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Abstract—At-speed testing of gigahertz processors using
external testers may not be technically and economically feasible.
Hence, there is an emerging need for low-cost high-quality self-test
methodologies that can be used by processors to test themselves
at-speed. Currently, built-in self-test (BIST) is the primary
self-test methodology available. While memory BIST is commonly
used for testing embedded memory cores, complex logic designs
such as microprocessors are rarely tested with logic BIST. In this
paper, we first analyze the issues associated with current hard-
ware-based logic-BIST methodologies by applying a commercial
logic-BIST tool to two processor cores. We then propose a new
software-based self-testing methodology for processors, which
uses a software tester embedded in the processor memory as a
vehicle for applying structural tests. The software tester consists
of programs for test generation and test application. Prior to the
test, structural tests are prepared for processor components in
the form of self-test signatures. During the process of self-test,
the test generation program expands the self-test signatures into
test sets and the test application program applies the tests to the
components under test at the speed of the processor. Application
of the novel software-based self-test method demonstrates its
significant cost/fault coverage benefits and its ability to apply
at-speed test while alleviating the need for high-speed testers.

Index Terms—At-speed testing, instructions, processors,
self-test, structural test.

I. INTRODUCTION

A S THE SPEED of microprocessors approaches the giga-
hertz range, at-speed testing is becoming increasingly crit-

ical. However, testers with speed matching the speed of giga-
hertz processors will be increasingly costly. According to [1], if
the current testing techniques are to be continued, the test equip-
ment cost can rise toward $20 million. Moreover, due to the in-
herent inaccuracy of testers, at-speed testing of high-speed pro-
cessors may result in an unacceptably high yield loss of 48% by
2012. To ensure the economic viability of the industry to man-
ufacture high-performance processors, alternative testing tech-
niques are needed. Hence, the recent focus on self-testing—the
ability of a circuit to test itself. By generating the required test
patterns on-chip and applying the tests at the speed of the circuit,
a gigahertz processor can test itself without relying on prohibi-
tively expensive high-speed external testers.
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One of the most widely researched self-testing techniques is
built-in self-test (BIST) [2], which uses embedded hardware
test generators and test response analyzers to generate and
apply test patterns on-chip at the speed of the circuit, thereby
eliminating the need for an external tester. Memory BIST has
been commonly used for testing embedded memory compo-
nents, as it performs well due to the deterministic nature of
memory tests facilitated by the regular structure of memory
components. Logic BIST, however, faces many challenges
because it relies on the generation and application of pseudo-
random test patterns.

1) For random-pattern-resistant circuits, the fault coverage
achieved by pseudorandom testing may be low.

2) The insertion of the BIST circuitry used for generating
and applying pseudorandom patterns may result in sig-
nificant area and performance overhead.

3) The application of random test patterns often results in
excessive power consumption in the BIST mode [3], pos-
sibly damaging the circuit under test.

4) The application of random test patterns may drive the cir-
cuit under test into nonfunctional mode in which the free
flow of test data can be impeded by problems such as bus
contentions. Thus, the circuit under test is required to be
BIST-ready [4] (e.g., immune to problems such as bus
contentions even when pseudorandom test patterns are
applied).

To address the above issues, many solutions have been pro-
posed. The low fault coverage due to random-pattern resistance
may be improved with techniques such as deterministic BIST
[5], [6] or weighted random patterns [7]–[9]. The BIST over-
head may be reduced by generating pseudorandom test patterns
using existing circuits such as accumulators [6], [10], [11], em-
bedded processors [5], or any sequential circuits in general [12].
In scan-based BIST, the test overhead may also be reduced by
partial scan [13]. The excessive power consumption in the BIST
mode may be reduced by techniques such as test scheduling [3],
reducing input activities [14], or filtering nondetecting vectors
[15]. BIST readiness may be achieved by design changes [4],
[16], [17].

The feasibility of logic BIST on industrial circuits has been
demonstrated in [4] and [17] in which different approaches were
used to overcome the random-pattern resistance of complex
circuits. In particular, [4] uses test points, which come with the
price of area overhead and possible performance degradation,
and [17] uses deterministic BIST, which encodes deterministic
test patterns in pseudorandom test patterns using additional
on-chip hardware. Both approaches have been shown to be
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effective on a number of industrial circuits, provided that these
circuits are made BIST-ready beforehand.

While logic BIST may perform well on industrial application
specfied integrated circuits (ASICs), its feasibility on micropro-
cessors is yet to be investigated. First, the design changes needed
for making a microprocessor BIST-ready may come with unac-
ceptable cost, such as substantial manual effort and significant
performance degradation. In addition, microprocessors are es-
pecially random-pattern resistant. Due to the timing-critical na-
ture of microprocessors, test points may not be acceptable as a
solution to this problem, as they could introduce performance
degradation on critical paths. Deterministic BIST, on the other
hand, may lead to unacceptable area overhead, as the size of the
on-chip hardware for encoding deterministic test patterns de-
pends on the testability of the circuit [17].

An alternative to hardware-based self-testing techniques
such as BIST is software-based self-testing, which involves
the testing of microprocessors using processor instructions.
Whereas hardware-based self-test must be applied in the non-
functional BIST mode, software-based self-test can be applied
in the normal operational mode of the processor without
requiring any design changes or the insertion of any additional
hardware structures.

Software-based testing has a long history as an ad hoc tech-
nique for testing processors. Computer systems are regularly
equipped with software programs to perform in-field testing.
The tests done are typically used for checking the function-
ality of the system, but not for detecting manufacturing defects.
Functional validation suites have been used regularly to perform
manufacturing testing of processors [18]. However, its applica-
tion relies on external testers and its results in terms of manu-
facturing fault coverage are low, as the validation suites are not
targeted at structural faults. To reach a desirable fault coverage,
functional validation suites are often supplemented with deter-
ministic structural tests or additional handcrafted tests.

Recently, researchers have started investigating functional
tests specifically designed for manufacturing testing [19]–[21].
Some propose to apply the tests with external testers [19],
others allow the processors to test themselves with self-test pro-
grams [20], [21]. A common characteristic of these approaches
is to apply randomized instructions to the processor under test.
However, although processors are more amenable to random
instruction tests than to random-pattern tests, it is difficult to
target structural faults by applying random instructions at the
processor level.

In this paper, we first analyze the strengths and limitations
of current hardware-based self-testing techniques by applying
a commercial logic-BIST tool to a simple processor core as
well as a complex commercial processor core. Specifically,
we demonstrate the design changes needed for making these
processors BIST-ready. The design changes require substantial
manual effort and can lead to unacceptable performance
degradation. The need for design changes can be elevated in the
case of processors, as processors are random-pattern resistant
due to their complex controls.

Since the need for self-testing is most acute for high-per-
formance processors, we propose a new software-based
self-testing methodology for processors that uses a software

tester embedded in the processor memory as a vehicle for
applying structural tests. The software tester consists of a
program for generating pseudorandom test patterns (test pattern
generation program) and a program for applying these patterns
(test pattern application program). Since software has the
advantage of programmability and flexibility, the test pattern
generation program can be used to generate desirable random
test sets on-chip without any hardware overhead. In addition,
the test pattern application program enables on-chip test
application by guiding the test patterns through the complex
control structure of the processor rather than with the help of
scan chains and boundary-scan chains as is done in the case of
hardware-based logic BIST.

To circumvent the low fault coverage associated with
random-pattern testing of processors, our approach first de-
termines the structural test needs of the components in the
processor, which are usually much less complex than the full
processor and, hence, much more amenable to random-pattern
testing. At the processor level, the instructions of the processor
are used to apply the tests to each component at-speed. Since
the instructions satisfy the complex control flow of the pro-
cessor, the flow of test data to/from the component under test
will not be impeded, as in the case of hardware BIST applying
random patterns to the entire processor.

The proposed approach isfundamentally differentfrom any
previous approaches that apply functional tests using random-
ized instructions [19]–[21]. Unlike previous approaches, it
aims at structural faults from the very beginning by preparing
structural tests for thecomponentsin the processor. Moreover,
the instructions in the software tester are not randomly chosen,
but carefully crafted in order to deliver the previously prepared
structural tests to the desired components.

In Section II, we first analyze the issues associated with
current hardware-based logic BIST by applying a commercial
logic-BIST tool to two processor cores. We will then describe
the proposed software-based self-testing methodology in
Section III. The performance of the software-based approach is
evaluated and compared to that of the logic-BIST tool.

II. M OTIVATION—EXPERIENCES WITHAPPLYING LOGIC BIST
TO PROCESSORS

As we have discussed before, at-speed testing of gigahertz
processors can be enabled by self-test. Current hardware-based
logic-BIST techniques are based on the application of pseu-
dorandom test patterns. Although the low fault coverage due
to the random-pattern resistance of the circuit under test and
the area overhead introduced by the BIST circuitry can be im-
proved by various techniques, it has been pointed out by many
that the application of logic BIST requires the circuit under
test to be BIST-ready [4], [16], [17]. For designs such as cell-
based ASICs, logic BIST may be able to achieve high fault cov-
erage with a reasonable amount design changes [4]. However,
for complex designs like microprocessors, the amount of design
changes and the resulting area and performance overhead might
not be acceptable. This is because: 1) such designsintentionally
incorporate internal tristates and bidirectionals such as partially
decoded muxes and pass gates, which cannot be easily handled
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Fig. 1. BIST circuitry inserted by the logic-BIST tool.

Fig. 2. PARWAN processor core.

by logic BIST [22]; 2) the timing-critical nature of these de-
signs often requires nonfull-scan or sequential test techniques,
whereas logic BIST typically builds upon full-scanned designs
[23]; and 3) the test logic insertion performed by commercial
tools is done at gate level, whereas these designs’ netlists are at
the transistor level.

As a motivation for the proposed software-based self-testing
methodology, we describe our experiences of applying a
commercially available logic-BIST tool to two processor cores:
PARWAN and picoJava-II. We present the results in terms of
fault coverage and area overhead as well as the design changes
required for making the processors BIST-ready.

As shown in Fig. 1, the logic-BIST tool uses a STUMPS-
based BIST architecture [23]. Instead of relying on an external
tester for applying tests to the scan chains, the logic-BIST tool
generates test vectors on-chip using a linear feedback shift reg-
ister (LFSR). The outputs of the LFSR are connected to the scan
chains through a phase shifter composed of XOR gates, which
is designed to reduce the linear correlation among scan chains.
The outputs of the scan chains are compressed on-chip using
a multiple-input shift register (MISR). The user may choose to
insert a certain number of test points to improve the fault cov-
erage.

We first applied the logic-BIST tool to a simple accumu-
lator-based microprocessor named PARWAN [24] (Fig. 2). It in-
cludes the following components: arithmetic logic unit (ALU),
accumulator (AC) unit , controller (CTRL), instruction register
(IR) unit, program counter (PC) unit, memory address register
(MAR) unit , shifter unit (SHU), and status register (SR) unit.

TABLE I
PARWAN: FULL SCAN VERSUSLOGIC BIST

*On the modified circuit.

**On the modified circuit with test points.

The synthesized version of PARWAN contains 888 equivalent
NAND gates and 53 flip flops. The data bus is 8-b wide, shared by
bothdata in anddata out . The address bus is 12-b wide.
Accesses to both buses are controlled by tristate buffers.

Several design changes were needed for making PARWAN
BIST-ready. As the MISR signatures can be corrupted by
undefined values, logic-BIST tools do not accept circuits
with possible bus-contention problems [4]. Moreover, logic
BIST requires the circuit under test to be free of bidirectional
input–output (I/O) pins [22]. Hence, before applying the
logic-BIST tool, we manually modified the circuit descrip-
tion of PARWAN. The modifications include: 1) splitting all
bidirectional pins into separate I/O pins; and 2) replacing all
tristate buffers with selectors. In addition, we insert test points
to improve the testability of the circuit.

Table I shows the results of the logic-BIST tool on PARWAN
in comparison with the full-scan results. The rows contain the
following information:

1) statistics on the original PARWAN circuit;
2) statistics on the modified PARWAN circuit;
3) the results of full scan on the modified circuit;
4) the results of applying the logic-BIST tool to the modified

circuit;
5) the results of the logic-BIST tool on the modified cir-

cuit with test points (3 control points and 11 observation
points).

For the two experiments with the logic-BIST tool, we di-
vided the 53 flip flops of PARWAN into five scan chains.
The logic-BIST tool automatically chooses an 18-b LFSR
as the pattern generator. The columns contain the following
information: the areas of the circuits in terms of the number
of equivalentNAND gates, the number of test patterns applied
during each test, and the final fault coverage on collapsed faults.
Notices that the areas reported do not include routing area.

As shown in Table I, without the help of additional test points,
the logic-BIST tool is able to achieve a fault coverage compa-
rable to that of full scan. Due to the insertion of the BIST cir-
cuitry, logic BIST requires a larger area overhead than full scan.
Since the size of the BIST circuitry stays relatively constant,
the relative area overhead is expected to diminish quickly as the
design size increases [4]. Note that the fault coverage achieved
by logic BIST can be significantly enhanced by the use of test
points.

In addition to the PARWAN processor, we have applied the
logic-BIST tool to picoJava-II (Fig. 3), a soft microprocessor
core [25].
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TABLE II
PICOJAVA -II: FULL SCAN VERSUSLOGIC BIST

Fig. 3. PicoJava-II processor core.

The picoJava-II processor core is a hardware implementation
of the Java Virtual Machine. It is a stack-based 32-b processor
with 300 instructions. It contains six pipeline stages and can
execute up to four instructions in one cycle. As a soft core, it
is distributed in the form of synthesizable Verilog description,
including seven technology-dependent embedded memory
blocks. We have synthesized it down to the gate level using a
commercial logic-synthesis tool. The synthesized picoJava-II
core contains 167 I/O ports and 6801 flip flops. Fig. 3 shows
the component areas in terms of the number of equivalent
NAND gates. The total area is 127 887 for the logic components
and 313 989 for the embedded memory components. The
total number of faults in the logic blocks is 532 527. Using a
commercial fault simulator, it takes 20 s to simulate one test
cycle if all faults are included in the fault list.

Table II shows the results of applying the logic-BIST tool
to the logic part of the picoJava processor in comparison with
the results of full scan. The values of area overhead and fault
coverage reported in the table are with respect to the logic part
of the processor core.

As shown in Table II, we have conducted four experiments
with the logic-BIST tool in order to study the effect of different
parameters on the fault coverage. Given a fixed LFSR/MISR
configuration, the logic-BIST tool allows the user to set the
number of test points. Our experimental results show that the
insertion of test points leads to a significant improvement in
fault coverage. The fault coverage can be improved further by

increasing the size of the LFSR and the number of random pat-
terns. However, the improvement is marginal.

The design changes required for making picoJava
BIST-ready are as follows. First, embedded memories
were bypassed with scan flip flops in the test mode [4] as
otherwise they could become sources of undefined values (
generators), leading to the corruption of MISR signatures. In
addition, a number of combinational loops, which did not exist
in the functional mode, were formed when random test patterns
were applied. The signals in a combinational loop may toggle
when the loop is activated, causing the generation of undefined
values. The combinational loops can be broken with the help
of control points. The breaking of the combinational loops, as
well as the insertion of the memory bypass circuits, had to be
performed manually.

We would like to point out that the logic-BIST tool we had
used does not necessarily incorporate all recently conducted
research works in hardware-based logic BIST. The fault cov-
erage and the area overhead can possibly be improved with the
application of recent research results in BIST, such as deter-
ministic BIST [5], [6], weighted random patterns [7]–[9], and
the reuse of existing circuits [5], [6], [10]–[12]. However, a
common problem remains with all logic-BIST techniques: the
circuit under test have to be made BIST-ready. For complex
high-end microprocessors, this requires substantial manual de-
sign effort, significantly delaying the product’s time to market.
In addition, the design changes may induce intolerable perfor-
mance degradation.

In summary, although it is an attractive solution to the
problem of at-speed test, the application of a logic-BIST tool
on the two processor cores shows its potential disadvantages.
Due to their complex control structures, processors are highly
random-pattern resistant. An acceptable fault coverage cannot
be achieved by simply applying random test patterns to the
entire processor, as certain internal control signals need to
be set properly to ensure the free flow of test data. Through
our experiences described above as well as through experi-
ences documented in [4] and [16], extensive design changes
may often be needed to make the processors random-pattern
testable, adding to the area/delay overhead. In addition, certain
violations that do not happen in the functional mode such as
bus-contentions and the forming of combinational loops could
occur during the application of random test patterns. To avoid
these violations, additional design changes need to be made,
making the insertion of logic BIST even more difficult. Due
to the diversity of the designs, not all design changes can be
automated with the existing commercial logic-BIST tools.
Thus, many of these design changes have to be carried out
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Fig. 4. Self-test methodology.

manually, significantly adding to the design time. In addition,
the design changes may cause performance degradation,
making it necessary to redesign in some cases.

III. SOFTWARE-BASEDSELF-TESTMETHODOLOGYTARGETING

STRUCTURAL FAULTS

Unlike hardware-based self-testing, software-based testing
is nonintrusive since it applies tests in the normal operational
mode of the circuit. Because of the programmability of soft-
ware, software-based testing enables the use of configurable
random-pattern generation programs without requiring any test
overhead. Moreover, software instructions have the ability of
guiding test patterns through a complex processor, avoiding the
blockage of the test data due to nonfunctional control signals
as in the case of hardware-based logic BIST.

Given the advantage of software-based testing, we propose
a novel software-based processor self-testing methodology that
delivers structural tests to the components of the processor
using processor instructions. Our self-testing scheme includes
two steps. The test preparation step includes the generation of
realizable structural tests for components of the processor and
the encapsulation of component tests into self-test signatures.
The self-testing step involves the application of the component
tests using a software tester, which consists of an on-chip test
pattern generation program, a test pattern application program,
and a test response analysis program, as shown in Fig. 4. The
self-test signatures and the programs contained in the software
tester can be loaded to the processor memory with a low-speed
tester prior to the application of the test. During the application
of the tests, the on-chip test generation program emulates
a pseudorandom pattern generator and expands the self-test
signatures into test patterns. The test patterns are applied to
components by the on-chip test application program at the
speed of the processor. The test application program also col-
lects the test responses and saves them to memory. If desired,
the test responses can be compressed into response signatures
using the test response analysis program. The responses are
stored into the processor memory and can later be unloaded
and analyzed by an external tester. Note that we assume the
processor memory has been tested with standard techniques
such as memory BIST before the application of the test. Thus,
the memory is assumed to be fault free.

By targeting the structural test need of less complex compo-
nents, the proposed method has the fault coverage advantage of
deterministic structural testing. Since component test applica-
tion and response collection are done with instructions instead

of with scan chains, it requires no area or performance over-
head and the test application is performed at-speed. Most im-
portantly, by shifting the role of external testers from applying
tests to loading test programs and unloading responses, it en-
ables at-speed testing of gigahertz processors with low-speed
testers.

In the following sections, we describe the above two steps in
detail using the PARWAN processor (Fig. 2).

A. Component Test Preparation

During the component test preparation step, we develop
structural tests for individual components of the processor, such
as the ALU, SHU, and PC. Component-level fault simulation is
used for evaluating the preliminary fault coverage of these tests.

Component tests can either be stored or generated on-chip,
depending on which method is more efficient for a particular
case. If tests are to be generated on-chip, we characterize the
test need of the component by aself-test signature, which in-
cludes the seed and the configuration of a pseudorandom
number generator as well as the number of test patterns to be
generated . The self-test signatures can be expanded on-chip
into test sets using a pseudorandom number generation program.
Multiple self-test signatures may be used for one component if
necessary. Thus, our self-test methodology allows the incorpo-
ration of any deterministic BIST techniques that encode a de-
terministic test set as several pseudorandom test sets [5], [6]. A
low-speed tester can be used to load the self-test signatures or
the predetermined tests to the processor memory prior to the ap-
plication of test.

One of the challenges of component test preparation lies in
the generation ofrealizablecomponent tests. That is, the com-
ponent tests must be deliverable with the software tester. Since
the delivery of component tests relies on processor instructions,
it is impossible to deliver some test patterns. To avoid producing
undeliverable test patterns, component tests must be generated
under the constraints imposed by the processor instruction set.
Note that the inability to apply all possible input patterns to a
component does not necessarily map to a low fault coverage as
it is possible to detect all faults by choosing test patterns from
the constrained input space. If, however, a fault can only be de-
tected by test patterns outside the allowed input space, by defi-
nition the fault is redundant in the normal operational mode of
the processor. Thus, there is no need to test for this fault.

In the subsequent sections, we first define the input and
output constraints imposed by the instruction set. We then
provide methods for modeling these constraints during test
generation. In Section III-A3, we propose an iterative method
for preparing component tests under the instruction-imposed
constraints. An example on the results of the component test
preparation step is shown in Section III-A4.

1) Instruction-Imposed Constraints:The constraints im-
posed by the processor instruction set can be divided into input
constraints and output constraints, which are determined by
the instructions for controlling the component inputs and the
instructions for observing the component outputs.

The input constraints define the input space of the component
allowed by instructions. For a component, let be the set of
instructions for controlling the inputs of be an instruction
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TABLE III
SHU: SPATIAL CONSTRAINTSIMPOSED BYINSTRUCTIONS

Fig. 5. SHU.

such that . is the set of input vectors to component
allowed by instruction. The input space of allowed by is
therefore . Let be a test set for . is said
to be realizableby the instructions in iff . On the
other hand, a fault is said to beundetectablein the functional
mode allowed by if it can only be detected by a set of test
vectors such that .

The output constraints define the subset of component out-
puts observable by instructions. They are used in the compo-
nent-level fault simulation to determine the preliminary fault
coverage of the component tests. Since the component test re-
sponses are to be collected by instructions, a fault is undetected
at the chip level if its resulting errors fail to propagate to any ob-
servable outputs. Therefore, during component-level fault simu-
lation, errors propagating to unobservable outputs should not be
accounted for toward the detection of any fault. One way to en-
force this is to remove all unobservable outputs from the output
list during fault simulation.

We will next use one component of the PARWAN processor,
SHU, to illustrate the types of constraints imposed by the in-
struction set.

A block diagram of SHU is shown in Fig. 5. The input signals
includedata in , in flag , and the shifting signals from the
controller. Signalin flag includes four bits: , , , and ,
which denote overflow, carry, zero, and negative, respectively.
The shifting signals includes two bits,asl andasr , which de-
note arithmetic shift left and arithmetic shift right.

The constraints imposed by the processor instruction set
can be divided into two types. We define constraints which
can be specified in a single time frame asspatial constraints
and constraints spanning over several time frames astemporal
constraints.

For SHU, the instructions for controlling the inputs include
lda (load accumulator),and , add , sub , asl (arithmetic shift
left), andasr (arithmetic shift right). The spatial constraints
imposed by these instructions are shown in Table III, whereis
the sign bit ofdata in and denotes “don’t-care.”

Fig. 6. Input space of SHU allowed by its spatial constraints.

As shown in Table III,asl andasr cannot both be one. For
arithmetic instructions,, , and must obey the relation of

. For other instructions, and are zeros. For all instruc-
tions, and must be consistent with the value ofdata in . In
addition to the constraints shown in Table IIIs anddata in

must obey another constraint so thatdata in
can never be . In summary, the spatial constraints on
SHU can be expressed by the following set of Boolean equa-
tions:

1)

2)
3)

4)

The input space of SHU defined by its spatial constraints can
be illustrated by the Venn diagram shown in Fig. 6, where the
allowed input space is shown in the white area.

The temporal constraints on SHU are imposed by the se-
quence of instructions that apply tests to SHU. The sequence
includes three steps: 1) loading data to be shifted into the AC; 2)
shifting data stored in AC and store the shift result temporarily in
AC; and 3) storing the shift result into memory for later analysis.
As shown in Fig. 7, the application of one test pattern involves
three passes through the SHU. To account for fault aliasing, tem-
poral constraints need to be modeled during component test gen-
eration.

Previously, Tupuriet al. and Vishakantaiahet al. have pro-
posed a methodology to systematically extract structural con-
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(a) (b) (c)

Fig. 7. Hardware paths involved in testing the SHU. (a) Loading to AC. (b)
Shifting. (c) Storing to memory (MEM).

(a) (b) (c)

Fig. 8. Circuit for modeling temporal constraints on SHU. (a) Loading to AC.
(b) Shifting. (c) Storing to MEM.

straints for components of a processor from the processor de-
scription in hardware description language (HDL) [26]–[28].
However, it should be noted that not all architectural constraints
can be extracted from structural descriptions [29]. Thus, in the
future, we will investigate on enhancing existing structural con-
straint extraction methods to extract constraints imposed by the
instruction set, as is required in our work.

The output constraints for SHU define the list of outputs ob-
servable by instructions. The data output of SHUdata out
can be directly observed by the store instruction. The status
outputout flag can be indirectly observed by branch instruc-
tions. Therefore, for this particular example, there are no output
constraints and no outputs need to be removed from the output
list during the component-level fault simulation.

2) Constraint Modeling:Having described the constraints
imposed by the processor instruction set, we will now describe
the modeling of these constraints during component test prepa-
ration.

If component tests are generated by automatic test pattern
generation (ATPG) , spatial constraints can be specified during
test generation with the aid of the ATPG tool. As an alternative,
spatial constraint can be specified with a virtual constraint cir-
cuit proposed in [26].

If random tests are used for components, random patterns can
only be used on independent inputs. In the case of SHU, these
would bedata in and . Inputs such as , , and can be
derived from these inputs. It is inconvenient to assign random
patterns to instruction-related signals, such as the shifting sig-
nals. Therefore, they are fixed when random patterns are applied
to other inputs. The fixed value of the instruction-related signals
may be changed if necessary.

The temporal constraints of SHU can be modeled using the
three-phase sequential circuit shown in Fig. 8. The three phases
correspond to the three instructions for applying tests to SHU,
which are loading data into AC, shifting, and storing AC content

to memory. Notice that the data inputs and flag inputs of SHU
are only connected to the primary inputs in the first phase when
the AC content is loaded from the memory. The data outputs
of SHU are only connected to the primary outputs in the third
phase when the test response is stored to memory. The shifting
signals in these two phases are set to zeros. Theand flags
are set to zeros in the second and the third steps since neither
the shift instructions nor the store instruction can set them to
one. At any phase, the inputs to SHU must also obey the spatial
constraints we have described before.

As described in Section III-A1, even the spatial constraints
alone can be complicated for a component as simple as a 1-b
shifter, which are only controlled by six instructions. For a
more complex component that can be controlled by many more
instructions, the constraints can be much more complicated,
drastically increasing the complexity of constrained test gener-
ation. Based on the fact that input constraints are simpler for a
single instruction than for a large number of instructions, in the
following we propose an iterative method for generating tests
under the constraints imposed by a set of instructions.

3) Method for Preparing Component Tests Under Con-
straints: Our method for preparing component tests under the
constraints imposed by a set of instructions is as follows. For
each instruction that can be used to control the component,
we perform constrained test generation within the input space
allowed by this instruction. We repeat this process on other
instructions, until 1) we have exhausted all instructions or 2) we
have successfully generated tests for all nonredundant faults.

Fig. 9 shows a flowchart illustrating the proposed method,
where is the component under test. In the initialization step,
the set of instructions to be processed is initialized to the
set of instructions for controlling . The list of undetected
faults is initialized to the fault list of . and ,
which denote the previously covered input space and the previ-
ously generated test set, are both initialized to. During each
iteration of the test generation process, an instructionis chosen
from the set of unprocessed instructions. The input space al-
lowed by this instruction is compared with the previously
covered input space . If , the instruction is skipped,
as the inclusion of this instruction does not expand the input
space for component. Otherwise, we perform constrained test
generation for the list of undetected faults under the con-
straints imposed by instruction. The resulting test set and the
list of newly detected faults are used to updateand . In ad-
dition, is updated to include the newly covered input space
and is removed from the list of unprocessed instructions.
We repeat this process until eitheror becomes empty.

The resulting test set has the following two properties.
Property 1: Assuming the tests generated under the

constraints imposed by anysingle instruction achieve the
maximum possible fault coverage in the functional mode
allowed by , can achieve the maximum possible fault
coverage in the functional mode allowed by. Thus,
detects any faults detectable by.

Property 2: Any test vector in can be realized by at least
one instruction in .

Formal proofs for the two properties can be found in the Ap-
pendix.
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TABLE IV
COMPONENTTESTS FOR THEALU

Fig. 9. Iterative method for generating tests under the constraints imposed by
a set of instructions.

We do not propose any method for selectingin this paper.
However, in practice, the selection of can be performed by
circuit simulation, during which it is possible to identify which
instructions cause the inputs of a component to change. In addi-
tion, to reduce the complexity of the constrained test generation
step, the instructions in can be prioritized by the simplicity
of instruction-imposed constraints with the higher priorities as-
signed to the instructions with the simpler constraints. In case an
acceptable fault coverage is achieved with the first few instruc-
tions in , there is no need the move on to instructions with
overly complex constraints.

As shown in Fig. 9, in the beginning of each iteration, we
screen out instructions that cannot bring in new input space by
checking whether . This problem is co-NP- complete.
Since it is used for reducing the number of instructions to be
processed, the screening step is not mandatory. The requirement
of this step can be relaxed to screen out only the instructions

Fig. 10. ALU.

that obviously cover the same input space as any previously pro-
cessed instruction. (e.g., in Table III, we can easily identify that
lda andand cover the exact same input space.) This compro-
mise substantially lowers the complexity of the screening step.

4) Example on the Results of the Component Test Prepa-
ration Step: As we have mentioned in the beginning of Sec-
tion III, the results of the component test preparation step can ei-
ther be expressed in the form of actual test patterns or in the form
of self-test signatures. The self-test signatures can be loaded to
the processor memory before the application of the test and ex-
panded into test patterns by an on-chip test pattern generation
program.

We now use the ALU (Fig. 10) of the PARWAN processor
to illustrate the results of component test preparation in terms
of the self-test signatures (Table IV). The ALU contains two
8-b data inputs (in1 and in2 ) and one 3-b control input
(alu_code ). As shown in Fig. 2,in1 is connected to the
databus between the memory and the processor andin2 is
connected to the output of the accumulator.

The first column in Table IV shows the instructions for con-
trolling the inputs to the ALU. They are load data from the
memory to the accumulator (lda ), store data from the accu-
mulator to the memory (sta ), compliment accumulator (cma),
bit-wise AND (and ), substraction (sub ), and addition (add ).
Columns 2–4 show the input constraints imposed by these in-
structions, as well as the self-test signatures prepared for the
unconstrained inputs. For a constrained input, the constraint is
expressed in terms of a fixed value. For an unconstrained input,
the self-test signature is expressed in a triple containing the fol-
lowing components: the seed of the pseudorandom pattern gen-
erator , the configuration of the pseudorandom pattern gener-
ator , and the number of pseudorandom patterns used.

We now explain the test prepared for the ALU when in-
structionsta is used for applying the tests. In this case, the
value ofalu_code is constrained to 110. The value ofin1
is constrained to high-impedanceas the tristate buffer from
the memory to the databus is disabled when the data is stored
from the accumulator to the memory Fig. 2. The value ofin2
is unconstrained; therefore, a self-test signature can be used to
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(a) (b)

Fig. 11. Hardware and software implementation of LFSR. Self-test signature:
(C , S,N ). (a) Hardware implementation. (b) Software implementation.

specify the pseudorandom patterns that will be applied toin2
during on-chip self-test. The self-test signature is expressed
as (11111111, 01100011, 82), which means the seed and the
configuration of the pseudorandom pattern generator are set
to 11111111 and 01100011, respectively, and 82 patterns are
used.

Notice that the self-test signatures containing the same seed
and configuration are reused throughout the tests for the ALU,
although different numbers of test patterns are used for different
cases. Moreover, when instructions with two unconstrained in-
puts are used (e.g.,add ), one self-test signature is shared by
both inputs. During the on-chip self-test phase, which we will
explain in detail in Section III- B, the self-test signature are used
to construct an array containing pseudorandom patterns. The
array elements with odd indices will be used as test patterns for
one input (in1 ) and the elements with even indices will be used
for the other (in2 ).

As far as output observability is concerned, the ALU con-
tains an 8-b data outputs (data out ) and a 4-b status output
(out flag ). As we will explain in Section III- B2, both out-
puts can be observed by instructions. Therefore, both outputs
can be used as primary outputs during the component-level fault
simulation.

The result of the component-level fault simulation shows that
the ALU tests in Table IV are expected to achieve a fault cov-
erage of 98.81% on the ALU.

B. On-Chip Self-Test

The second step of our software-based self-test scheme is
on-chip self-test, which uses an embedded software tester for
the on-chip generation of component test patterns, the delivery
of component tests, and the analysis of their responses (Fig. 4).

1) Test Generation Program:If tests are to be generated
on-chip, we expand the component self-test signatures deter-
mined during component test preparation into test sets using
a pseudorandom number generator. Fig. 11 illustrates this
process. A software program emulating a hardware LFSR can
be used as the pattern generator. The software LFSR leads
to no test overhead and can be reused to generate any LFSR
configurations. The configuration of the LFSR is determined
by a self-test signature, which includes the characteristic poly-
nomial , the initial state , and the number of test patterns to
be generated .

2) Test Application Program:According to Property 2 of
, since the component tests are developed under the con-

straints imposed by the processor instruction set, it will always

Fig. 12. Observing status outputs.

be possible to find instructions for applying the component
tests. An example is shown in Table IV.

On the output end, special care needs to be taken for col-
lecting component test response. Data outputs and status out-
puts have different observability and should be treated differ-
ently during response collection. Here, we illustrate the propa-
gation of status outputs with the ALU (Fig. 10) in the PARWAN
processor.

The ALU has four status outputs: overflow, carry , zero
, and negative , which can be observed by the instruction se-

quence in Fig. 12. Instructions 0–2 apply a test vector to ALU.
The status outputs become available after instruction 1. Instruc-
tions 3–11 create an image of the status outputs in the accumu-
lator. First, an all-one vector is loaded to the accumulator. Ifis
one, the all-one vector is left untouched. Otherwise, a 0 replaces
the 1 at the fourth bit from right. Other status bits are treated
similarly. After the execution of instruction 11, an image of the
status output is created in the accumulator. Instruction 12 stores
this image to memory.

In general, although there are no instructions for storing the
status outputs of a component directly to memory, the image of
the status outputs can be created in memory using conditional
instructions. This technique can be used to observe the status
outputs of any components.

C. Experimental Results

In this section, we report the application of the software-based
self-test methodology. Before we report our experimental re-
sults, we describe the test evaluation framework we have de-
veloped and used to evaluate the fault coverage achieved by the
software test program.

To evaluate the fault coverage of a test program on the pro-
cessor under test, we have established the test evaluation frame-
work shown in Fig. 13. The assembler takes the test program
and prepares a very high-speed integrated-circuit HDL (VHDL)
test bench containing the initialized instruction memory and
data memory. The VHDL simulator takes the design descrip-
tion, runs the test bench, and captures the input signals to the
processor. These are the test vectors to be applied during fault
simulation. Finally, the fault simulator computes the fault cov-
erage.

During component test preparation, pseudorandom tests were
prepared for the ALU. A total of 205 test patterns were used. The
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Fig. 13. Test evaluation framework.

expected fault coverage is 98.81%. Deterministic tests were pre-
pared for SHU and PC. 40 test patterns were used for SHU and
12 for PC. The expected fault coverage is 99.27% for SHU and
85.00% for PC. We were unable to obtain full coverage for these
components due to the existence of constraints imposed by the
instruction set. No tests were generated for other components,
as they are not easily accessible through instructions. We ex-
pect them to be tested intensively during the test for the targeted
components.

Table V shows the statistics on various programs contained in
the software tester including the test pattern generation program
and the test application programs for ALU, SHU, and PC. For
each program, we show the number of instructions included in
the program, the size of the program in bytes, and the execution
time in the number of processor cycles. Alow-speedtester can
be used to load the test programs into the processor memory.
During the application of the self-test program, an external tester
is not required to be hooked up to the processor for supplying
the test patterns and monitoring the test responses. Therefore,
the tester time is not determined by the execution time, but by
the size of the test programs, which in this case is only 1129 B.

The complete self-test program achieved an overall fault cov-
erage of 91.42% on the original PARWAN circuit, which in-
cludes tristate buffers. Notice that the proposed method does
not require the processor outputs to be monitored by an external
tester during the application of self-test. The test response is col-
lected after the test by unloading the component test response
stored in memory. In general, if a conventional fault simulator
is used for evaluating the fault coverage of the proposed method,
only primary outputs related to memory should be observed.
This includes address outputs, data outputs, and read/write sig-
nals for the memory.

The component fault coverages along with the processor fault
coverage are shown in Table VI in which DP I/F denotes the
datapath interface, and CPU I/F denotes the CPU interface. The
component fault coverages are obtained from the full-processor
fault simulation, not from the component fault simulation. No-
tice that the DP I/F mainly consists of buses and tristate buffers.
The fault coverage for this unit is low as its testability is reduced
by the presence of the tristate buffers [30].

Table VII shows a comparison between the results of the
proposed software-based self-test technique and conventional
testing techniques such as full-scan and logic BIST (Table I).
Note that full-scan and logic BIST have to be applied to the mod-

TABLE V
STATISTICS ON THESELF-TEST PROGRAM

*Test pattern generation program.

ified version of the original PARWAN circuit, which includes no
bidirectional I/O pins or tristate buffers. The relative area over-
head of logic BIST is large due to the small size of the original
circuit. With a reasonable amount of area overhead, full-scan is
able to achieve an acceptable fault coverage. However, it is not
able to apply at-speed testing without the help of a high-per-
formance tester. Being self-test techniques, logic BIST and the
proposed self-testing technique are both able to apply at-speed
test without relying on high-performance testers. Logic BIST,
however, may not be suitable for high-performance processors
due to the their intolerance to area and delay overhead. With
the proposed software-based self-test technique, self-test can
be conducted in the normal functional mode of the processor.
Therefore, no test overhead is needed.

To prove the effectiveness of our software-based self-test
methodology on complex problems, we are now in the process
of applying it to the picoJava processor core. A preliminary
self-test program of 2050 instructions has been applied to its
floating-point unit, which has an area of 23 365 equivalent
NAND gates. A fault coverage of 81.18% has been achieved on
the floating-point unit.

IV. CONCLUSION AND FUTURE DIRECTION

In conclusion, although hardware-based logic BIST may
be an effective solution for testing ASICs [4], [17], we have
demonstrated some of its disadvantages in testing complex
designs such as microprocessors. Due to its reliance on pseu-
dorandom test patterns, logic BIST must be accompanied by
design changes required for making a circuit random-pattern
testable. The design changes can be overly complex for designs
like microprocessors, leading to not only significant increase
in design time, but also unacceptable performance degradation.
We have proposed a novel software-based self-testing technique
that enables at-speed self-testing using the functionality of the
processor under test. Structural faults are targeted during the
self-test while the functionality of the processor is used as a
vehicle for applying structural tests. We have demonstrated
the effectiveness of the proposed method on a simple micro-
processor. The advantages of the proposed technique include
enabling at-speed testing with low speed testers as well as
achieving high fault coverage without sacrificing area or per-
formance. By breaking up a complex system into manageable
pieces and targeting at individual components, we expect to
apply this technique to large processors and systems in the
future. Currently, by applying it to the picoJava processor core,
we are expecting to extend the proposed self-test technique to
address issues related to complex architectural features such as
pipelining and superscalar.
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TABLE VI
FAULT COVERAGE [%]

TABLE VII
COMPARISON WITH CONVENTIONAL TESTING TECHNIQUES

*On the modified circuit without test points.

**Biased by the small size of the original circuit.

The high fault coverage and low test overhead make the pro-
posed software-based self-test methodology an attractive solu-
tion for testing high performance processors. However, we ac-
knowledge that compared with traditional design-for-test tech-
niques, the proposed technique is particularly challenging be-
cause it requires a certain amount of architectural knowledge on
the processor under test. For instance, it requires the knowledge
on the subset of instructions for accessing a particular compo-
nent inside the processor. Furthermore, if ATPG is to be used
to generate tests for this component, the constraints imposed
by these instructions must be given or extracted. At the cur-
rent stage of our research, the collection of relevant architec-
tural knowledge and the generation of the test program still rely
on manual effort. Nonetheless, the application of the proposed
method demonstrates its great potential as a viable alternative
for testing high-performance processors. In the future, we will
be working toward the automation of the proposed method in
order to make it a feasible solution for general processors.

APPENDIX

FORMAL PROOFS ON THEPROPERTIES OF

Property 1: Assuming the tests generated under the
constraints imposed by anysingle instruction achieve the
maximum possible fault coverage in the functional mode
allowed by , can achieve the maximum possible fault
coverage in the functional mode allowed by. Thus,
detects any faults detectable by.

Proof: Let be the set of instructions used in the test
generation step. ( the set of skipped instructions.)

To prove by contradiction, we would like to find ansuch
that is detectable by , but not . As shown in Fig. 9,

. Therefore, , there is no such that can
be detected by (Statement 1).

As shown in Fig. 9, instruction iff
such that (instruction is skipped only if all vectors

in had been covered by previously processed instructions).
Therefore, . Since is detectable
by , such that is detectable by (Statement 2).

According to Statements 1 and 2, such that is
detectable by , but not . Since is not detected by ,

, which is the final list of undetectable faults (Statement
3).

The assumption in Property 1 can be expressed as follows.
if is previously undetected andis detectable by

, must be detectable by . This leads to a contradiction
with Statement 3. Hence,does not exist and Property 1 holds.

Property 2: Any test vector in can be realized by at least
one instruction in .

Proof: As shown in Fig. 9, . By defini-
tion, . As a result of constrained test generation,

. Therefore, .
Since , for such that
. That is, any vector in can be realized by at least one

instruction in .
Since , any vector in can be realized by at least

one instruction in .
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