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Abstract

An approach to off-line signature verification, one
with an on-line flavor, is described. A sequence of data
is obtained by tracing the exterior contour of the sig-
nature which allows the application of string-matching
algorithms. The upper and lower contours of the signa-
ture are first determined by ignoring small gaps between
signature components. The contours are combined into
a single sequence so as to define a pseudo-writing path.
To match two signatures a non-linear normalization
method, viz., dynamic time warping, is applied to seg-
ment them into curves. Shape descriptors based on
Zernike moments are extracted as features from each
segment. A harmonic distance is used for measuring
signature similarity. Performance is significantly bet-
ter than that of a word-shape based signature verifica-
tion method. When the two methods are combined, the
overall performance is significantly better than either
method alone. With a database of 1320 genuines and
1320 forgeries the combination method has an accuracy
of 95% (with 20% rejection) which is comparable to that
of on-line systems.

1 Introduction

While on-line, or dynamic, signature verification has
a significant body of literature [1]– with reported accu-
racies of over 95% [2]– the topic of off-line, or static,
signature verification is more difficult and continues to
be of research interest. The differences arise due to the
two-dimensional nature of the off-line signature signal
as opposed to the one-dimensional temporal signal in
the on-line case. One model for the off-line case is based
on tracking histogram variations of signatures by dy-
namic timing warping (DTW), building statistics and
based on a skeleton of a signature stroke [3]. Another
off-line method approaches the problem from a multi-
resolution viewpoint based on the wavelet model [4].

Graphometric features used by questioned document
examiners were implemented and achieved good perfor-
mance [5]. A previous method developed at CEDAR
for handwritten word recognition– one that captures
word shape using gradient, structural and concavity (or
GSC) features– performed well in the signature verifi-
cation task [6]. However, no previous research focuses
on characteristics of stroke shape that have proved to
be most reliable feature in on-line systems [2]. Once
the off-line signature is described by an ordered series
of points, shape descriptors– used with success in im-
age recognition– can be used as features [7, 8] and ap-
proaches for on-line systems can be utilized.

2 Proposed method

The idea of stroke characterization led to the new
off-line signature verification described here. By com-
bining the exterior contours of the signature image into
a single contour, ranking the pixels on the contour
in the clockwise order, a pseudo- writing path is con-
structed. After a simple modification, most algorithms
for on-line systems can be used. The approach depends
on the construction of a single contour. The ideal con-
tour would be invariant among genuines and discrim-
inative between genuines and forgeries. Even if the
structure and shape of a signature are relatively invari-
ant between genuines, differences arise in the number
of extracted contours and their positional relationships
due to the dynamics of signing, shortcomings of image
pre-processing, etc. Since signatures are along a line,
the relative positional relation of discrete components
along the direction perpendicular to the signature line
are invariant between genuines. Imagining the signa-
ture components as a linearly arranged jigsaw puzzle,
the discrete contour components can be from right to
left along the line until they touch. Then a single con-
tour can be extracted. Undoubtedly some information
is lost by ignoring interior contours and distances be-



tween discrete contours. While previously developed
algorithms may also ignore certain characteristics, we
only attempt to show the discriminating power of fea-
tures extracted from the combined contour and the
possibility of their being part of a mature verification
system. After this step, DTW is used to segment the
constructed contour into separated curves and extract
Zernike moments [9] from them respectively. Both the
DTW algorithm and Zernike moments are widely used
in pattern recognition. Without discussing the possible
utility of many methods developed for on-line systems,
performance of the proposed system reaches the level
of developed systems, such as ones based on dynamic
grid and word-shape features, and leaves a large space
for future research.

3 Algorithm formulation

3.1 Preprocessing

1. Binarization: Grayscale images are converted to
binary images by Otsu’s thresholding method (Fig. 1).

Figure 1: Binary image after thresholding.

2. Broken stroke connection (Adaptive image enhance-
ment): The image may be broken due to several rea-
sons: imperfect binarization, disconnect between pen
tip and paper surface, etc. Binary images are usually
enhanced using closing and opening operations based
on fixed structuring elements. For signature images,
however, closing and opening will result in deforma-
tions like thickening– which may destroy smoothness
of stroke shape. A 7 × 7 window is placed on each
black pixel with the center mapped with the mid-point
of the stroke. Depending on the left- and right-most
coordinates of black pixel in each line of the window,
appropriate background pixels are converted into fore-
ground pixels to connect the isolated foreground pixel.
Due to the window size of 7 × 7 even foreground pix-
els separated by chessboard distance of 2 can be con-
nected (Fig. 2). Adaptive stroke connection preserves
details of the original stroke and smoothes edges as well
(Fig. 3). This method is a modification of [10].
3. Contour extraction: Exterior contours are obtained
from the binary images by scanning the image left-
to- right and top-to-bottom. Contours extracted are
shown in Fig. 4 where there are five exterior contours.
The extracted contour pixels are saved in clockwise or-
der. The extracted information includes each pixel’s

Figure 2: Image enhancement: (a) before, and (b) af-
ter.

Figure 3: Enhanced signature image.

position, slope, and curvature, each contour’s length
in pixels and contour’s frame size (Fig. 5). These val-
ues are used in DTW contour matching described in
Section 3.3.
4. Noise removal: Small contours with size less than
50 are ignored. Edge noise due to scanning usually
appears as long black lines in the image– which can be
recognized by extremely large ratio of contour frame
width to length– and removed.

3.2 Combining contours of a signature

The goal of this step is to combine all the contours
in the image into a single contour, or obtain a unique
closed loop. It is possible to achieve a relative steady
path for each writer. The starting point of this loop is
the first pixel of left most contour. The ending point of
this loop is the last pixel of the same contour. To get
the loop, each contour is separated into two parts: the
upper part and lower part. So the path is to pass the
upper parts of all contours from left to right and then
pass the lower parts from right to left. The key point
is how to separate each contour into two parts: the left
cut point is the one closest to the left neighbor contour;
similarly, the right cut point is the one closest to the
right neighbor contour. For the left most contour, the
left cut point is the left most pixel. Similarly, for the
right most contour, the right cut point is the right most
pixel. If a contour has no neighbor contour, the cut
points are selected from its left most and right most
pixels respectively (Fig. 6).

3.3 Matching contours of two signatures

The points along the two contours of the reference
and test signature are matched using DTW. For each



Figure 4: Exterior contours of signature.

Figure 5: Slope and curvature computation.

writer, the combined contour of shortest length is cho-
sen as the reference image and the rest are normalized
by DTW with respect to this reference. Use of DTW
here differs from its use in speech recognition [11] or in
on-line systems. Here the time domain is the index of
contour pixel instead of sampling time index. The cost
function for DTW is the quadratic average of difference
in slope and curvature.

A new set of local constraints and slope weights is
designed to meet the need of this application (Fig. 7).

The algorithm is given as follows:

• Initialization: DA(0, 0) = d(0, 0). where

d(ix, iy) = [f2
s (slope(ix) − slope(iy)) +

f2
c (curvature(ix), curvature(iy)]

1
2 (1)

and
fs(x) =

{
x if x < 5
8 − x if x ≥ 5

(2)

fc(x1, x2) = (x1 + 3)%8 + (x2 + 3)%8 (3)

From (2) and (3) we see that the distance in slope
and curvature have been modified to fit the direc-
tion quantization.

• Recursion: For 0 ≤ Tx − 1,0 ≤ Ty − 1 such that ix
and iy stay within the allowable grid,

φx(k)

Qmax
≤ φy(k) ≤ φx(k)

Qmin
(4)

Ty−1+
φx(k) − Tx + 1

Qmin
≤ φy(k) ≤ Ty − 1+

φx(k) − Tx + 1

Qmax

(5)

Figure 6: Pseudo-path obtained by sequentially
traversing upper and lower parts of contour.

Compute

DA(ix, iy) = min
i′x,i′y

[DA(i′x, i′y) + ξ((i′x, i′y), (ix, iy))] (6)

ξ((i′x, i′y), (ix, iy)) =
Ls∑
l=0

d(φx(T ′ − l), φy(T ′ − l))

×m(T ′ − l)
(7)

where Ls is the number of moves from (i′x, i′y) to
(ix, iy), m is slope weight.

• Termination:

d(X, Y ) =
DA(Tx − 1, Ty − 1)

Mφ
(8)

where Mφ = Tx + Ty

Note: x and y refer to the index of test image and
reference image respectively.

φx(k),φy(k) —the warping function

Qmax,Qmin — the parameters to specify the maxi-
mum and minimum expansion of warping

3.4 Feature extraction

The signature contour is segmented into a fixed
number, k, of small curves linearly so that shape fea-
tures can be separately computed for each curve. Cor-
responding parts of the contour are segmented in the
pair of signatures to be matched based on the result
of DTW contour matching. Experimentation led to a
choice of k = 20.

Features are extracted for each segment by using
Zernike moments. They are based on a set of complex
polynomials which form a complete orthogonal set over
the interior of the unit circle, i.e. x2+y2 = 1 [9]. These
polynomials, Vnm(x, y), have the form [7]:

Vnm(x, y) = Vnm(ρ, θ) = Rnm(ρ)exp(jmθ) (9)

where n are positive integers or zero and m are in-
tegers subject to |m| < n,n − |m| ∈ even, ρ is the



Figure 7: DTW path: (a) local constraints and slope
weights, (b) genuine-genuine contour alignment, and
(c) genuine-forgery contour alignment.

distance between (x, y) and the origin, θ is the an-
gle between the vector formed above and the x-axis
in counter-clockwise direction, and

Rnm(ρ) =

(n−|m|)/2∑
x=0

(−1)s (n − s)!

s!(n+|m|
2

− s)!(n−|m|
2

− s)!
ρn−2s.

(10)

The Zernike moment with order n and repetition m for
a digital image f(x, y) is defined as:

Anm =
n + 1

π

∑
x

∑
y

f(x, y)V ∗
nm(ρ, θ) x2 + y2 ≤ 1 (11)

Here f(x, y) is binary-valued, i.e. 0 or 1.
If the image is rotated clockwise by angle α, then

the Zernike moment of the rotated image is [7]

Ar
nm = Anmexp(−jmα). (12)

From (12) it follows that the magnitude of the Zernike
moment records shape information and the complex
angle records rotation angle with respect to the origin.
Magnitude is a rotation invariant feature that repre-
sents the shape of the curve. With signatures the rota-
tion angle of the segmented curve is a significant char-
acteristic. Thus both magnitude and angle are used as
features.

For each segment, the starting point is chosen as
the co-ordinate origin. Sixteen Zernike moments, up
to order 6 as shown in Table 1, are extracted. Thus
16× 2 × 20 = 640 Zernike feature values are extracted
from the signature.

Table 1: Selected Zernike Moments

ORDER MOMENTS NO.

0 A00 1

1 A11 1

2 A20, A22 2

3 A31, A33 2

4 A40, A42, A44 3

5 A51, A53, A55 3

6 A60, A62, A64, A66 4

3.5 Measuring signature similarity

Due to the dynamic characteristic of the signing pro-
cess, the harmonic mean dissimilarity measure [2] is
applied to measure dissimilarity between the extracted
feature vectors. Different from the Euclidean distance,
harmonic mean dissimilarity is the reciprocal of sum-
mation of reciprocals of Euclidean distance of feature
vector of each segment, i.e., D = 1∑

i

1
di

, where di de-

notes the Euclidean distance between contour segments
with index i. Thus if specific segments are highly simi-
lar then overall dissimilarity will be low, which matches
the fact that in cursive writing people always turn back
to their own writing style for some parts even if the
writing process is dynamic.

When there are n known signatures available dissim-
ilarities between every pair of signatures, i.e., n×(n−1)

2 ,
values are computed and their average is stored. Given
a questioned signature, its distance from every training
signature is computed and their average is obtained.
The input signature is labeled genuine when its av-
erage distance to the training images is less than the
average distance among the training set. Otherwise it
is labeled a forgery.

4 Performance of Zernike moments
method

Unfortunately there is no common data set in the
area of signature verification. Thus it is difficult to
compare the performance of developed systems so far.
For the purpose of evaluating the method a testbed
of signatures from 55 volunteers with different cultural
backgrounds was used. Each provided 24 signatures
taken 20 minutes apart to reduce correlations between
signatures due to writer physical status. Some of them
simulated the signatures of 3 people, 8 times each,
thereby creating 1320 genuines and 1320 forgeries. For
each writer, 16 genuines were randomly selected as
training samples and the remaining 8 genuines together
with the 24 forgeries were used as testing samples. Be-
fore testing, distances between every pair of images,



i.e., (16 × 15 ÷ 2 = 120) cases were computed. Accu-
racy as a percentage over the 55 writers is listed in the
first row of Table 2. Values shown are 1 minus False
Accept Rate(FAR) and False Reject Rate(FRR).

Table 2: Accuracy (55 writers/32 signatures each).

SYSTEM 1-FAR 1-FRR ACCURACY

Zernike moments 83.7 83.4 83.6

Word shape(GSC) 80.5 77.55 78.5

Combined method 96.3 93.6 94.9
(with rejection) (15.2) (25.6) (20.4)

5 Combination with word shape
method

The proposed method performs better than the
word shape (GSC) approach [6] whose performance
is shown in the second row of Table 2– a 5 % increase
in accuracy. The two approaches based on Zernicke
moments and word shape were combined using a reject
option. Each classifier has three thresholds t0, t1 and
t2 as follows: below t0: high confidence forgery, [t0, t1]:
forgery, [t1, t2]: high confidence genuine. A result is
output only when either both agree or one has a high
confidence result and the other does not. Accuracy
with the reject option is given in the third row of Ta-
ble 2 where 20% of the cases are rejected. By introduc-
ing a constraint on rejection rate, a trade-off between
accuracy and rejection rate can be obtained (Fig 8).
When 20% of the cases are rejected by each method
alone, the Zernicke moment method has an accuracy
90% and the GSC method has accuracy of 85% thereby
showing improvement by combining them. Since the
features used by the word shape method are totally
different– being based on strokes and image topology–
the two methods are seen to complement each other
and thereby boost each other’s performance.

6 Conclusion

A signature verification method based on obtaining
an exterior contour of the image and features based on
Zernicke moments has been described. The method
demonstrates strong invariance among genuines, which
validates the pseudo-path construction method and the
Zernike shape descriptor. When combined with a word
shape based approach higher accuracy is obtained
thereby demonstrating complementarity of approaches.
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