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Abstract. This paper introduces a hierarchical Gabor features(HGFs)
and hierarchical bayesian network(HBN) for handwritten digit recogni-
tion. The HGFs represent a different level of information which is struc-
tured such that the higher the level, the more global information they
represent, and the lower the level, the more localized information they
represent. The HGFs are extracted by the Gabor filters selected using
a discriminant measure. The HBN is a statistical model to represent
a joint probability which encodes hierarchical dependencies among the
HGFs. We simulated our method about a handwritten digit data set
for recognition and compared it with the naive bayesian classifier, the
backpropagation neural network and the k-nearest neighbor classifier.
The efficiency of our proposed method was shown in that our method
outperformed all other methods in the experiments.

1 Introduction

We believe that human beings exploit structured information rather than non-
structured information and use the relations among the structured information
by some mechanism for recognition. We assume that this structured information
is hierarchical and that the relations are limited by hierarchical dependencies.
With above assumption, we propose a hierarchical Gabor features(HGFs) and
hierarchical bayesian network(HBN) for a recognition mechanism.

2 Hierarchical Gabor Features Extraction

2.1 Gabor filter

The Gabor filter which is represented in the spatial-frequency domain is defined
as

G(x, y, ω0, σ, r, θ) =
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πrσ
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where R1 = x cos θ + y sin θ, R2 = −x sin θ + y cos θ, ω0 is the radial frequency
in radians per unit length, θ is the orientation in radians and σ is the standard



Fig. 1. Sampling points of each level, with level, 1, 2, 3 from left to right

deviation of the elliptical gaussian envelope along the x axes. The Gabor filter
is centered at (x = 0, y = 0) in the spatial domain. Also, the elliptical gaussian
envelope of the Gabor filter has the aspect ratio σy/σx = r and the plane
wave’s propagating direction along the short axis, where σx, σy are the standard
deviations of elliptical gaussian envelope along the x, y axes[1].

2.2 Hierarchical Gabor Features Extraction

To structure features hierarchically, the features must be able to represent dif-
ferent level information such that the features in the higher level represent more
global information and the features in the lower level represent more localized
information. First, the Gabor filter banks whose Gabor filters can represent the
global or the localized information are defined. Next, the optimal Gabor filters
are selected from the Gabor filter banks using a discriminant measure, and the
HGFs are then extracted from the optimal Gabor filters.

To define the Gabor filter banks, recursively from the highest level which has
only one sampling point, a sampling point is decomposed into nine sub-sampling
points in the lower level. This sub-sampling decomposition is shown in Fig.1. The
position of a sampling point is the center of a Gabor filter in the spatial domain.

In order to extract information having the global property at a high level and
the localized property at a low level from the Gabor filters(See the Fig.2(a)),
the standard deviation σ ls must be restricted according to level such that the
contour’s radius having half of max of the circular gaussian envelope becomes k.
From the equation (1), σ ls becomes

σ ls =
k√
ln2

, (2)

where ls is the index for a sampling point s at level l, l = 1, . . . , NL and
s = 1, . . . , NlS . NL is a level size and NlS is the number of sampling points
at level l. To extract the localized information which is not represented in the
higher level, k is selected as a half mean of distances, d1, d2, d3, d4, where
d1, d2, d3, d4 are distances from a sampling point to its four neighbor sampling
points, n1, n2, n3, n4(See Fig.2(b)).



(a) (b)

Fig. 2. (a)A big circle shows a region covered by gaussian envelope of the upper sam-
pling point. The smaller nine circles show regions covered by gaussian envelopes of the
sub-sampling points (b)A Circle is a contour having half of the max of the circular
gaussian envelope with k = mean(d1, d2, d3, d4)/2. In the case of ellipse, aspect ratio
r = 2

After the standard deviation σls and the aspect ratio r of the Gabor filter
are determined, the Gabor filter bank GB ls

j is defined as

GB ls
j = {G ls

j1, . . . , G
ls
jNω

}, G ls
ji (x, y ) = G(x ls − x, y ls − y, ωi, σ

ls, r, θj), (3)
ωi ∈ Ω and Ω = {ω1, . . . , ωNω}, i = 1, . . . , Nω ,

θj ∈ Θ and Θ = { θ1, . . . , θNθ
}, j = 1, . . . , Nθ ,

where Ω is a set of spatial frequencies, Θ is a set of the orientations, and G ls
ji

is a Gabor filter centered at (x ls, y ls) from the equation (1). (x ls, y ls) is xy-
coordinates of the sampling point in an image plane. Thus, for each sampling
point and orientation, the Gabor filter bank GB ls

j is a set of Gabor filters which
have different frequencies in the Ω.

An optimal Gabor filter OG ls
j is selected from GB ls

j using a discriminant
measure. The discriminant measure is a measure of how certain information is
efficient for discrimination(See the Appendix). Using the discriminant measure
is reasonable because our ultimate goal is classification. Let ( hd, Id) be a pre-
classified training image, where hd ∈ C and Id ∈ I. C = {ci: i = 1, · · · , Nc, Nc :
the number of classes} is a set of class hypotheses and I is a set of training
images. An optimal Gabor filter OG ls

j is selected such as

OG ls
j = arg

G ls
ji

max
{i}

(DMi) , DMi = Discriminant Measure (Xi) , (4)

Xi = {(h1, g1), . . . , (hNI
, gNI

)} , gd =
∑

{x}

∑

{y}
Id(x, y)G ls

ji (x, y) ,

G ls
ji ∈ GB ls

j , i = 1, . . . , Nω,

where gd is a Gabor filter response of an image and NI is the number of training
images. For each Gabor filter G ls

ji in GB ls
j , the Gabor filter responses of all the

training images are calculated. Next, the Gabor filter whose frequency gives the



highest discriminant measure for the training data set is selected as the optimal
Gabor filter OG ls

j .
After obtaining every OG ls

j , the Gabor feature of a sampling point about an
image I is defined as

als = [als
1 als

2 . . . als
Nθ

]
T
, als

j =
∑

{x}

∑

{y}
I(x, y ) OG ls

j (x, y ) (5)

The Gabor feature als of a sampling point s at level l becomes an Nθ-dimensional
vector whose elements are responses of optimal Gabor filters on an image I for
all orientations. Finally the HGFs a of an image I consists of Gabor features of
all the sampling points.

a = {a1,a2, . . . ,aNL} , al = {al1,al2, . . . ,alNlS} , (6)

where al is a set of Gabor features of level l.

3 Hierarchical bayesian network

3.1 Bayesian network

About a finite set of random variables, U = {A1, . . . , An}, a bayesian net-
work[2][3] is generally defined by < DAG,CP >. The DAG = (V,E), that
is, a directed acyclic graph defines the structure of a bayesian network. V =
{A1, . . . , An} is a set of nodes and E = {(Ai, Aj) : Ai, Aj ∈ V, where i 6= j}
is a set of direct edges, where (Ai, Aj) denotes directed edge from Ai to Aj

which implies that the node Ai affects the node Aj directly. There is a one-
to-one correspondence between elements of V and U. A directed edge set E
represents directed dependencies between the random variables in U. CP is a
set of conditional probability distributions of nodes. The conditional probability
distribution of a node Ai is defined by P (Ai|ΠAi) where ΠAi is the parent node
set of Ai in DAG. Also, the joint probability distribution P (U) explained by
a bayesian network can be factorized by conditional probability distributions in
the CP and is followed as

P (A1, . . . , An) =
n∏

i=1

P (Ai|ΠAi) (7)

For example, the structure of the naive bayesian classifier[4], which does not
represent any dependencies among the feature nodes, is shown in Fig.3.(a) and
the joint probability explained by the naive bayesian classifier can be factorized
such as P (A1, . . . , AN , C)=

∏N
i=1P (Ai|C)P (C).

3.2 Hierarchical bayesian network

The HBN is constructed to the hierarchical structure so that the Gabor features
at a certain level affect the Gabor features at its lower level with the more local
property.
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Fig. 3. (a) Structure of bayesian network for naive bayesian classifier (b) Sub-structure
of HBN

The structure of HBN, excluding a class node, is defined as the DAGH =<
VH ,EH >. Let Als be a node in VH or a random variable in UH . There is a
one-to-one correspondence between a sampling point s at level l in section.2.2
and a node Als, that is, a random variable Als has a value as the Gabor feature
als. Thus, the node set VH , for the HGFs, becomes

VH = A1 ∪ · · · ∪ANL , Al = {Al1, . . . , AlNlS} , (8)

where Al is a set of nodes at level l. A node set Φ ls, nodes for nine subsampling
points of Als, is defined as

Φ ls = {Bls
1 , . . . , Bls

9 }, Bls
i ∈ Al+1 , (9)

where l = 1, . . . , NL − 1. Thus, a directed edge set EH is defined as

EH = E1 ∪ · · · ∪ENL−1 ,

El = E l1 ∪ . . . ∪E lNlS ,

E ls = {(Als, Bls
1 ), . . . , (Als, Bls

9 )} , (10)

where (Als, Bls
i ) is a directed edge from Als to Bls

i , Bls
i ∈ Φ ls and level l =

1, . . . , NL − 1.
In the hierarchical structure DAGH of HBN, the node Als affects the nodes

in Φ ls corresponding to its nine sub-sampling points at level l+1 (See Fig.3(b)).
Thus, directed dependencies from a node to nodes in the lower level are limited
to the nodes of nine sub-sampling points.

For classification, the hierarchical structure DAGH must be modified to
DAGH

′ for including the class node C. DAGH
′ =< VH

′,EH
′ > is defined

as

VH
′ = UH

′ = VH ∪ {C} ,

EH
′ = EH ∪Ec , Ec = {(C, Als) : for all Als ∈ VH} , (11)

where Ec is a set of directed edges from the class node C to all nodes in the set
VH . All nodes excepting node C in DAGH

′ have node C as its parent.



Table 1. The number of testing data per class

Class 0 1 2 3 4 5 6 7 8 9 Total

Nclass 189 198 195 199 186 187 195 201 180 204 1934

For the complete definition of HBN with hierarchical structure DAGH
′, a set

of conditional probability distributions, denoted by CP, must be defined. HBN
has mixed types of continuous and discrete variables. The variables in UH for
HGFs are continuous and only the class variable C is discrete. Thus, for each
continuous Gabor feature variable Als, the conditional probability distribution
P (Als|Πls

′) is defined as a conditional multivariate gaussian[3], where Πls′ is a
set of parents of Als in DAGH

′. Also, for the discrete class variable C which does
not have any parents, the conditional probability distribution P (C) is defined
as a multinomial distribution[3]. The joint probability distribution of UH

′ can
be factorized by the conditional probability distributions such as equation (7).

With the HBN defined as < DAGH
′,CP >, an inference can be made by

a belief propagation algorithm in [2][3]. As the interesting variable is the class
variable C for classification, inference is performed for P (C|UH = a), where a
is an instance of the HGFs of an image from (6). Afterwards, the instance a is
assigned to a class label maximizing P (C|UH = a) for classification.

4 Experimental Results

Our HBN was simulated about binary handwritten numerical data set for recog-
nition[5]. This numerical data set was obtained from the UCI(University of Cal-
ifornia, Irvine) databases[6].

The experiments were conducted with the following conditions for compar-
ison with other methods. The training data set consisted of randomly chosen
500 samples(50 per class) and the testing data set consisted of the remaining
1,943 samples. The number of testing data set per class is shown in Table.1. The
training and testing data set were not overlapped. For extracting the HGFs,
the imaginary part of Gabor filter was used. The parameters of Gabor filter
banks were set up such as Ω={0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.4, 0.6, 0.8, 1} for
frequencies, Θ={0, 1

4π, 1
2π, 3

4π} for orientations, aspect ratio r = 2, and the level
size NL = 3.

Experiment 1 : Our proposed HBN was simulated. From the training
handwritten numerical character images, the HGFs were extracted such as in
section 2.2. After constructing the hierarchical structure of HBN, the parameters
of the conditional probability distributions of the HBN were learned by the
maximum likelihood(ML) method from the HGFs of training images[2][3].

Experiment 2 : The naive bayesian classifier[4](See Fig.3(a)), which had
exactly the same nodes of the HBN and the HGFs in the experiment 1, was
simulated.



Table 2. Recognition results with 90% confidence interval. HBN : hierarchical bayesian
network, NBC : naive bayesian classifier, KNN : k-nearest neighbor classifier, NN :
backpropagation neural network

Experiment 1 Experiment 2 Experiment 3 Experiment 4

HBN NBC KNN with k = 1 NN

0.9675 ± 0.0031 0.9567 ± 0.0031 0.9565 ± 0.0040 0.9451 ± 0.0048

Experiment 3 : For the inputs of the k-nearest neighbor classifier[7][8], the
HGFs in the experiment 1 were modified to a 236(=59× 4) dimensional feature
vector, where 59 was the number of the Gabor features in the HGFs and 4 was
the dimension of a Gabor feature. In these experiments the k-nearest neighbor
classifiers with k = 1, 3, 5 were simulated. In this experiment, the case of the
k = 1 showed the best recognition result.

Experiment 4 : The number of input nodes of backpropagation neural
network[7][8] were set up to 236(=59×4) to accept the same HGFs in experiment
1. Also, the parameters of the backpropagation neural network were set up such
as 150 hidden units, learning rate η = 0.01, momentum rate α = 0.5, number of
learning iteration = 10,000.

The results of the experiments are shown in Table.2. From the results, it is re-
liable that the HGFs are efficient for recognition in spite of relatively small train-
ing data set. That the hierarchical dependencies within the HBN for the HGFs
more improve the recognition is explained from that the HBN outperformed over
all other methods which do not represent any hierarchical dependencies.

5 Conclusion

In this paper we have proposed a HGFs and HBN for a recognition mechanism.
To represent the hierarchical property with the HGFs, we decomposed a sam-
pling point into nine sub-sampling points and adjusted covered regions of Gabor
filters with levels. And the optimal Gabor filters were selected using the discrim-
inant measure. To represent dependencies within the HGFs, we constructed a
bayesian network structure to be hierarchical by analogy of the HGFs extraction
method.

Our proposed method was applied to the problem of handwritten digit recog-
nition and compared it with other methods, such as the naive classifier, k-nearest
neighbor classifier, and backpropagation neural network. The results confirmed
the useful behavior of our method in which the HGFs are well structured infor-
mation and the hierarchical dependencies in the HBN improve recognition.

Although we only applied this approach to the problem of the handwritten
digit recognition, we believe our method can be extended to a general recogni-
tion system.
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Appendix : Discriminant Measure

A discriminant measure is a measure to how certain information is efficient for
discrimination. The discriminant measure is defined by a within-class scatter
matrix and a between-class scatter matrix. If within the one class, scatter of
information are smaller and among the classes, the scatter of information are
larger[8], this discriminant measure gives a higher output.

For the c-class problem, suppose that a set of n d-dimensional instances,
X , have its elements such as x1, . . . ,xn, ni in the subset Xi labeled ci. Thus
within-class scatter matrix SW is defined by

Si =
∑

x∈Xi

(x−mi)(x−mi)
T
, mi =

1
ni

∑

x∈Xi

x SW =
c∑

i=1

Si,

where T is matrix transpose. After defining a total mean vector m, between-class
scatter matrix SB is defined as

m =
1
n

∑

x∈X
x =

1
n

c∑

i=1

nimi, SB =
c∑

i=1

ni(mi −m)(mi −m)T

A simple scalar measure of scatter is the determinant of the scatter matrix.
From this scatter measure, Discriminant Measure is

Discriminant Measure =
|SB |
|SW | , where | · | denotes determinant.

In our approach, an instance x is a scalar.


