self-testing techniques by applyitegthe random-pattern resistance of the circuit under test and
a commercial logic-BIST tool to a simple processor core dlse area overhead introduced by the BIST circuitry can be im-
well as a complex commercial processor core. Specificallyroved by various techniques, it has been pointed out by many
we demonstrate the design changes needed for making thibse the application of logic BIST requires the circuit under
processors BIST-ready. The design changes require substam¢ist to be BIST-ready [4], [16], [17]. For designs such as cell-
manual effort and can lead to unacceptable performantased ASICs, logic BIST may be able to achieve high fault cov-
degradation. The need for design changes can be elevated irettage with a reasonable amount design changes [4]. However,
case of processors, as processors are random-pattern resistagbmplex designs like microprocessors, the amount of design
due to their complex controls. changes and the resulting area and performance overhead might
Since the need for self-testing is most acute for high-peamet be acceptable. This is because: 1) such desiggstionally
formance processors, we propose a new software-bagscbrporate internal tristates and bidirectionals such as partially
self-testing methodology for processors that uses a softwalecoded muxes and pass gates, which cannot be easily handled

M OTIVATION—EXPERIENCES WITHAPPLYING LOGIC BIST
TO PROCESSORS
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LFSR | TABLE |
T T T T PARWAN: FULL SCAN VERSUSLOGIC BIST

Phase Shifter (XOR gates) |
I

T Area # Test Fault

c = [gate count] | patterns Coverage

3 - E Original. ckt 888 - -

2 8 Core Modified ckt 812 - -

S 2 B pesign Full Scan* 909 640 89.39%

] T o Logic BIST* 2185 32767 88.69%

a Logic BIST** 2246 32767 97.34%
*On the modified circuit.
**On the modified circuit with test points.

MISR |

The synthesized version of PARWAN contains 888 equivalent
NAND gates and 53 flip flops. The data bus is 8-b wide, shared by
bothdata _in anddata _out . The address bus is 12-b wide.
Accesses to both buses are controlled by tristate buffers.
Several design changes were needed for making PARWAN
BIST-ready. As the MISR signatures can be corrupted by
undefined values, logic-BIST tools do not accept circuits
with possible bus-contention problems [4]. Moreover, logic
BIST requires the circuit under test to be free of bidirectional
input—output (1/0) pins [22]. Hence, before applying the
logic-BIST tool, we manually modified the circuit descrip-
tion of PARWAN. The modifications include: 1) splitting all
bidirectional pins into separate 1/0O pins; and 2) replacing all
tristate buffers with selectors. In addition, we insert test points
to improve the testability of the circuit.
Fig. 2. PARWAN processor core. Table | shows the results of the logic-BIST tool on PARWAN
in comparison with the full-scan results. The rows contain the

by logic BIST [22]; 2) the timing-critical nature of these defollowing information:

signs often requires nonfull-scan or sequential test techniques]l) statistics on the original PARWAN circuit;

whereas logic BIST typically builds upon full-scanned designs 2) statistics on the modified PARWAN circuit;

[23]; and 3) the test logic insertion performed by commercial 3) the results of full scan on the modified circuit;

tools is done at gate level, whereas these designs’ netlists are a#) the results of applying the logic-BIST tool to the modified
the transistor level. circuit;

As a motivation for the proposed software-based self-testing5) the results of the logic-BIST tool on the modified cir-
methodology, we describe our experiences of applying a  cuit with test points (3 control points and 11 observation
commercially available logic-BIST tool to two processor cores: points).

PARWAN and picoJava-Il. We present the results in terms &br the two experiments with the logic-BIST tool, we di-
fault coverage and area overhead as well as the design changgsd the 53 flip flops of PARWAN into five scan chains.
required for making the processors BIST-ready. The logic-BIST tool automatically chooses an 18-b LFSR

As shown in Fig. 1, the logic-BIST tool uses a STUMPSas the pattern generator. The columns contain the following
based BIST architecture [23]. Instead of relying on an exterriaformation: the areas of the circuits in terms of the number
tester for applying tests to the scan chains, the logic-BIST toofl equivalentNAND gates, the number of test patterns applied
generates test vectors on-chip using a linear feedback shift rdgring each test, and the final fault coverage on collapsed faults.
ister (LFSR). The outputs of the LFSR are connected to the sddotices that the areas reported do not include routing area.
chains through a phase shifter composed of XOR gates, whictAs shown in Table I, without the help of additional test points,
is designed to reduce the linear correlation among scan chathe. logic-BIST tool is able to achieve a fault coverage compa-
The outputs of the scan chains are compressed on-chip ugiaile to that of full scan. Due to the insertion of the BIST cir-
a multiple-input shift register (MISR). The user may choose tuitry, logic BIST requires a larger area overhead than full scan.
insert a certain number of test points to improve the fault co%ince the size of the BIST circuitry stays relatively constant,
erage. the relative area overhead is expected to diminish quickly as the

We first applied the logic-BIST tool to a simple accumuedesign size increases [4]. Note that the fault coverage achieved
lator-based microprocessor named PARWAN [24] (Fig. 2). ItirBy logic BIST can be significantly enhanced by the use of test
cludes the following components: arithmetic logic unit (ALU)points.
accumulator (AC) unit, controller (CTRL), instruction register In addition to the PARWAN processor, we have applied the
(IR) unit, program counter (PC) unit, memory address registegic-BIST tool to picoJava-ll (Fig. 3), a soft microprocessor
(MAR) unit , shifter unit (SHU), and status register (SR) unitcore [25].

Fig. 1. BIST circuitry inserted by the logic-BIST tool.
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TABLE I
PicoJavA-Il: FULL ScAN VERsUsLoGIC BIST
LFSR | MISR # Test points Area # Test Fault

size size | Control | Observe | overhead patterns coverage

Full Scan -- -- -- -- 11.13% 12,736 95.54%
Logic BIST - 1 24 41 0 0 13.06% 32,767 58.81%
Logic BIST - 2 24 41 100 100 13.29% 32,767 82.53%
Logic BIST - 3 32 41 100 100 13.30% 32,767 82.93%
LogicBIST-4 [ 24 41 100 100 13.30% 1,000,000 84.11%

increasing the size of the LFSR and the number of random pat-
Bus Interface Unit (335) terns. However, the improvement is marginal.

The design changes required for making picoJava
BIST-ready are as follows. First, embedded memories

Instr. Data

Cache Cache were bypassed with scan flip flops in the test mode [4] as
Unit Unit otherwise they could become sources of undefined valifes (
(32165) (8884)

generators), leading to the corruption of MISR signatures. In
addition, a number of combinational loops, which did not exist

in the functional mode, were formed when random test patterns
were applied. The signals in a combinational loop may toggle

'St?tgef Floating Point when the loop is activated, causing the generation of undefined
(8'?3'637) Unit and control values. The combinational loops can be broken with the help
(23365) of control points. The breaking of the combinational loops, as

gfwidg\ﬂgh I\Sﬂtack well as the insertion of the memory bypass circuits, had to be

U:if(ioz) can U:i't‘?ggg” performed manually. _
We would like to point out that the logic-BIST tool we had

mbedded memory  Source: Sun Microsystems used does not necessarily incorporate all recently conducted
research works in hardware-based logic BIST. The fault cov-

Fig. 3. PicoJava-Il processor core. erage and the area overhead can possibly be improved with the

application of recent research results in BIST, such as deter-

The picoJ " is a hard ol ministic BIST [5], [6], weighted random patterns [7]-[9], and
e picoJava-ll processor core Is a hardware implementat reuse of existing circuits [5], [6], [10]-[12]. However, a

of the Java Virtual Machine. Itis a stack-based 32-b procesgof, g, problem remains with all logic-BIST techniques: the

with 300 instructions. It contains six pipeline stages and C& it under test have to be made BIST-ready. For complex

execute up to four instructions in one cycle. As a soft Core’iﬁgh-end microprocessors, this requires substantial manual de-

is distributed in the form of synthesizable Verilog descriptior&ign effort, significantly delaying the product's time to market.

including seven technol_ogy—dependent embedded MEMQYaddition, the design changes may induce intolerable perfor-
blocks. We have synthesized it down to the gate level usinga o degradation

commercia_l logic-synthesis tool. The synthesized_ picoJava-IIIn summary, although it is an attractive solution to the
core contains 167 1/O ports and 6801 flip flops. Fig. 3 sho oblem of at-speed test, the application of a logic-BIST tool

the component areas in tgrms of the number. of equival the two processor cores shows its potential disadvantages.
NAND gates. The total area is 127 887 for the logic compone;gle to their complex control structures, processors are highly
and 313989 for the _embedde_d memory components_. %dom-pattern resistant. An acceptable fault coverage cannot
total num_ber of faglts in the_log|c blocks is 5_32 527. Using Be achieved by simply applying random test patterns to the
commermal fault smulator, |t.takes 20 s to simulate one ghtire processor, as certain internal control signals need to
cycle if all faults are included in the fault list. be set properly to ensure the free flow of test data. Through
Table 1l shows the results of applying the logic-BIST toobyr experiences described above as well as through experi-
to the logic part of the picoJava processor in comparison wighces documented in [4] and [16], extensive design changes
the results of full scan. The values of area overhead and fahl"éy often be needed to make the processors random_pattern
coverage reported in the table are with respect to the logic pgfétable, adding to the area/delay overhead. In addition, certain
of the processor core. violations that do not happen in the functional mode such as
As shown in Table Il, we have conducted four experimentsis-contentions and the forming of combinational loops could
with the logic-BIST tool in order to study the effect of differentoccur during the application of random test patterns. To avoid
parameters on the fault coverage. Given a fixed LFSR/MISRese violations, additional design changes need to be made,
configuration, the logic-BIST tool allows the user to set theaking the insertion of logic BIST even more difficult. Due
number of test points. Our experimental results show that tteethe diversity of the designs, not all design changes can be
insertion of test points leads to a significant improvement @utomated with the existing commercial logic-BIST tools.
fault coverage. The fault coverage can be improved further Byus, many of these design changes have to be carried out
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%?:s:e;;f:ééﬁ ’Test ———— = fééggggg: of with scan chains, it requires no area or performance over-

Slest 4y s : | 1 . . . ) .

gi signature ! :fsignaturej head and the tgs_t application is performed at-speed. MosF im

-------- d R portantly, by shifting the role of external testers from applying

‘__l_v____:!ag 1. 1 !__,__I-’, S tests to loading test programs and unloading responses, it en-
______ e P i i) . . i

2 |On-chip test| ! Testresp. { 3 8 ables at-speed testing of gigahertz processors with low-speed

§ ‘ E generation E application ! analysis E%§§ testers.

L 1 _program : | program | _program i@ In the following sections, we describe the above two steps in

" detail using the PARWAN processor (Fig. 2).

) A. Component Test Preparation
Fig. 4. Self-test methodology.

During the component test preparation step, we develop
manually, significantly adding to the design time. In addition‘c’trucu“'r"’lI tests for individual components of the processor, su_ch
the design changes may cause performance degradati’jc\nsnthe ALU, SHL.J’ and PC. Cqmponent-level fault simulation is
making it necessary to redesign in some cases. uséd for evaluating the pre_hmmary fault coverage of these test_s.

Component tests can either be stored or generated on-chip,
depending on which method is more efficient for a particular
case. If tests are to be generated on-chip, we characterize the
test need of the component bysalf-test signaturewhich in-

Unlike hardware-based self-testing, software-based testiclgdes the seed and the configuratio” of a pseudorandom
is nonintrusive since it applies tests in the normal operationalmber generator as well as the number of test patterns to be
mode of the circuit. Because of the programmability of sofgeneratedV. The self-test signatures can be expanded on-chip
ware, software-based testing enables the use of configuraibke test sets using a pseudorandom number generation program.
random-pattern generation programs without requiring any tégtltiple self-test signatures may be used for one component if
overhead. Moreover, software instructions have the ability oBcessary. Thus, our self-test methodology allows the incorpo-
guiding test patterns through a complex processor, avoiding tlagion of any deterministic BIST techniques that encode a de-
blockage of the test data due to nonfunctional control signatrministic test set as several pseudorandom test sets [5], [6]. A
as in the case of hardware-based logic BIST. low-speed tester can be used to load the self-test signatures or

Given the advantage of software-based testing, we propdbke predetermined tests to the processor memory prior to the ap-
a novel software-based processor self-testing methodology thitation of test.
delivers structural tests to the components of the processor One of the challenges of component test preparation lies in
using processor instructions. Our self-testing scheme includbe generation ofealizablecomponent tests. That is, the com-
two steps. The test preparation step includes the generatiorpohent tests must be deliverable with the software tester. Since
realizable structural tests for components of the processor dhd delivery of component tests relies on processor instructions,
the encapsulation of component tests into self-test signaturies impossible to deliver some test patterns. To avoid producing
The self-testing step involves the application of the componamtdeliverable test patterns, component tests must be generated
tests using a software tester, which consists of an on-chip taatler the constraints imposed by the processor instruction set.
pattern generation program, a test pattern application prograate that the inability to apply all possible input patterns to a
and a test response analysis program, as shown in Fig. 4. Tbenponent does not necessarily map to a low fault coverage as
self-test signatures and the programs contained in the softwiiis possible to detect all faults by choosing test patterns from
tester can be loaded to the processor memory with a low-spélee constrained input space. If, however, a fault can only be de-
tester prior to the application of the test. During the applicatidected by test patterns outside the allowed input space, by defi-
of the tests, the on-chip test generation program emulat@son the fault is redundant in the normal operational mode of
a pseudorandom pattern generator and expands the selftiestrocessor. Thus, there is no need to test for this fault.
signatures into test patterns. The test patterns are applied tth the subsequent sections, we first define the input and
components by the on-chip test application program at tbetput constraints imposed by the instruction set. We then
speed of the processor. The test application program also qmevide methods for modeling these constraints during test
lects the test responses and saves them to memory. If desiggheration. In Section 111-A3, we propose an iterative method
the test responses can be compressed into response signafargsreparing component tests under the instruction-imposed
using the test response analysis program. The responsescarestraints. An example on the results of the component test
stored into the processor memory and can later be unloagedparation step is shown in Section 111-A4.
and analyzed by an external tester. Note that we assume th#&) Instruction-Imposed ConstraintsThe constraints im-
processor memory has been tested with standard technigpesed by the processor instruction set can be divided into input
such as memory BIST before the application of the test. Thumnstraints and output constraints, which are determined by
the memory is assumed to be fault free. the instructions for controlling the component inputs and the

By targeting the structural test need of less complex compiastructions for observing the component outputs.
nents, the proposed method has the fault coverage advantage @he input constraints define the input space of the component
deterministic structural testing. Since component test applicdiowed by instructions. For a componetitlet I. be the set of
tion and response collection are done with instructions insteiadtructions for controlling the inputs @, be an instruction

Ill. SOFTWARE-BASED SELF-TESTMETHODOLOGY TARGETING
STRUCTURAL FAULTS
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TABLE I
SHU: SPATIAL CONSTRAINTS IMPOSED BY INSTRUCTIONS

Instr | asl | asr v C z n s (data_in[7]) | data_in[6:0]
1lda 0 0 0 0 1if n=s X X
and 0 0 0 0 data_in = X X
add 0 0 v=c®s | x | 00000000 X X
sub 0 0 v=c®s | x X X
asl 1 0 0 0 X X
asr 0 1 0 0 X X
in_flag
(venz) data_in

4 ¢°

| g— asl
SHU lgg— asr Vlda,shu
4 8 Vand,shu

out_flag data_out

Fig. 5. SHU.

such that € I.. V; . is the set of input vectors to compon&iit
allowed by instruction. The input space of allowed byl is
thereforeV, = Uidc Vi,c. LetT, be atest set fof. 1 is said
to berealizableby the instructions ir/,. iff 7. C V.. On the
other hand, a faulf is said to baundetectablén the functional Fig. 6. Input space of SHU allowed by its spatial constraints.
mode allowed by. if it can only be detected by a set of test

C V.. .
vectorsT" such thatl” € V- As shown in Table lllasl andasr cannot both be one. For

The output constraints define the subset of component Olbithmetic instructionsy, ¢, ands must obey the relation of =
puts observable by instructions. They are used in the compo- L

nent-level fault simulation to determine the preliminary faulf ® s. For other mstruchons; andc_ are zeros. For aII_lnstruc-
coverage of the component tests. Since the component test PQ.S’.Z andn must be C(.)nSIStent Wl.th the valueddta in ; In
sponses are to be collected by ins;tructions afaultis undetec%g]a&j ftion to the constraints shown n Tabled| Iand.data N
at the chip level if its resulting errors fail to p,ropagate to any ol%- 101 must obey another constraint so tiu@a -n [7:.01
servable outputs. Therefore, during component-level fault si ghnever b&0 000 000. In summary, the spatial constraints on

: j . ' HU can be expressed by the following set of Boolean equa-
lation, errors propagating to unobservable outputs should not; .
accounted for toward the detection of any fault. One way to en-
force this is to remove all unobservable outputs from the output 1) z = !(data_in[7] + data_in[6]
list during fault simulation. +---+ data_in[0]), and

We will next use one component of the PARWAN processor, 2) & = data.in[7], and

SHU, to illustrate the types of constraints imposed by the in- 3) 'asl*!asrx(lvxlc + 1 (v @cés))
struction set. +(asl+lasr+lasl « asr)xlvklc = 1,and

4) data_in[7] * !(data_in[6] + data_in[5]
+ .-+ data_in[0]) = 0.

A block diagram of SHU is shown in Fig. 5. The input signals
includedata _in ,in _flag , and the shifting signals from the
controller. Signain _flag includes four bitsv, c, z, andn, The input space of SHU defined by its spatial constraints can
which denote overflow, carry, zero, and negative, respectivebge illustrated by the Venn diagram shown in Fig. 6, where the
The shifting signals includes two bitssl andasr , which de- allowed input space is shown in the white area.
note arithmetic shift left and arithmetic shift right. The temporal constraints on SHU are imposed by the se-

The constraints imposed by the processor instruction sptence of instructions that apply tests to SHU. The sequence
can be divided into two types. We define constraints whidhcludes three steps: 1) loading data to be shifted into the AC; 2)
can be specified in a single time frame gmatial constraints shifting data stored in AC and store the shift result temporarily in
and constraints spanning over several time framdsraporal AC; and 3) storing the shift result into memory for later analysis.
constraints As shown in Fig. 7, the application of one test pattern involves

For SHU, the instructions for controlling the inputs includ¢hree passes through the SHU. To account for fault aliasing, tem-
lda (load accumulatorgnd, add, sub, asl (arithmetic shift poral constraints need to be modeled during component test gen-
left), andasr (arithmetic shift right). The spatial constraintseration.
imposed by these instructions are shown in Table I, wikase Previously, Tupurket al. and Vishakantaialet al. have pro-
the sign bit ofdata _in andx denotes “don’t-care.” posed a methodology to systematically extract structural con-
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m MEM to memory. Notice that the data inputs and flag inputs of SHU

— are only connected to the primary inputs in the first phase when

the AC content is loaded from the memory. The data outputs

v of SHU are only connected to the primary outputs in the third
W ALU ALU phase when the test response is stored to memory. The shifting

- . . signals in these Mohphases z(ijre sgt Itqo ZE_r(:js.vTaned c flags "
are set to zeros in the second and the third steps since neither

SHU | the shift instructions nor the store instruction can set them to
@ ) © one. At any phase, the inputs to SHU must also obey the spatial

Fig. 7. Hardware paths involved in testing the SHU. (a) Loading to AC (kgonsvamtS -We h-ave de-scnbed before. . .
Shifting. (c) Storing to memory (MEM). ' " As described in S_ectlon IlI-Al1, even the spatlz_sll constraints
alone can be complicated for a component as simple as a 1-b
shifter, which are only controlled by six instructions. For a
more complex component that can be controlled by many more
instructions, the constraints can be much more complicated,
drastically increasing the complexity of constrained test gener-
ation. Based on the fact that input constraints are simpler for a
single instruction than for a large number of instructions, in the
following we propose an iterative method for generating tests

(€Y (b) (©) under the constraints imposed by a set of instructions.
Fig. 8. Circuit for modeling temporal constraints on SHU. (a) Loading to AC. 3) Method for Preparing Component Tests Under Con-
(b) Shifting. (c) Storing to MEM. straints: Our method for preparing component tests under the

constraints imposed by a set of instructions is as follows. For

straints for components of a processor from the processor @&ch instruction that can be used to control the component,
scription in hardware description language (HDL) [26]-[28)ve perform constrained test generation within the input space
However, it should be noted that not all architectural constrairaowed by this instruction. We repeat this process on other
can be extracted from structural descriptions [29]. Thus, in ti@structions, until 1) we have exhausted all instructions or 2) we
future, we will investigate on enhancing existing structural cofiave successfully generated tests for all nonredundant faults.
straint extraction methods to extract constraints imposed by thé=ig. 9 shows a flowchart illustrating the proposed method,
instruction set, as is required in our work. whereC' is the component under test. In the initialization step,

The output constraints for SHU define the list of outputs otihe set of instructions to be procesgdd is initialized to the
servable by instructions. The data output of SHata _out  set of instructions for controlling’(1..). The list of undetected
can be directly observed by the store instruction. The statiailts () is initialized to the fault list ofC(£.). V. and 7,
outputout _flag can be indirectly observed by branch instrucgwhich denote the previously covered input space and the previ-
tions. Therefore, for this particular example, there are no outputsly generated test set, are both initialized>taDuring each
constraints and no outputs need to be removed from the outjatation of the test generation process, an instrugtisghosen
list during the component-level fault simulation. from the set of unprocessed instructigié$. The input space al-

2) Constraint Modeling: Having described the constraintdowed by this instructiorV; . is compared with the previously
imposed by the processor instruction set, we will now descrilsevered input space.. If V; . C V_, the instructioni is skipped,
the modeling of these constraints during component test prepa-the inclusion of this instruction does not expand the input
ration. space for component. Otherwise, we perform constrained test

If component tests are generated by automatic test pattgeneration for the list of undetected fau(s) under the con-
generation (ATPG) , spatial constraints can be specified duriagjaints imposed by instructian The resulting test set and the
test generation with the aid of the ATPG tool. As an alternativlist of newly detected faults are used to upd&tend#'. In ad-
spatial constraint can be specified with a virtual constraint cidition, V.. is updated to include the newly covered input space
cuit proposed in [26]. andq is removed from the list of unprocessed instructiohs

If random tests are used for components, random patterns ¥¥@ repeat this process until eitheor ' becomes empty.
only be used on independent inputs. In the case of SHU, thesd he resulting test séf. has the following two properties.
would bedata _in andc. Inputs such ag, n, andv can be Property 1: Assuming the tests generated under the
derived from these inputs. It is inconvenient to assign randaganstraints imposed by arsingle instruction ¢ achieve the
patterns to instruction-related signals, such as the shifting sigaximum possible fault coverage in the functional mode
nals. Therefore, they are fixed when random patterns are appkdi@wed by i, 7. can achieve the maximum possible fault
to other inputs. The fixed value of the instruction-related signatoverage in the functional mode allowed Wy. Thus, T
may be changed if necessary. detects any faults detectable by.

The temporal constraints of SHU can be modeled using theProperty 2: Any test vector iril;, can be realized by at least
three-phase sequential circuit shown in Fig. 8. The three phases instruction inl...
correspond to the three instructions for applying tests to SHU,Formal proofs for the two properties can be found in the Ap-
which are loading data into AC, shifting, and storing AC contemtendix.
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TABLE IV

COMPONENT TESTS FOR THEALU
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Instruction Test patterns
alu_code inl in2

1da 100 (11111111, 01100011, 82) 77777777

sta 110 77777777 (11111111,01100011, 82)
cma 001 77777777 (11111111, 01100011, 35)
and 000 (11111111,01100011,98): 0dd | (11111111,01100011, 98): even
sub 111 (11111111,01100011,24): 0dd | (11111111,01100011, 24): even
add 101 (11111111,01100011,26): odd | (11111111,01100011, 26): even

Initialization mé |n82

I=1l,F=F,V.,=0,T,=0

out_flag

A 2 (vezn)
Takeice |

4 alu_code
(8

data_out

Fig. 10. ALU.

that obviously cover the same input space as any previously pro-
cessed instruction. (e.g., in Table Ill, we can easily identify that
[da andand cover the exact same input space.) This compro-
mise substantially lowers the complexity of the screening step.
4) Example on the Results of the Component Test Prepa-
ration Step: As we have mentioned in the beginning of Sec-
tion lll, the results of the component test preparation step can ei-
ther be expressed in the form of actual test patterns orin the form
of self-test signatures. The self-test signatures can be loaded to

Constraint test generation
(Fault list = F, allowed input space = V)
T, = resulting test set
Fqe; = detected faults

Update: step 1
Te=TeU T F=F-Fy, Vo=V, U Vo

3 the processor memory before the application of the test and ex-
Update: step 2 | panded into test patterns by an on-chip test pattern generation
\=1-{0) program

We now use the ALU (Fig. 10) of the PARWAN processor
to illustrate the results of component test preparation in terms
of the self-test signatures (Table IV). The ALU contains two
8-b data inputsifl andin2 ) and one 3-b control input
(alu_code ). As shown in Fig. 2jnl is connected to the
databus between the memory and the processorirghdis
connected to the output of the accumulator.

Fig. 9. Iterative method for generating tests under the constraints imposed byThe first column in Table IV shows the instructions for con-
a set of instructions. trolling the inputs to the ALU. They are load data from the
memory to the accumulatotd@ ), store data from the accu-

We do not propose any method for selectfiagn this paper. mulator to the memorysta ), compliment accumulatoc(na),
However, in practice, the selection &f can be performed by bit-wise AND (and), substractionqub), and addition &dd).
circuit simulation, during which it is possible to identify whichColumns 2—4 show the input constraints imposed by these in-
instructions cause the inputs of a component to change. In addructions, as well as the self-test signatures prepared for the
tion, to reduce the complexity of the constrained test generationconstrained inputs. For a constrained input, the constraint is
step, the instructions ifi. can be prioritized by the simplicity expressed in terms of a fixed value. For an unconstrained input,
of instruction-imposed constraints with the higher priorities athe self-test signature is expressed in a triple containing the fol-
signed to the instructions with the simpler constraints. In caselawing components: the seed of the pseudorandom pattern gen-
acceptable fault coverage is achieved with the first few instruerator.S, the configuration of the pseudorandom pattern gener-
tions in I., there is no need the move on to instructions witator C, and the number of pseudorandom patterns uéed
overly complex constraints. We now explain the test prepared for the ALU when in-

As shown in Fig. 9, in the beginning of each iteration, wetructionsta is used for applying the tests. In this case, the
screen out instructions that cannot bring in new input space glue ofalu_code is constrained to 110. The value iofl
checking whetheV; . C V.. This problem is co-NP- complete.is constrained to high-impedanéeas the tristate buffer from
Since it is used for reducing the number of instructions to ke memory to the databus is disabled when the data is stored
processed, the screening step is not mandatory. The requirenfiemh the accumulator to the memory Fig. 2. The valuén@f
of this step can be relaxed to screen out only the instructioissunconstrained; therefore, a self-test signature can be used to
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. 0-s 0 lda addr (y) //load AC
New bit,. .. Do N times 1 add addr (x)
N begin 2 sta data_out //store AC
@ AC = Bitwise-and(C,Q); 3 lda 11111111
New_bit = Parity(AC); 4 brav ifv //branch if overflow
L b L b ) Q = New_bit:{Q >> 1); 5 and 11110111
o Q2 Q3 end 6 1label ifv brac ifc //branch if carry
7 and 11111011
() (b) 8 label ifc braz ifz //branch if zero
Fig. 11. Hardware and software implementation of LFSR. Self-test signature9 and 11111101 . .
(C, S, N). (a) Hardware implementation. (b) Software implementation. 10 label ifz bran ifn //branch if negative
11 and 11111110

12 label ifn sta flag_out
specify the pseudorandom patterns that will be applieéd2o
during on-chip self-test. The self-test signature is expressgg 12. Observing status outputs.
as (11111111, 01100011, 82), which means the seed and the

configuration of the pseudorandom pattern generator are ggt possible to find instructions for applying the component
t0 11111111 and 01100011, respectively, and 82 patterns gl&s An example is shown in Table IV.

used. On the output end, special care needs to be taken for col-

Notice that the self-test signatures containing the same sgggting component test response. Data outputs and status out-
and configuration are reused throughout the tests for the ALpl,ts have different observability and should be treated differ-
although different numbers of test patterns are used for differgiiiy during response collection. Here, we illustrate the propa-
cases. Moreover, when instructions with two unconstrained igation of status outputs with the ALU (Fig. 10) in the PARWAN
puts are used (e.gadd), one self-test signature is shared b}brocessor.
both inputs. During the on-chip self-test phase, which we will Tha AL U has four status outputs: overflow carry ¢, zero
explain in detail in Section Ill- B, the self-test signature are used 4n g negative, which can be observed by the instruction se-
to construct an array containing pseudorandom patterns. Tigsnce in Fig. 12. Instructions 0-2 apply a test vector to ALU.
array elements with odd indices will be used as test patterns e status outputs become available after instruction 1. Instruc-
one input{nl ) and the elements with even indices will be useglons 311 create an image of the status outputs in the accumu-
for the other o2 ). lator. First, an all-one vector is loaded to the accumulaterisf

As far as output observability is concerned, the ALU comsne, the all-one vector is left untouched. Otherwise, a 0 replaces
tains an 8-b data outputslgta _out ) and a 4-b status outputthe 1 at the fourth bit from right. Other status bits are treated
(out flag ). As we will explain in Section Ill- B2, both out- similarly. After the execution of instruction 11, an image of the
puts can be observed by instructions. Therefore, both outpytgtus output is created in the accumulator. Instruction 12 stores
can be used as primary outputs during the component-level fagls image to memory.
simulation. In general, although there are no instructions for storing the

The result of the component-level fault simulation shows thafatys outputs of a component directly to memory, the image of
the ALU tests in Table IV are expected to achieve a fault cowne status outputs can be created in memory using conditional
erage of 98.81% on the ALU. instructions. This technique can be used to observe the status

outputs of any components.

B. On-Chip Self-Test

C. Experimental Results
The second step of our software-based self-test scheme is

on-chip self-test, which uses an embedded software tester foln this section, we report the application of the software-based
the on-chip generation of component test patterns, the delivésjf-test methodology. Before we report our experimental re-
of component tests, and the analysis of their responses (Fig.s#lts, we describe the test evaluation framework we have de-
1) Test Generation Programlf tests are to be generatedveloped and used to evaluate the fault coverage achieved by the
on-chip, we expand the component self-test signatures deggftware test program.
mined during component test preparation into test sets usinglo evaluate the fault coverage of a test program on the pro-
a pseudorandom number generator. Fig. 11 illustrates thigssor under test, we have established the test evaluation frame-
process. A software program emulating a hardware LFSR canrk shown in Fig. 13. The assembler takes the test program
be used as the pattern generator. The software LFSR leadd prepares a very high-speed integrated-circuit HDL (VHDL)
to no test overhead and can be reused to generate any LESR bench containing the initialized instruction memory and
configurations. The configuration of the LFSR is determinediata memory. The VHDL simulator takes the design descrip-
by a self-test signature, which includes the characteristic poljen, runs the test bench, and captures the input signals to the
nomial C, the initial stateS, and the number of test patterns tgprocessor. These are the test vectors to be applied during fault
be generatedv. simulation. Finally, the fault simulator computes the fault cov-
2) Test Application Program:According to Property 2 of erage.
T., since the component tests are developed under the conburing component test preparation, pseudorandom tests were
straints imposed by the processor instruction set, it will alwaysepared for the ALU. A total of 205 test patterns were used. The
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Testprogram  RTL desc. Gate level netlist TABLE V
STATISTICS ON THE SELF-TEST PROGRAM
TPG* Test application Total
ALU | SHU | PC
VHDL tost bench # instructions 46| 213| 243 73| 575
; - Prog. size [bytes] 87 424 471 | 147 1129
VHDL simulation Exec. time [cycles] | 87764| 37686 11604| 595| 137649

*Test pattern generation program.
Capture Fault simulation
progessor ir\puts

ified version of the original PARWAN circuit, which includes no
bidirectional 1/O pins or tristate buffers. The relative area over-
Fig. 13. Test evaluation framework. head of logic BIST is large due to the small size of the original
circuit. With a reasonable amount of area overhead, full-scan is

) o able to achieve an acceptable fault coverage. However, it is not
expected fault coverage is 98.81%. Deterministic tests were ptgja to apply at-speed testing without the help of a high-per-

pared for SHU and PC. 40 test patterns were used for SHU @l ance tester. Being self-test techniques, logic BIST and the
12 for PC. The expected fault coverage is 99.27% for SHU aBﬁjoposed self-testing technique are both able to apply at-speed
85.00% for PC. We were unable to obtain full coverage for theges; \vithout relying on high-performance testers. Logic BIST,
components due to the existence of constraints imposed by Hﬁﬁvever, may not be suitable for high-performance processors
instruction set. No tests were generated for other componenfSe (4 the their intolerance to area and delay overhead. With
as they are not easily accessible through instructions. We gxs proposed software-based self-test technique, self-test can
pect them to be tested intensively during the test for the targefed - nqducted in the normal functional mode of the pProcessor.
components. . _ __Therefore, no test overhead is needed.

Table V shows the statistics on various programs contained inp, prove the effectiveness of our software-based self-test

the software teste_r in_cluding the test pattern generation PrografBthodology on complex problems, we are now in the process
and the test application programs for ALU, SHU, and PC. F@ anniving it to the picoJava processor core. A preliminary

each program, we show the number of instructions includeddRys_test program of 2050 instructions has been applied to its
the program, the size of the program in bytes, and the exec“tﬁ&ting-point unit, which has an area of 23365 equivalent

time in the number of processor cycleslow-speedester can \\yp gates. A fault coverage of 81.18% has been achieved on
be used to load the test programs into the processor memegy floating-point unit.

During the application of the self-test program, an external tester
is not required to be hooked up to the processor for supplying
the test patterns and monitoring the test responses. Therefore,
the tester time is not determined by the execution time, but byln conclusion, although hardware-based logic BIST may
the size of the test programs, which in this case is only 1129 Be an effective solution for testing ASICs [4], [17], we have

The complete self-test program achieved an overall fault codemonstrated some of its disadvantages in testing complex
erage of 91.42% on the original PARWAN circuit, which in-designs such as microprocessors. Due to its reliance on pseu-
cludes tristate buffers. Notice that the proposed method daksandom test patterns, logic BIST must be accompanied by
not require the processor outputs to be monitored by an exterdesign changes required for making a circuit random-pattern
tester during the application of self-test. The test response is delstable. The design changes can be overly complex for designs
lected after the test by unloading the component test respotike microprocessors, leading to not only significant increase
stored in memory. In general, if a conventional fault simulaton design time, but also unacceptable performance degradation.
is used for evaluating the fault coverage of the proposed methtdg have proposed a novel software-based self-testing technique
only primary outputs related to memory should be observettiat enables at-speed self-testing using the functionality of the
This includes address outputs, data outputs, and read/write giggcessor under test. Structural faults are targeted during the
nals for the memory. self-test while the functionality of the processor is used as a

The component fault coverages along with the processor faudthicle for applying structural tests. We have demonstrated
coverage are shown in Table VI in which DP I/F denotes thhe effectiveness of the proposed method on a simple micro-
datapath interface, and CPU I/F denotes the CPU interface. Tiiecessor. The advantages of the proposed technique include
component fault coverages are obtained from the full-processmrabling at-speed testing with low speed testers as well as
fault simulation, not from the component fault simulation. Noachieving high fault coverage without sacrificing area or per-
tice that the DP I/F mainly consists of buses and tristate buffefermance. By breaking up a complex system into manageable
The fault coverage for this unit is low as its testability is reducquieces and targeting at individual components, we expect to
by the presence of the tristate buffers [30]. apply this technique to large processors and systems in the

Table VII shows a comparison between the results of tlieture. Currently, by applying it to the picoJava processor core,
proposed software-based self-test technique and conventiomalare expecting to extend the proposed self-test technique to
testing techniques such as full-scan and logic BIST (Table Bddress issues related to complex architectural features such as
Note that full-scan and logic BIST have to be applied to the mogipelining and superscalar.

Fault coverage

IV. CONCLUSION AND FUTURE DIRECTION
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TABLE VI
FAuLT COVERAGE [%)]
Component fault coverage Processor
AC IR PC | MAR SR ALU | SHU | CTRL | DP I/F | CPU IF | fault coverage
99.33 | 98.61 | 89.16 | 97.22 | 98.88 | 98.48 | 94.08 | 88.26 | 71.57 | 97.14 91.42
TABLE VI

COMPARISON WITH CONVENTIONAL TESTING TECHNIQUES

Area Fault At- External

overhead coverage | speed? tester?
Full Scan* 11.95% 89.39% N Y
Logic BIST* 169.09%** 88.69% Y N
Proposed technique 0 91.42% Y N

*On the modified circuit without test points.
**Biased by the small size of the original circuit.

The high fault coverage and low test overhead make the prb< I, which is the final list of undetectable faults (Statement
posed software-based self-test methodology an attractive sc@y-
tion for testing high performance processors. However, we ac-The assumption in Property 1 can be expressed as follows.
knowledge that compared with traditional design-for-test teckis € I,,, if f is previously undetected anflis detectable by
niques, the proposed technique is particularly challenging b&-., f must be detectable B, .. This leads to a contradiction
cause it requires a certain amount of architectural knowledgewith Statement 3. Hencg,does not exist and Property 1 hols.
the processor under test. For instance, it requires the knowledg@roperty 2: Any test vector ifil,, can be realized by at least
on the subset of instructions for accessing a particular compe instruction in/...
nent inside the processor. Furthermore, if ATPG is to be used Proof: As shown in Fig. 9. = Uie[c 1; .. By defini-
to generate tests for this component, the constraints imposien, V. = |J;.; Vi .. As aresult of constrained test generation,
by these instructions must be given or extracted. At the cdf; . C V, .. Thereforel, C V..
rent stage of our research, the collection of relevant architec-SinceV, = Uielc Vie, forvu € V,, i € I, such thaw €
tural knowledge and the generation of the test program still rely .. That is, any vector it. can be realized by at least one
on manual effort. Nonetheless, the application of the proposedtruction inl..
method demonstrates its great potential as a viable alternativ&incel, C V., any vector in7,. can be realized by at least
for testing high-performance processors. In the future, we withe instruction irv... O
be working toward the automation of the proposed method in
order to make it a feasible solution for general processors.
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