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Abstract. In recent years, a few researchers have challenged past dogma and
suggested methods (such as the IC algorithm) for inferringcausalrelationship
among variables using steady state observations. In this paper, we present a mod-
ified IC (mIC) algorithm that uses entropy to test conditional independence and
combines the steady state data with partial prior knowledge of topological or-
dering in gene regulatory network, for jointly learning the causal relationship
among genes. We evaluate our mIC algorithm using the simulated data. The re-
sults show that the precision and recall rates are significantly improved compared
with using IC algorithm. Finally, we apply the mIC algorithm to microarray data
for melanoma. The algorithm identified the important causal relations associated
with WNT5A, a gene playing an important role in melanoma, verified by the
literatures.

1 Introduction

The recent development of high-throughput genomic technologies like cDNA mi-
croarray and oligonucleotide chips [14] empowers researchers in new ways to
study how genes interact with each other. This has led to researchers using math-
ematical modeling andin-silico simulation study to analyze the interaction struc-
ture unambiguously and predict the network dynamic behavior in a systematic
way [4, 19].
In previous studies on cellular response of genotoxic damage [10] and melanoma
data [2, 11, 17], coefficient of determination (CoD) is used to infer gene network
structure. CoD provides a normalized measure of the degree to which target vari-
ables can be better predicted using the observations in a feature set than it can
be in the absence of observations. While CoD provides useful information for
network connectivity, the relationships identified via CoD does not necessarily
imply causal relations. Bayesian network model, which represents statistical de-
pendencies, also has been proposed to discover interactions between genes [6, 22,
24]. Based on Bayesian model there are some other network inference methods
that were evaluated by applying them to biological simulation with known net-
work topology [18]. Bayesian network model considers the maximum likelihood
of the observed data given a structure. It is a model associated with statistical
probability that does not infer the realcausalrelationships. Other than Bayesian
network model, Gardner et al. [5] proposed a linear dynamic network model to



infer a gene network from steady state measurement. In addition to above mod-
els, several other probabilistic models have been proposed to learn gene networks
with multiple data types [7, 15].
In fact none of the earlier research on learning gene networks considers thecausal
relationship between genes. A few researchers in [12, 13, 21] have suggested
methods (for example, the IC algorithm) to learn the causal relationships between
variables with steady state data, but not in biological domain. The assumption of
causal theory is that the distribution of the dataset is faithful1. However, the un-
der Boolean gene network model faithful function (we will define formally later)
does not implies faithful distribution. Therefore learning gene causal connections
with IC algorithms does not yield good result when the distribution of the dataset
is not faithful.
In this paper, we present a new algorithm – modified IC (mIC) algorithm for
learning causal relations between genes using additional knowledge of topolog-
ical ordering2. We implement the algorithms using entropy to test conditional
independence of the genes, and evaluate the causal learning approaches using
simulation with the notions of precision and recall. We show that the precision
and recall rates of the estimated gene network are significantly improved when
using our mIC algorithm than original IC algorithm. In the end, we apply mIC
algorithm to gene expression profile for a melanoma data with partial ordering
information to learn gene regulatory network. The result shows that the impor-
tant causal relationships associated with WNT5A gene are identified using mIC
algorithm, and those causal connections have been confirmed in the literatures.

2 Learning Gene Causal Relationship

In this section we give a brief background on the difference between simple pre-
dictive relationships and causal relationships, and the basic intuition behind learn-
ing causal relationship from steady-state data. We also have an introduction to our
simulation methodology.

2.1 Learning causal relationship with steady state data

To understand the difference between the simple and causal relationships between
variables consider the propositionsrain and f alling barometerfrom an example
in [12]. When one observes that they are either both true or both false one con-
cludes that they are related. One would then writerain = f alling barometer. But
neitherrain causesf alling barometernor vice-versa. Thus if one wantedrain
to be true, one could not achieve it by somehow forcingf alling barometerto be
true. This would have been possible iff alling barometercausedrain. We say
that the relationship betweenrain and f alling barometeris correlation, but not
cause. In the context of genes and proteins if one would like to turn on a gene,

1 A probability distributionP is a faithful/stable distribution if there exist a directed acyclic
graph (DAG)D such that the conditional independence relationship inP is also shown in the
D, and vice versa.

2 A topological ordering is an ordering among vertices of a DAG such that all edges are from
vertices labeled with a smaller number to vertices labeled with a larger number. Knowledge
about topological ordering between genes can be obtained if partial information about the
pathways in which the genes (or their products) are involved is known; and also from existing
knowledge about homologous genes in other organisms.



which cannot be achieved directly, through other genes one would need to know
the causal connection between the genes. Thus knowing the causal relationship is
very important.
The question then is how to obtain (learn or infer) causal relationship between
genes. In wet-labs this can be done by knocking down the possible subsets of
genes of a given set and studying its impact on the other genes in the set. This
is of course not easy to obtain when the number of genes in the set is more than
a handful. An alternative approach is to use time series gene expression data.
Unfortunately such data can only be obtained for cells of particular organisms
such as yeast. For human tissues high-throughput gene expression data is only
available in the steady state observation. Thus the question that begs is how to
infer causal relationship between genes from steady state data.
For long it was thought that one can only infer correlations and other statistical
measures such as conditional independence from steady state data and there is no
way to infer causal relationship from such data. In recent years some researchers
have challenged this view and have suggested methods, while not specially for
the gene expression data, to infer causal information. The idea is generalized by
Pearl in [12] and Spirtes et al in [21], and an Inductive Causation (IC) algorithm
is presented where causal relation between variables is learned or inferred by first
analyzing independence and dependence between variables and then construct-
ing minimal and stable causal influence graphs that satisfy the independence and
dependence information.
The idea behind the inference of causality from steady-state data is based on the
principle of finding the simplest explanation of observed phenomena [12]. The
causal relationship between a set of genes can be expressed using a causal model
which consists of a causal structure (a directed acyclic graph, or a DAG), and
parameters that define the value of one node in terms of the value of its parents
(in the DAG). The causal theory has an assumption on the distribution calledsta-
bility or faithfulness3 [12]. The assumption is that all the independencies in dis-
tribution P are stable, that isP is entailed by a causal structure of a causal model
regardless of the parameter. However in microarray dataset, the distribution might
not be faithful. Hence the performance of IC algorithm is not good (w.r.t precision
and recall) for inferring causal relationship in this case. We propose an modified
IC (mIC) algorithm that uses entropy to test conditional independence and com-
bines the steady state data with prior knowledge of gene topological ordering to
jointly learn the causal relationship between genes.

2.2 Modelling and simulation of a causal Boolean network

In order to evaluate the performance of the causal algorithms, we perform sets of
simulations. We apply Boolean network model, originally introduced by Kauff-
man [8, 9], for modeling gene regulatory networks. Although Boolean network
cannot model quantitative concepts, it provides useful insights in network dynam-
ics [1]. There are two main objectives in modeling and simulation of data-driven
Boolean network for the genetic regulatory systems. First, we need to infer the
model structure and parameters (rules) from observations such as gene expres-
sion profiles. Second, we can explore the dynamic behaviors of the system driven
by the inferred rules through simulation.

3 A DAG G and a distributionP arefaithful to each other if they exhibit the same set of inde-
pendencies. A distributionP is said to be faithful if it is faithful to some DAG.



In the simulation, we construct a Boolean network model as a directed acyclic
graph (DAG), and obtain the steady-state observations. The model containsn
nodes with binary values. The state space has a total of 2n states. Theoretically
there are 22

k
possible functions for a Boolean network, wherek is the number of

predictors. Among the 22
k

functions, many do not actually reflect the influence
of predictors. For example, assume that a genegi has two causal parentsg1 and
g2, and a Boolean functionf determines the state ofgi at next time step with
gi = f (g1,g2) = (g1∧ g2)∨ (g1∧¬g2). The functionf is one of the 22

2
functions,

but can be simplified asgi = f (g1, g2) = g1. In this case, functionf does not
reflect the causal influence of one of its causal parentsg2. Therefore, we define the
concepts ofinfluenceandproper Boolean functionand only use such functions in
our simulation.

Definition 1. (Influence): Let z = f (x1, . . . , xn) be a Boolean function. We say
xi has an influence onz in the function f if there exists two assignment vectors
for x1, . . . , xn that only differ on the assignment toxi , such that the values off on
those two assignments differ.

Definition 2. (Proper function): We sayz = f (x1, . . . , xn) is a proper function if
for i = 1 . . . n, xi has an influence onz in the functionf .
We did sets of experiments to show that under non-uniform distribution the proper
function is faithful function4, which entails original causal structure.
The simulation process in this study can be summarized as follows:

– Step 1: GenerateM Boolean networks with up to three input causal parents
for each node in topological ordering.

– Step 2: For each Boolean network connection, generate random proper Boolean
functions for each node.

– Step 3: Assign random probabilities for the root gene (gene with no causal
parents).

– Step 4: Given one configuration (fixed connection and functions), run the
deterministic Boolean network starting from all possible initial states and
get the probability distribution of all possible states.

– Step 5: Collect two hundred data points sampled from the probability distri-
bution.

– Step 6: Repeat Step 3 and Step 5 for allM networks with probability distri-
bution and save the configuration file and the data file.

2.3 Entropy and Mutual Information

Given a probability distribution of a dataset, one needs to compute the condi-
tional independence among genes to find the causal information. Shannon [16]
developed the concept of entropy to measure the uncertainty of the discrete ran-
dom variables. In this paper we calculate entropyH and mutual informationI to
obtain uncertainty coefficientU to test conditional independence between genes.
The uncertainty coefficientU is range from 0 to 1 and defined as follows:

U(X|Y) = I (X,Y)/H(X); (1)

whereH(X) = −∑
x p(x) log p(x); H(X,Y) = −∑

x
∑

y p(x, y) log p(x, y);
andI (X,Y) = H(X) + H(Y) − H(X,Y) [25].

4 There exists some special case that under certain non-uniform distribution, proper function
might not be faithful function. But those cases are rare and with random generator in the
simulation, we may ignore it.



3 Algorithms and Criterion for Inferring a Gene
Causal Network

3.1 Modified IC (mIC) algorithm

The IC algorithm [12] examines pairwise conditional independencies between
variables to determine the v-structures5 first, and then applies rules to determine
the rest of the network structures. The mIC algorithm is based on the IC algo-
rithm [12], but it incorporates the topological ordering information in the learning
step to infer the gene causal relationship from steady state data. It takes as input
a probability distribution P generated by a DAG with some gene topological or-
dering information, and outputs a partially directed DAG. The mIC algorithm is
described as follows:

– Step 1: For each pair of genegi andgj in a dataset, test pairwise conditional
independence. If they are dependent, search for a set
Si j = {gk | gi andgj are independent givengk, with i < k < j or j < k < i}
Construct an undirected graphG such thatgi andgj are connected with an
edge if and only if they are pairwise dependent and noSi j can be found;

– Step 2: For each pair of nonadjacent genesgi andgj with common neighbor
gk, if gk < Si j , andk > i, k > j, add arrowheads pointing atgk, such as
gi → gk ← gj ;

– Step 3: Orientate the undirected edges without creating new cycles and v-
structures.

3.2 Comparing initial and obtained networks - new definitions for
precision and recall

For evaluating the learning results, we define the new notions of precision and
recall. In comparing the initial and obtained networks one immediate challenge
that we faced is in defining recall and precision for the case where the inferred
graph may have both directed and undirected edges. (Note that the original graph
has only directed edges.) Intuitively, an undirected edgeA − B means that we
cannot distinguish the directionality betweenA andB with given dataset.
To deal with this we define the following six categories:FN (false negatives),
T P (true positives),PT P (partial true positives),PFN (partial false negatives),
T N (true negatives),FP (false positives),PT N (partial true negatives), andPFP
(partial false positives) as follows:

FN = {X→ Y | X→ Y is in the original graph and neitherX→ Y nor X − Y is in the obtained graph}
TP = {X→ Y | X→ Y is in the original graph and also in the obtained graph}
TN = {X→ Y | X→ Y is not in the original graph and neitherX→ Y nor X − Y is in the obtained graph}
FP = {X→ Y | X→ Y is not in the original graph andX→ Y is in the obtained graph}
PFN = PTP= {X→ Y | X→ Y is in the original graph andX − Y is in the obtained graph}
PTN = PFP= {X→ Y | X→ Y is not in the original graph andX − Y is in the obtained graph}

Now we can define the valuesAFP (aggregate number of false positive),AT N
(aggregate number of true negatives),AFN (aggregate number of false negatives)
andAT P (aggregate number of true positives) in terms of above six categories.

5 A v-structure is of the forma→ x← b such that two converging arrows that the tails ofa and
b are not connected by an arrow.



AFN =| FN | + | PFN | /2; AT P=| T P | + | PT P | /2;
AFP =| FP | + | PFP | /2; AT N =| T N | + | PT N | /2.
where| X | is the cardinality of setX. Using the above we can now define Recall
and Precision as follows:

Recall=
AT P

(AFN + AT P)
; Precision=

AT P
(AT P+ AFP)

3.3 Precision and Recall with Observational Equivalence

The output of IC algorithm is a pattern, a partially directed DAG, which is a set
of DAGs that have equivalence structures. Every edge in the original network is
directed, while the edges in obtained graph may be directed or undirected. There
might be a case that a directed edge in original graph has a corresponding undi-
rected edge in obtained graph. Therefore with the view of observational equiva-
lence (OE), we should not have penalties for such edges. Here we define the new
notions of precision and recall with considering observational equivalence. We
transform both original graph and obtained graph into their own observational
equivalent classes, called original class and obtained class, using the definition of
observational equivalence [12]. Then define the six categories as follows:

FN = {(X,Y) | X→ Y or X − Y is in the original class and neitherX→ Y nor X − Y is in the obtained class}
TP = {(X,Y) | X→ Y is in the original class and also in the obtained class orX − Y is in the original class

and also in the obtained class}
TN = {(X,Y) | neitherX→ Y nor X − Y is in the original class and neitherX→ Y nor X − Y is in the

obtained class}
FP = {(X,Y) | neitherX→ Y Y nor X − Y is in the original class andX→ Y is in the obtained class}
PFN = PTP= {(X,Y) | X→ Y is in the original class andX − Y is in the obtained class orX − Y is in the

original class andX→ Y is in the obtained class}
PTN = PFP= {(X,Y) | neitherX→ Y nor X − Y is in the original class andX − Y is in the obtained class}

The concepts of theAFN, AT P, AT N, AFP, precision and recall are the same as
the ones we defined previous section.

3.4 Comparing the networks based on their transitive closure

There are many ways for comparing the initial and obtained graphs. We discussed
the way for comparing two networks directly, with and without observational
equivalence. Transitive closure (TC) is another way for graph comparison. Sup-
pose the initial network that we have isA→ B→ C and we obtain the network
with the only edgeA→ C. When comparing the obtained network with the ini-
tial network we may not treatA→ C just as a false positive. In fact this obtained
network is better than the network that has no edges. To be able to make this
conclusion we consider the TC of→ in the initial network and a similar notion
in the obtained network. In the obtained network our definition of TC is based
on defining two relations:cc(x, y) and pcc(x, y). Intuitively, cc(x, y), denotingx
causally contributes toy, is true if there is a directed or an undirected edge from
x to y; andpcc(x, y), denotingx possibly causally contributes toy, is true if there
is a path fromx to y consisting of properly directed edges and undirected edges
such thatpcc(x, y) := cc(x, y) | pcc(x, z) ∧ pcc(z, y)



3.5 Steps of learning gene causal relationships

The steps for learning gene causal relationships are as follows:
Step 1: Obtain the probability distribution, data sampling and the topological or-
der of the genes;
Step 2: Apply algorithms such as IC or mIC to find causal relations;
Step 3: Compare the original and obtained networks based on the two notions of
precision and recall;
Step 4: Repeat step 1-3 for every random network.

4 Experiments, Results and Discussion

We did two sets of experiments for learning gene causal relationships using the IC
algorithm and mIC algorithm. Each experiment contains 100 different randomly
generated gene networks (DAGs), each of which contains 10 genes, with topo-
logical ordering connected by Boolean proper functions. The distribution of the
network is generated based on the probability of the root genes, and Monte Carlo
sampling is used to generate 200 samples in a dataset for each network based on
the probability distribution. We use the uncertainty coefficient (U) to test the con-
ditional independence in step 1 of the algorithm. We choose the ofU = 0.3 for
pairwise andU = 0.2 for triplewise conditional independent test. The threshold
cut-off values are based on heuristics that we elaborate in [25].

4.1 Learning with IC algorithm

The first experiment is to use IC algorithm on the learning gene causal relations
with steady state data without topological ordering information. The method is
applied to derive an obtained graph for every network and then the obtained
graphs are compared with their corresponding initial ones. The results with sta-
tistical confidence of 95% as the error bar marked are shown in figure 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

without TC  with TC

P
re

ci
si

on
 R

at
e

IC w/o OE
IC with OE

0

0.1

0.2

0.3

0.4

0.5

0.6

without TC  with TC

R
ec

al
l R

at
e

IC w/o OE
IC with OE

(a) Precision (b) Recall

Fig. 1. Precision and Recall for learning by IC algorithm

Figure 1(a) shows the precisions of the simulation with IC using two notions:
with and without OE and TC. The result shows that the precision rate for inferring
causal relations in simulation is 0.3 without OE or TC, 0.45 with OE, around 0.4
with TC, and around 0.5 with OE and TC. Figure 1(b) shows that the recall rate
is below 0.3 without OE, and around 0.4 with OE.
From the figure we can see that both precision and recall are significantly im-
proved by using the notion of observational equivalence. However the recall rate
is still around 0.4. From the above simulation results we can see that IC algo-
rithm is not quite good for learning gene regulatory network using only steady
state data.



4.2 Learning with Topological Ordering (mIC)

Since using IC algorithm for learning gene causal network from single type of
dataset - steady state data did not show a good result, our hypothesis is that a bet-
ter way is to use additional knowledge such as gene topological ordering. The sec-
ond simulation we did is jointly learning the gene regulatory network using mIC
algorithm combining steady state observation and the background knowledge of
gene topological orders. We then compare the results with the ones learned by IC
algorithm as shown in Figure 2.
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Fig. 2. Precision and Recall for learning by mIC with Ordering

Figure 2(a) shows that with statistical confidence of 95% as the error bar marked,
the precision rate is significantly improved with mIC algorithm, and the precision
rate is around 0.6 with TC and OE. Figure 2(b) are promising since the recall
rates of learning with mIC algorithm are significantly improved from less than
0.3 with IC algorithm to greater than 0.45 by applying mIC algorithm, improved
more than 50%, both with and without considering TC or OE. If considering the
observational equivalence, the recall rate of learning with mIC algorithm has been
significantly improved to above 0.5 with or without TC.

5 Applying mIC algorithm on Melanoma Dataset

We finally applied mIC algorithm to a gene expression profile used in the study of
melanoma [2]. 31 malignant melanoma samples were quantized to ternary format
such that the expression level of each gene is assigned to -1(down-regulated),
0(unchanged) or 1 (up-regulated). The 10 genes involved in this study are chosen
from 587 genes from the melanoma dataset that have been studied to cross predict
each other in a multivariate setting [11]:pirin, WNT5A, MART-1, S100, RET-1,
MMP-3, PHO-C, synuclein, HADHB and STC2.
In previous expression profiling study, WNT5A has been identified as a gene
of interest involved in melanoma[2], and expression level of WNT5A is closely
related with metastatic status of melanoma [23]. It was shown that the abun-
dance of messenger RNA for WNT5A can be significantly distinguished between
cells with high metastatic competence versus those with low metastatic compe-
tence [2]. Later, it was also proved experimentally that increasing the level of
WNT5A protein can directly change the cell metastatic competence [23]. It has
been also suggested that controlling the influence of WNT5A in the regulation
can reduce the chance of melanoma metastasizing [3].
In this study of set of 10-gene network, we have a partial biological prior knowl-
edge that MMP-3 is expected to be at the end of the pathway. We applied mIC



algorithm using entropy to test conditional independence among those 10 genes
with the above prior knowledge to infer thecausalregulatory network. The learn-
ing results are shown in figure 3.
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Fig. 3. Learning Melanoma Dataset with prior knowledge that MMP-3 is at the end of gene reg-
ulatory network

Figure 3 shows thatpirin causatively influences WNT5A. This result is consistent
with the literature[3] that in order to maintain the level of WNT5A, we need to
directly control WNT5A or control WNT5A throughpirin. The result also shows
the causal connection between WNT5A and MART-1 such that WNT5A directly
causes MART-1, which has been verified in the literature [20] that WNT5A may
actually directly influence the regulation and suppression of MART-1 expression.
In Figure 3, there are some causal connects that have not been verified by the sci-
entist yet. However, they are unlikely to be obtained by random chance (see sup-
plement materials http://www.asu.edu/∼zhang24/AIME05). mIC algorithm bring
up a systematic way to predict thecausalconnections among genes using steady
state data with some prior biological knowledge. It could be applied as a guidance
for the biologist to verify the causal connections in future experiments.

6 Conclusion
In this paper we presented a modified IC algorithm with entropy that can learn
steady state data with gene topological ordering information. We did simulation
based on Boolean network to evaluate the performance of the causal algorithms.
In the process we developed ways to compare initial networks with obtained net-
works. From our simulation based evaluation we conclude that (i) IC algorithm
does not work well for learning gene regulatory networks from steady state data
alone, (ii) a better way for learning the gene causal relationship from steady state
data is to use additional knowledge such as gene topological ordering, (iii) the
precision and recall rates for mIC algorithm is significantly improved compared
with IC algorithm with statistical confidence of 95%. For randomly generated
networks, the mIC algorithms work well for joint learning the causal regulatory
network by combining steady state data and gene topological ordering knowl-
edge, with precision rate of greater than 60%, and recall rate greater than 50%. We
then applied the algorithm to real biological microarray data Melanoma dataset.
The result showed that some of the important causal relationships associated with
WNT5A gene have been identified using mIC algorithm, and those causal con-
nections have been verified in the literatures.
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