
A XML Policy-Based Approach for RSVP

Emir Toktar, Edgar Jamhour, Carlos Maziero
Pontifical Catholic University of Paraná, PUCPR, PPGIA

{toktar, jamhour, maziero}@ppgia.pucpr.br

Abstract

This work proposes a XML-based framework for distributing and enforcing RSVP access control
policies, for RSVP-aware application servers. Policies are represented by extending XACML, the
general purpose access control language proposed by OASIS. Because RSVP is a specific application
domain, it is not directly supported by the XACML standard. Hence, this work defines the XACML
extensions required for representing and transporting the RSVP access control policy information. The
XACML-based framework is proposed as an alternative to the PCIM-based approach, proposed by
IETF. The work shows that, while XACML is easier to understand and deploy, it lacks the flexibil ity
offered by PCIM. However, by properly extending XACML, the paper shows that the OASIS model is
suitable for defining complex access control policies for specific domains, such as RSVP.

1. Introduction

Policy based network management (PBNM) is an important trend for IP-based networks. Recent
works developed by IETF have defined a standard model for representing policies on different areas of
network management. The groundwork of this model is the PCIM (Policy Core Information Model),
defined by RFC 3060 [5]. PCIM is a platform independent object-oriented information model. The
model defines a generic strategy for representing network policies as aggregations of rules expressed in
terms of conditions and actions. PCIM is an abstract model, and it does not define sufficient elements for
describing policies for particular areas of network management. To address particular areas, PCIM
needs to be extended. IETF itself has already introduced PCIM extensions for representing IPsec and
QoS [10] policies. Outside IETF, other works explored extensions of PCIM for the area of access control
[6].

Besides IETF, others organizations are proposing standard policy models for PBNM. The OASIS
(Organization for the Advancement of Structured Information Standards) proposed a language for
representing access control policies, on general purpose, denominated XACML (eXtensible Access
Control Markup Language). There are several differences between the PCIM and the XACML approach.
While PCIM is a core model for representing policies on any area of network management, XACML is
dedicated to access control. Because PCIM is an abstract model, the implementation of policies models
based on PCIM is a rather complex task. The XACML, by the other hand, is simpler of being
implemented and deployed. However, XACML can lack the flexibility for addressing specific
application domains.

Based on this argumentation, this work proposes the use of the XACML for modeling and
distributing RSVP access control policies for RSVP-aware application servers. Because RSVP is a
specific application domain, it is not directly supported by the XACML standard. Hence, this work
defines the XACML extensions required for representing and transporting the RSVP access control
policy information. The paper compares the proposed XACML-based approach with the standard PCIM-
based approach with respect to implementation and deployment. By establishing the parallels with
PCIM-based approach, this work defines the futures extensions required for extending this proposal to
other network elements, such as routers.

This paper is structured as follows: section 2 presents a short review of the main aspects related to
RSVP policy access control. Section 3 presents an analysis of the models that can be employed for
describing RSVP access control policies, and the strategies for distributing and enforcing those policies.
The section 4 presents a short review of the XACML model. The section 5 describes how the XACML

can be used for describing RSVP policies, and presents the required extensions for adapting XACML to
the RSVP issue. The section 6 describes how to implement the framework for distributing and enforcing
the RSVP policies described in XACML. Finally, the conclusion reviews the principal aspects of this
study and indicates the future works.

2. RSVP Policy Control

This section introduces a brief review of the RSVP protocol, defining the concept of RSVP policy
control and presenting the important terms that wil l be utilized in the next sections. The RSVP
signalization is composed by a set of standard messages. The most important messages are PATH and
RESV. The emitter always initiates the QoS negotiation by sending the message PATH to the receiver.
The PATH message has double function. It defines the QoS parameters the receiver must request for the
network in order to satisfy the requisites of the application. It defines, as well, the path the other RSVP
messages and the flow of data wil l fol low between the emitter and the receiver. A flow of data on RSVP
is a sequence of messages with the same origin, with same expected QoS, and one or more destinations.

The receiver, on accepting the PATH message, initiates the process of flow reservation sending the
RESV message to the emitter, along the reverse way defined by the PATH message. The RESV message
consists of a flow descriptor, formed by the flowspec and filterspec objects. The filterspec, along with the
specification of the session, defines which packets of data (RSVP flow) must benefit from the QoS
reservation. The QoS specification is defined by flowspec using two data structures: Rspec (Reserve
Spec), that indicates the service class expected and Tspec (Traffic Spec) that specifies what will be
transmitted.

The QoS is enforced for a particular data flow by a mechanism called “ traffic control” . The traffic
control mechanism includes: a packet classifier and a packet scheduler. The mechanism utilizes the
Token Bucket algorithm for regulating the traffic of data according to the bandwidth limits specified by
the Tspec parameters. During the resource reservation setup, two local decision modules evaluate a
RSVP request: the “policy control module” and the “admission control module” . The admission control
module determines whether the node (host or router) has sufficient resources available for satisfying the
QoS request. The policy control module determines whether the user has administrative permission for
obtaining the reservation [2]. The parameters for policy and admission control are not defined and
controlled by the RSVP. The protocol merely transports the parameters to the appropriate module for
interpretation.

According to the RFC2205, the sender application must specify the type of service most appropriate
for its requisites of transmission by passing the related information to the RSVP daemon in the host
machine [2]. The RSVP daemon after being called, query the local decision modules, verifying resources
and authorization and, being allowed, initiates the exchange of RSVP messages with the nearest network
element in the path to the receiver.

As explained in the next sections, the purpose of the work described in this paper consists in defining
and implementing a mechanism for configuring the RSVP access control policies (“policy control”) for
RSVP-aware application servers by using XACML. This proposal also supply the information for
defining the Tspec parameters transported in the PATH and RESV messages. The Tspec information is
used for “admission control” by the network elements along the path between the transmitter and the
receiver.

3. RSVP Policy Control Strategies

In this paper, the strategy for representing, distributing and enforcing RSVP access control policies
follows Policy Based Network Management (PBNM) approach. The concept of PBNM is already widely
adopted by organizations that propose Internet standards, such as IETF [14] and the OASIS [7].
Although the definitions for PBNM could diverge according to the organization, the main concepts are
relatively universal. The basic idea for PBNM is to offer a strategy for configuring policy on different
network devices using a common management framework, composed by a policy server, denominated
PDP (Policy Decision Point) and various policy clients, denominated PEPs (Policy Enforcement Points)
[12]. The PDP is the entity responsible for storing and distributing the policies to the diverse nodes in
the network. A PEP is, usually, a network node component responsible for interpreting and applying the

policies received from the PDP. The PBNM approach can be applied in various aspects of network
management. This section will explore how this approach can be applied for managing access control
policies in RSVP server (sender) applications.

The IETF explores the concept of PBNM according to two strategies, denominated outsourcing and
provisioning. In the outsourcing strategy, the PEP sends a request to the PDP when it needs to make a
decision. For example, considering the access problem on RSVP, the PEP would represent the server
application (or more precisely, the policy component embedded in the server application). On receiving
a request from a client, the PEP would send a request to the PDP in order to determine if the client has
the permission for asking the reservation. The PDP then would interpret the policies and would send a
final decision to the PEP, informing if the solicitation is permitted or denied. In the provisioning
approach, the PEP, as being initial ized, would receive from the PDP the set of policies needed for its
decision. The policy information received from the PDP is locally stored by the PEP according to a
locally defined scheme called PIB (Policy Information Base). On receiving a reservation request, the
PEP would consult i ts locally stored policies and would make the decision by itself. In this approach, the
communication between the PEP and the PDP is required only when there is necessity of updating the
policies in the PEPs (e.g., the network administrator modifies a policy in the PDP concerning the PEP).

IETF define as well a standard protocol for supporting the communication between the PEP and the
PDP. This protocol is denominated COPS (Common Open Policy Service). The basic structure of the
COPS protocol is described in the RFC 2748 [1]. The COPS protocol supports both models of policy
control, i .e., “outsourcing” and “provisioning” . In the case of the provisioning approach, additional
specifications were required and, the protocol was renamed to COPS-PR. The basic structure of the
COPS-PR protocol is described in the RFC 3084 [3].

The IETF already published various works concerning the use of PBNM approach for RSVP policy
control. The works cover the definition of a framework for admission control [14] and the util ization of
COPS in outsourcing (COPS-RSVP) [4] and provisioning (COPS-PR) models. The provisioning
approach is sti ll under development, being necessary additional definitions for its complete specification.

The XACML proposal from OASIS also describes that its implementation could follow the approach
PDP/PEP. However, OASIS does not make a distinction between the outsourcing and provisioning
models, neither defines a standard protocol for supporting the communication between the PEP and the
PDP. An analysis of the XACML indicates, however, that it was primarily conceived for supporting the
outsourcing approach (see section 4).

An important difference between the approaches adopted by OASIS and IETF relates to how policies
are represented and stored. OASIS proposes XACML as a particular model for access control,
represented and stored as XML documents. On the other side, IETF defines PCIM as a generic model,
independent from the way the policies will be represented and stored. The PCIM model is abstract, and
needs to be extended in order to support particular areas of management, such as QoS [10]. IETF
indicates strategies for mapping the information models to LDAP (Lightweight Directory Access
Protocol) schemas, but this form of storage requires a supplementary effort by the developers.

A work describing the implementation and performance evaluation of a PBNM framework, using
COPS in outsourcing model with RSVP (COPS-RSVP) was presented by Ponnappan [8]. The QoS
policies were represented using QPIM (QoS Policy Information model), an IETF PCIM extension
described by Snir [10]. The policies were represented and stored using LDAP .This work uses CORBA
(Common Object Request Broker Architecture) for supporting the interaction between the application
components.

4. XACML Review

The XACML (eXtensible Access Control Markup Language) is an OASIS proposal for modeling,
storing and distributing descriptive access control policies [7]. XACML-based frameworks are supposed
to be implemented using the PDP/PEP architecture in the outsourcing model. The XACML language is
defined by two XML schemes: “xacml context” and “xacml policy” . The “xacml context” defines how to
represent policy request and policy response messages exchanged between the PEP and the PDP. The
“xacml policy” defines how to represent the access control policies. Figure 1 shows the UML diagram of
the “xacml policy” scheme. The figure represents the classes and associations between XACML
elements, but omits its attributes. According to the XACML strategy, a policy is described in terms of a

set of access permissions (or access denials) by structures denominated Targets. A Target is expressed
through the syntax: “users (Subject class) can (or cannot) apply actions (Action class) upon resources
(Resource class)” .

 ����� � ����	�
��

����� � ����
�������� ��� ��� ��� ����� � � ���

����� ��
�� � ��� � ����� � ����� ����� � ���

	������
����
�������� ��
 ����� � ���
 ���
!
����"��� ��� ��� ��� ����� � � ���

 ���

#�$ $
��%�

�����&�� � � ���

'%(()

' *

*
 +
, ,
*
 *

'�(()
' '�(()

'

-�(()
'

'
*

-�(('

*

-�(('
' -�((' ' -�(()

' -�(()

'

'

' +
, , . *

*

*

Figure 1. XACML policy scheme

Targets can be associated to a policy, to a policy set or to a rule. Targets associated to a policy or a

policy set work as policy selectors, i.e., when a PEP request a decision concerning a Target, only the
policies and policies sets that contain the Target elements need to be evaluated. Targets associated to
rules permit to express conditional permissions (or denials). A rule is expressed by the syntax: “if the
condition (Condition class) is satisfied then applies the effect (Effect class) upon the Target” . The
possible values for effect are: permit or deny. The effect defines the real sense of a Target as a
permission or denial. Figure 2 shows a simple policy example to il lustrate the use of the XACML
classes. The policy represented in the figure can be described textually as follows: “ the user
ana@xacml.org can login on a Multimedia Server in the period between 08:00AM and 17:00PM” .

 = ana@xacml.org
Subject

 Target

 = Video Server
 Resource

= login
Action

 Rule

= Deny-Overrides
Rule Combining Algorithm

 = Multimedia
Policy

 = >8h00 and <17h00
 Condition

 = Permit
 Effect

Figure 2. XACML policy example

When a PEP sends a request to the PDP, it supplies the attributes permitting to identify the elements

of a Target (Subject, Resource, Action). The PDP evaluates the policy rules and determines if exists a
Target with those attributes, and then returns to the PEP the corresponding effect: Permit or Deny. If i t
fai ls to find a Target in its policies that satisfy the attributes supplied by the PEP, it will return
“NotApplicable” .

The Obligations class, when defined, is returned to the PEP in conjunction with the decision. The
Obligations class is supposed to inform a set of actions that must be performed by the PEP, concerning
the decision. The XACML version (1.0) used in our study [7] does not specify the type of actions
described in Obligations. The specification only defines the PEP must be capable of interpreting any
information passed through the Obligations class. As wil l be explained further, our proposal uses the
Obligations class to pass QoS parameters to a RSVP node.

As shown in figure 1, a XACML policy can include several rules. The “Rule Combining Algorithm”
class determines the strategy used to evaluate the set of rules associated to the same policy. The
following strategies are defined by the XACML: Deny-overrides; Permit-overrides and the First-
applicable. In Deny-overrides, i f the conditions of a rule with effect “Deny” are satisfied, then the
decision for the policy will be to deny, regardless the other rules; Permit-overrides defines a similar
approach for the effect “Allow” . In First-applicable, the first rule satisfied defines the effect of the policy.
Observe, also in figure 1, that policies can be aggregated through the class PolicySet. Similarly as to the
rules, the policies are interpreted according to the class “Policy Combining Algorithm” , which defines
the same strategies uti lized to combine rules, adding still the only-one-applicable strategy. In this case, if
more than one policy is satisfied within a PolicySet, then the result of the policy set evaluation will be
“ Indeterminate” . In addition, XACML defines that developers can also add their own strategies for
policy and rule combining.

Figure 3 illustrates how the UML model shown in figure 2 is represented in a XML document. The
XML document “format” is formally described by the “xacml policy” scheme.

 <Pol i cy Pol i cyI d=" " Rul eCombi ni ngAl gI d=" " >
 <Tar get >
 <Subj ect s>. . . </ Subj ect s>
 <Resour ces>. . . </ Resour ces>
 <Act i ons>. . . </ Act i ons>
 </ Tar get >
 <Rul e Rul eI d=" " Ef f ect =" " >
 <Tar get >. . . </ Tar get >
 <Condi t i on Funct i onI d=" " >. . . </ Condi t i on>
 </ Rul e>
 <Obl i gat i ons>
 <Obl i gat i on Obl i gat i onI d=" " Ful f i l l On=" " > </ Obl i gat i on>
 </ Obl i gat i ons>
</ Pol i cy>

<! - - The el ement s of a Tar get : Subj ect s , Resour ces and Act i ons, ar e def i ned by
at t r i but es i ncl uded wi t hi n t he cor r espondi ng <TAGS> - - >

<! — I n Obl i gat i ons, t he at t r i but e Ful f i l l On i ndi cat es i f t he obl i gat i on must be
execut ed when t he r esul t i ng ef f ect i s Per mi t or Deny - - >

Figure 3. A XACML Policy document

Though the Obligations class offers an alternative for implementing some sort of policy

“provisioning” , we observe that XACML is primarily supposed to be implemented using the outsourcing
approach, because the PDP basically returns decisions of type “Permit” or “Deny” to the PEPs. As it wil l
be explained in the next section, the Obligations approach, as defined in XACML version 1.0, is rather
l imited, because the XACML framework offers no facilities for pre-processing Obligations before
returning them to the PEPs. Other limitations of the present XACML specifications concern the lack of
definitions regarding the communication protocol for supporting the exchange of messages between the
PDP and the PEPs, as well as definitions about the strategy for storing the XACML documents that
represent the network policies.

5. Proposal

This paper proposes a XACML-based framework for distributing and enforcing access control
policies to RSVP-aware application servers. Figure 4 il lustrates a typical scenario for this framework.
The PEP element represents a component of the server application, responsible for requesting policy
decisions to the PDP and interacting with the RSVP daemon in the host computer. The code of the PEP
must be integrated with the application server, as explained in section 6. In our proposal, the PEP is
responsible for all interaction with the RSVP daemon, releasing the application from the task of any
QoS negotiation. This interaction includes retrieving the traffic information for building PATH
messages and granting or not the reservation request on receiving the RESV message. This approach
can be implemented in any system that supports the RSVP APIs described in the RFC 2205.

RSVP
path

RSVP client
r ec eive r

RSVP
reservation

Access Request

PEP
Mul t imed ia S erver

se nde r

RSVP
path

RSVP
reservation

Router
RESV

PATH

Router

COPS
 (XACML Request context)

COPS
(XACML Response context)

PDP
Policy Server

Policy.xml

XACML

Figure 4. Policy control of RSVP with XACML

The sequence of events and messages exchanged by the elements in figure 4 during the establishment

of a RSVP reservation, using the proposed framework, is described as follows:

1. A RSVP client requests a connection to a multimedia server for obtaining services with QoS.
2. In the multimedia server, the application calls the PEP for evaluating the request. Then, the PEP

sends to the PDP a XACML request context message informing a “Target” containing its IP address
(Resource), the IP address of the client (Subject) and the requested operation (Action).

3. The PDP evaluates the policy defined in XACML for the supplied target, and returns to the PEP a
XACML response context message having, besides the result (permit or deny), the information of traffic
specification (Tspec, supplied through the Obligations structure).

4. In case of positive decision, the PEP calls its RSVP daemon, informing the Tspec parameters. The
RSVP daemon, then, sends a RSVP PATH message to the receiver (i.e., the RSVP client). The Tspec
parameters are stored in the PEP for further analysis (see step 6).

5. The RSVP client, on receiving a RSVP PATH message, calls its RSVP daemon, which obtains the
traffic parameters from the PATH message and formats a RESV RSVP message, returning it to the
sender (i.e., the PEP).

6. On receiving the RESV message from the client, the RSVP daemon of the server triggers an event
to the PEP forwarding the Tspec information. The PEP compares the Tspec information received from
the client with the Tspec information saved in step 4. If the Tspec parameters are identical or smaller
than those saved in step 4, the PEP confirms the reservation to the RSVP daemon. In this step, the
RSVP daemon also verifies if it has enough resources to satisfy the request (admission control).

The steps 1 to 6 refer to a well-succeeded scenario of reservation, and exception treatment was

omitted. A RSVP access solicitation differs from a conventional access solicitation (e.g., access to a fi le
or directory) because the PDP needs to return the information necessary for the PEP building the PATH
message. For this reason, extensions to XACML language were required in order to accommodate the
transport of QoS information. As the complete description of the extensions in the XACML policy and
context schemes is rather extensive, this paper will describe only the elements needed for understanding
the main aspects of our proposal. For a complete description of work, please refer to [11].

In the XACML policy scheme, the Resource class was extended and called ResourceRsvp. The
extended class accommodates the description of RSVP parameters required for building the PATH
message, i.e., Tspec { r,b,p,m,M} , type of service (GS – guaranteed service or controlled load – CL) and
reservation style as described in the RFC 2210 [13] and RFC 2215 [9]. Figure 5 i llustrates the XACML
scheme extension.

<xs: el ement name=” Resour ceRsvp” t ype=” xacml : Resour ceRsvpType" / >
 <xs: compl exType name=" Resour ceRsvpType" >
 <xs: sequence>
 <xs: el ement r ef =" xacml : TspecBucket Rat e_r " / > <! - - Tspec { r , b, p, m, M} - - >
 <xs: el ement r ef =" xacml : TspecBucket Si ze_b" / >
 <xs: el ement r ef =" xacml : TspecPeakRat e_p" / >
 <xs: el ement r ef =" xacml : TspecMi nPol i ceUni t _m" / >
 <xs: el ement r ef =" xacml : TspecMaxPacket Si ze_M" / >
 <xs: choi ce mi nOccur s=" 0" maxOccur s=" unbounded" >
 <xs: el ement r ef =" xacml : RsvpSer v i ce" / > <! - - CL, GS, Nul l - - >
 <xs: el ement r ef =" xacml : RsvpSt y l e" / > <! - - SE, WF, FF - - >
 </ xs : choi ce>
 </ xs : sequence>
 <xs: at t r i but e name=" At t r i but eI d" t ype=" xs: anyURI " use=" r equi r ed" / >
 <xs: at t r i but e name=" RsvpCl ass" t ype=" xacml : RsvpCl assType" use=" r equi r ed" / >
</ xs: compl exType>

Figure 5. XACML RSVP Scheme Extension

The ResourceRsvp class was defined as an optional element inside Resource, and it can be declared

more than once. Several occurrences of ResourceRsvp objects for the same Resource permit to describe
several modes a service can be offered by a given application. For example, a multimedia server can
define various QoS modes for streaming video in order to support different resolutions. In this case, each
QoS mode must receive a distinct class specification (attribute RsvpClass). Observe in figure 5, that the
RSVP policy scheme does not include the Rspec parameters. In this work, we suggest the PEP could
reject the proposal received on the RESV message if the Rspec parameters are much larger than those
specified by Tspec, not being necessary to consult the PDP again for validating the RESV message.

Figure 6 shows an example of RSVP policy. The main elements were highlighted, and most attributes
and references were suppressed. The policy describes the access to a resource called of “Multimedia
Server” , with a QoS defined by the element <ResourceRsvp>. A rule is used for restricting the access to
the server for a l imited range of IP addresses and a specific period of time. An action named
getResourceQoS was used for identifying the operation requested by the client. The policy also specifies
the element <Obligations> that wil l be returned to the PEP with the Permit or Deny decision.

<Pol i cy Pol i cyI d=" Mul t i mi di aPol i cy" >
 <Tar get >
 <Subj ect s> <AnySubj ect / > </ Subj ect s>
 <Act i ons> <AnyAct i on/ > </ Act i ons>
 <Resour ces>
 <Resour ce>
 <Resour ceMat ch Mat chI d=" st r i ng- equal " >
 <At t r i but eVal ue>MultimediaServer </ At t r i but eVal ue>
 <Resour ceAt t r i but eDesi gnat or At t r i but eI d=" r esour ce- i d" / >
 </ Resour ceMat ch>
 <Resour ceRsvp At t r i but eI d=" multimediaserver" RsvpCl ass=" G711" >
 <TspecBucket Rat e_r >9250</ TspecBucket Rat e_r >
 <TspecBucket Si ze_b>680</ TspecBucket Si ze_b>
 <TspecPeakRat e_p>13875</ TspecPeakRat e_p>
 <TspecMi nPol i ceUni t _m>340</ TspecMi nPol i ceUni t _m>
 <TspecMaxPacket Si ze_M>340</ TspecMaxPacket Si ze_M>
 <RsvpSer v i ce>Guaranteed</ RsvpSer v i ce>
 </ Resour ceRsvp>
 </ Resour ce>
 </ Resour ces>
 </ Tar get >
<Rul e Rul eI d=" Resour ceQoS" Ef f ect =" Per mi t " >
 <Tar get >
 <Subj ect s> <! - - … r ecei ver =192. 168. 200. 0/ 24 …sender =192. 168. 200. 1 … - - > </ Subj ect s>
 <Resour ces> <AnyResour ce/ > </ Resour ces>
 <Act i ons> <! - - … get Resour ceQoS � </ Act i ons>
 </ Tar get >
 <Condi t i on> <! - - … schedul e r est r i c t i ons … � </ Condi t i on>
</ Rul e>
<Obl i gat i ons>
 <Obl i gat i on Ful f i l l On=" Permit" Obl i gat i onI d=” G711” >
 <At t r i but eAssi gnment At t r i but eI d=" TspecBucket Rat e_r " >
 <At t r i but eSel ect or Rsvp Pol i cyPat h=" Resour ceRsvp[@RsvpCl ass=’ G711´] / TspecBucket Rat e_r / t ext () " >
 </ At t r i but eSel ect or Rsvp>
 </ At t r i but eAssi gnment >
 <! - - … t hi s s t r uct ur e r epeat s f or : TspecBucket Si ze_b, TspecPeakRat e_p,
 TspecMi nPol i ceUni t _m, TspecMaxPacket Si ze_M and RsvpSer v i ce … - - >
 </ Obl i gat i on>
 </ Obl i gat i ons>
</ Pol i cy>

Figure 6. Example of RSVP policy

In our work, the <Obligations> structure is used for supplying the Tspec parameters to the server

application. This util ization of <Obligations> is a proposal of our work, once XACML does not specify
this type of action. The <AttributeSelectorRSVP> element was also introduced in our proposal in order
to allow the <Obligations> structure to make references to the traffic information already defined in the
<Target> by <ResourceRSVP>. When the PEP sends a request for decision to the PDP (i.e., a xacml
Request context message), it specifies a <Target> with the Subject, Resource and Action elements, as
show in figure 7.

 <Request . . . >
 <Subj ect >
 <At t r i but e At t r i but eI d=" subj ect : aut hn- l ocal i t y: i p- addr ess: receiver" >
 <At t r i but eVal ue>IP_Address_RECEIVER</ At t r i but eVal ue>
 </ At t r i but e>
 <At t r i but e At t r i but eI d=" subj ect : aut hn- l ocal i t y: i p- addr ess: sender" >
 <At t r i but eVal ue>IP_Address_SENDER</ At t r i but eVal ue>
 </ At t r i but e>
 </ Subj ect >
 <Resour ce>
 <At t r i but e At t r i but eI d=" r esour ce: r esour ce- i d" >
 <At t r i but eVal ue>MultimediaServer</ At t r i but eVal ue>
 </ At t r i but e>
 </ Resour ce>
 <Act i on>
 <At t r i but e At t r i but eI d=" act i on: act i on- i d: ServerAction" >
 <At t r i but eVal ue>getResourceQoS</ At t r i but eVal ue>
 </ At t r i but e>
 </ Act i on>
</ Request >

Figure 7. Example of RSVP policy request

Figure 8 illustrates the answer returned from the PDP to the PEP. In the example, the policy defines

only one mode of operation for the multimedia server (defined by the RsvpClass attribute with value
G711, in the <ResourceRsvp> element). In case of multiples operation modes, all Tspec definitions
supported by the multimedia server would be returned to the PEP through the structure <Obligations>. It
is up to the PEP the responsibility of choosing the operation mode for the client. This approach was
adopted because XACML specification does not define any mechanism for pre-processing the
<Obligations> structure before returning it to the PEP (i.e., there is no way of returning only a part of
the <Obligations> structure). This limitation can be observed in the UML class model in the figure 1
that shows how the <Obligations> instances are associated to a policy.

<Response …>
 <Resul t >
 <Deci s i on>Per mi t </ Deci s i on>
 <St at us>
 <St at usCode Val ue=" ur n: oasi s : names: t c : xacml : 1. 0: s t at us: ok" / >
 </ St at us>
 <Obl i gat i ons xml ns=" ur n: oasi s : names: t c : xacml : 1. 0: pol i cy" >
 <Obl i gat i on Obl i gat i onI d=" obl i gat i on: Mul t i mi di aSer ver " Ful f i l l On=" Per mi t " >
 <At t r i but eAssi gnment At t r i but eI d=" TspecBucket Rat e_r " >9250</ At t r i but eAssi gnment >
 <At t r i but eAssi gnment At t r i but eI d=" TspecBucket Si ze_b" >680</ At t r i but eAssi gnment >
 <At t r i but eAssi gnment At t r i but eI d=" TspecPeakRat e_p" > 13875</ At t r i but eAssi gnment >
 <At t r i but eAssi gnment At t r i but eI d=" TspecMi nPol i ceUni t _m" >340</ At t r i but eAssi gnment >
 <At t r i but eAssi gnment At t r i but eI d=" TspecMaxPacket Si ze_M" >340</ At t r i but eAssi gnment >
 <At t r i but eAssi gnment At t r i but eI d=" RsvpSer v i ce" > Guar ant eed </ At t r i but eAssi gnment >
 </ Obl i gat i on>
 </ Obl i gat i ons>
 </ Resul t >
</ Response>

Figure 8. Example of RSVP policy response

7. Implementation

On important advantage of the XACML approach with respect to PCIM refers to its implementation.
Because it is defined in terms of XML, a XACML implementation benefits from the existing tools for
developing XML applications. There are free packages for supporting XACML in Java language (Sun
XACML project) and on C++ (by Jiffy Software).

The framework described in this paper was implemented using the Java™ 2 SDK, Standard Edition
1.4.2, and the Sun XACML package. The Sun XACML package includes the modules: “com.sun.xacml.
PolicySchema” and “com.sun.xacml.ContextSchema”. The first module supports the interpretation of
XACML policies (required for implemented a PDP) and the second, the exchange of messages between
the PDP and the PEP.

The implementation permitted to evaluate if the proposed XACML schema extensions are compatible
with existing implementation packages. We observed that it was not necessary to modify the package
code, except in the case of treatment of the <Obligations>structure. The scheme developed in this work,
denominated “cs-xacml-schema-policy-01-rsvp.xsd” , is described in details in Toktar [11]. The
possibil ity of extending the XACML schemas and even then, reusing existing development packages is
an important advantage in the OASIS approach. The packet significantly simplifies the process of
developing a PDP and embedding PEPs in existent applications.

Next, one presents some examples of util ization of the Sun XACML package for developing a PDP.
The following code fragment illustrates the sequence of steps for creating a PDP instance, initialized
with a policies fi le defined by “PolicyQoS.xml” . The “policyModule.addPolicy” method permits to
validate the policy with respect to the XACML policy schema. This method was used for validating the
syntax of the schema extensions proposed in this work.

 FilePolicyModule policyModule = new FilePolicyModule();
 policyModule.addPolicy("Path/PolicyQoS.xml");

The XACML package offers classes that, through the Hash tables, simplify the process of searching

policies (PolicyFinder) and attributes (AttributeFinder). The fragment of typical code for the creation of
an instance of PDP is il lustrated following.

 PolicyFinder polFinder = new PolicyFinder();
 Seth policyModules = new HashSet();
 policyModules.add(policyModule);
 policyFinder.setModules(policyModules);
 AttributeFinder attrFinder = new AttributeFinder();
 List attrModules = new ArrayList();
 attrFinder.setModules(attrModules);
 PDP pdp = new PDP(new PDPConfig(attrFinder, polFinder, null));

The next fragment of code il lustrates the creation of a PEP. The RequestCtx class implements a PEP

requests to a PDP. The attributes passed in the class constructor refers to the Target elements <Subject>,
<Resource> and <Action>. The Environment attributed is used for passing other relevant information,
concerning time, for example.

 RequestCtx request = new RequestCtx(AttribSubjects, AttribResource, AttribAction,

AttribEnvironment);

The ResponseCtx class is used for receiving the PDP response. A ResponseCtx object encapsulates

the decision, status code and the <Obligations> structure. The code fragment is presented next:

ResponseCtx response = pdp.evaluate(request);

8. Conclusion

This paper evaluated the util ization of the XACML language for describing RSVP access control
policies. The XACML is stil l under development and, although limited in a few aspects by lack of
standardization, it can be considered a flexible model for the description of the control access policies in
different application domains.

In this work, XACML use was extended beyond the access control functionalities, because the
decisions generated by the PDP include the Tspec parameters necessary for building the PATH
messages. The capacity of returning configuration parameters through PDP decisions is an important
feature for many PBNM scenarios. This feature, easily supported in IETF PCIM-based models, is quite
difficult to implement in XACML. To support the RSVP scenario, modifications in the <Obligations>
structure were required, including some features not supported by the XACML Sun package. We
conclude that the XACML model is deficient in returning results that are not simple deny or permit
decisions. Further specifications of the <Obligations>, as well a more flexible way of mapping
conditional <Obligations> to policies, are suggested developments for the XACML model.

Our work requires some additional specifications concerning the use of the <Obligations> structure
for representing multiples operation modes supported by the same application (i.e., distinct Tspec).
Other future work consists in extending the XACML model and existing packages for supporting the
provisioning model. The provisioning model is a promising approach for extending the proposed
framework for configuring RSVP policies in network devices (e.g. routers), once the present approach is
restricted to application servers. In order to support the provisioning model, as defined by IETF, several
extensions are required. First, the XACML model must be extended in order to provide the elements for
mapping the policies to “ interface roles” . Second, one must define the algorithms for interpreting and
translating the XACML-policy information to a PIB. Third, because next-generation of policy-aware
network devices are supposed to understand COPS-PR, in the provisioning model, the policy
information should be directly encapsulated in the COPS-PR protocol, rather than being transported as
“XACML-context messages” , as defined for the outsourcing approach.

10. References

[1] Boyle, J.; Cohen, R.; Durham, D.; Herzog, S.; Rajan, R.; Sastry, A. The COPS (Common Open Policy Service)
Protocol, RFC2748, Jan. 2000.
[2] Braden, R.; Zhang, L.; Berson, S.; Herzog, S.; Jamin, S. Resource Reservation Protocol (RSVP) Version 1
Functional Specification, RFC2205, Sep. 1997.
[3] Chan K.; Seligson, J.; Durham, D.; Gai, S.; McCloghrie, K.; Herzog, S.; Reichmeyer, F.; Yavatkar, R.; Smith,
A. COPS Usage for Policy Provisioning (COPS-PR), RFC3084, Mar. 2001.
[4] Herzog, S.; Rajan, R.; Sastry, A. COPS usage for RSVP, RFC2749, Jan. 2000.
[5] Moore, B.; Ellesson, E.; Strassner, J.; Westerinen, A. Policy Core Information Model - Version 1 Specification,
RFC3060, Feb. 2001.
[6] Nabhen, R., Jamhour, E., Maziero C. “Policy-Based Framework for RBAC”, Proceedings for the fourteenth
IFIP/IEEE International Workshop on Distributed Systems: Operations & Management, October, Germany, Feb.
2003.
[7] OASIS, eXtensible Access Control Markup Language (XACML) Version 1.0. OASIS, Feb. 2003.
[8]Ponnappan, A.; Yang, L.; Pillai, R.; Braun, P. “A Policy Based QoS Management System for the
IntServ/DiffServ Based Internet” . Proceedings of the Third International Workshop on Policies for Distributed
Systems and Networks (POLICY.02). IEEE, 2002 .
[9] Shenker, S.; Wroclawski, J. General Characteri-zation Parameters for Integrated Service Network Elements,
RFC 2215, Sep. 1997.
[10] Snir, Y.; Ramberg, Y.; Strassner, J.; Cohen, R. “Policy QoS Information Model, work in progress, draft-ietf-
policy-qos-info-model-05.txt” . IETF, May. 2003.
[11] Toktar, E. Controle de Admissão de RSVP util izando XACML. Dissertação de Mestrado, PPGIA, PUCPR.
Aug. 2003.
[12] Westerinen, A. et. al. Terminology for Policy Based Management. RFC3198, Nov. 2001.
[13] Wroclawski, J. RSVP with INTSERV, RFC 2210, Sep. 1997.
[14] Yavatkar, R., Pendarakis, D.; Guerin, R. A Framework for Policy-Based Admission Control, RFC2753, Jan.
2000.

