
GLIDE: A Grid-based Light-weight
Infrastructure for Data-intensive Environments

Chris A. Mattmann1,2, Sam Malek2, Nels Beckman2,
Marija Mikic-Rakic2, Nenad Medvidovic2, Daniel J. Crichton1

1Jet Propulsion Laboratory, California Institute of Technology
2University of Southern California

Abstract. The promise of the grid is that it will enable public access and shar-
ing of immense amounts of computational and data resources among a large
number of individuals and institutions. However, the current grid solutions
make several limiting assumptions that curtail their widespread adoption in
the emerging decentralized, resource constrained, embedded, autonomic, and
mobile (DREAM) environments: they are designed primarily for highly com-
plex scientific problems, and therefore require powerful hardware and reliable
network connectivity; additionally, they provide no application design support
to grid users (e.g., scientists). To address these limitations, we present GLIDE,
a prototype light-weight, data-intensive middleware infrastructure that en-
ables access to the robust data and computational power of the grid on
DREAM platforms. GLIDE embodies a number of features of an existing data
grid solution within the framework of an existing DREAM middleware solu-
tion with extensive application design capabilities. We illustrate GLIDE on an
example mp3 file sharing application. We discuss our early experience with
GLIDE and present a set of open research questions.

1 Introduction
One of the most exciting and promising technologies in modern computing is the grid
[8,12]. Grid computing connects dynamic collections of individuals, institutions, and
resources to create virtual organizations, which support sharing, discovery, transforma-
tion, and distribution of data and computational resources. Distributed workflow, mas-
sive parallel computation, and knowledge discovery are only some of the applications
of the grid. Grid applications involve large numbers of distributed devices executing
large numbers of computational and data components. As such, they require techniques
and tools for supporting their design, implementation, and dynamic evolution.

Current grid technologies provide extensive support for describing, modelling, dis-
covering, and retrieving data and computational resources. Unfortunately, they are im-
plemented using middleware infrastructures that leverage both heavyweight and com-
putationally intensive protocols and objects [6]. As such, the current grid software sys-
tems are not applicable to the domain of decentralized, resource constrained, embedded,
autonomic, and mobile (DREAM) environments. The existing grid technologies also

1. Earth Science Data Systems Section, Pasadena, CA 91109 Tel: +1 (818) 354.9155.
Email: {chris.mattmann,daniel.crichton}@jpl.nasa.gov. WWW: http://oodt.jpl.nasa.gov

2. Computer Science Department, Los Angeles, CA 90089-0781 Tel: +1 (213) 740.6504.
E-mail: {mattmann,malek,nbeckman,marija,neno}@usc.edu. WWW: http://sunset.usc.edu/~softarch/

lack support for systematic design, implementation, and evolution of grid-based soft-
ware systems. Finally, current development, deployment, and runtime adaptation sup-
port for the grid is ad-hoc: shell scripts abound, makefiles are the common construction
and deployment tool, and any adaptation is usually handled by restarting the entire sys-
tem.

Given the central role software architectures have played in engineering large-scale
distributed systems [21], we hypothesize that their importance will only grow in the
even more complex (grid-enabled) DREAM environments. This is corroborated by the
preliminary results from several recent studies of software architectural issues in em-
bedded, mobile, and ubiquitous systems [15,24]. In order for architectural models to be
truly useful in any development setting, they must be accompanied by support for their
implementation [15]. This is particularly important for the DREAM environments:
these systems will be highly distributed, decentralized, mobile, and long-lived, increas-
ing the risk of architectural drift [21] unless there is a clear relationship between the ar-
chitecture and its implementation. To address these issues, several light-weight soft-
ware architecture-based solutions [18,24] supporting the design, implementation, and
evolution of software systems in DREAM environments have recently emerged. How-
ever, these solutions are still not directly supporting the grid: they have not focused on,
and uniformly lack facilities for, resource and data description, search, and retrieval.

A recent focus of our work has been on addressing the limitations of the grid by
bridging the two approaches described above. To that end, we have drawn upon our pre-
vious experience in developing the OODT data grid middleware [4,14], along with our
experience in developing Prism-MW, a lightweight, mobile middleware for resource
constrained devices [15,18], to arrive at GLIDE, a grid-based, lightweight infrastructure
for data-intensive environments. GLIDE was built with a focus on addressing both the
resource limitations and lack of systematic application development support of the cur-
rent grid technologies. GLIDE strives to marry the benefits of Prism-MW (architecture-
based development, efficiency, and scalability) with those of OODT (resource descrip-
tion, discovery, and retrieval). We have performed a preliminary evaluation of GLIDE
using a series of benchmarks, and have successfully tested it by creating a mobile media
sharing application which allows users to share mp3 files on a set of distributed PDAs.
While this work is still in its early stages, our initial results have been promising and
have pointed to several avenues of future work.

The rest of this paper is organized as follows. Section 2 describes the existing grid
middleware infrastructures, including OODT, and presents an overview of Prism-MW.
Section 3 describes the design, implementation, and evaluation of GLIDE and is illus-
trated using an example MP3 sharing application. The paper concludes with an over-
view of future work.

2 Background and Related Work
GLIDE has been inspired by a set of related projects along with our own existing work
in three areas: computational and data grids, light-weight middleware and protocols,
and implementation support for software architectures. In this section, we first briefly
summarize Globus, the de facto standard grid toolkit, as well as several additional com-

putational grid solutions, and their most obvious limitations that motivated GLIDE. We
then describe OODT, the grid technology used by NASA and the National Cancer In-
stitute, along with other representative approaches to large-scale data sharing. Finally,
we summarize Prism-MW, a light-weight middleware platform that explicitly focuses
on implementation-level support for software architectures in DREAM environments;
we also briefly overview a cross-section of representative light-weight middleware plat-
forms.1

2.1 Globus
The Globus Toolkit [8,12] is an open-source middleware framework for constructing
and deploying grid-based software systems. It combines a middleware transport layer
[9], a suite of grid-services and protocols (e.g. Grid Resource Allocation Management
or GRAM [1], Grid File Transfer Protocol, or GridFTP [1], and Metadata Catalog Serv-
ice, or MCS [23]), and a web-services based implementation infrastructure [9] to sup-
port construction and deployment of grid-based software systems. Globus realizes the
basic goal of the grid: the establishment of virtual organizations sharing computational,
data [3], metadata, and security resources. However, Globus lacks several features that
would ease its adoption and use across a more widespread family of software systems
and environments.

First, Globus lacks architecture-based software development support. This severely
hinders its utility as a development platform and middleware technology: Globus relies
on shell scripts and makefiles as the only means of supporting deployment, configura-
tion, and evolution of grid-based systems. Secondly, Grid protocols and services imple-
mented in Globus all rely heavily on many interactions with multiple components, even
while the service is idle. For example, Grid-FTP mandates that separate, parallel control
channels exist between the Grid-FTP client and each one of the servers from which it
transfers the files using the Globus infrastructure. Maintenance and coordination of
these control channels requires a much broader constituent of resources than a simple
socket connection. As another example, the MCS service relies on a MySQL data store
that provides metadata used to describe resources in a Globus-connected grid system.
For these reasons, Globus is not suitable for use in DREAM environments.

In addition to Globus, several other grid technologies have emerged recently. Al-
chemi [1] is based on the Microsoft .NET platform and allows developers to aggregate
the processing power of many computers into virtual computers. Alchemi is designed
for deployment on personal computers: computation cycles are only shared when the
computer is idle. JXTA [13] is a framework for developing distributed applications
based on a peer-to-peer topology. Its layered architecture provides developers with ab-
stractions of low-level protocols along with services such as host-discovery, data shar-
ing, and security.

2.2 OODT
GLIDE is directly motivated by our work in the area of data-grids, specifically on the
Object Oriented Data Technology (OODT) system [4,14]. We have adopted an archi-

1. Recall that OODT and Prism-MW form the foundation for GLIDE.

tecture-centric approach in OODT, in pursuit of supporting distribution, processing,
query, discovery, and integration of heterogeneous data located in distributed data
sources. OODT contributes a set of software components, implementation-level con-
nectors, and software configurations, which are used to integrate existing data-intensive
systems, and to ingest and retrieve data. Figure 1 shows the high-level design of OODT.
Below we describe the major components of OODT:
OODT Data Components

• Resource Profile is a data structure which describes both the location and clas-
sification of a resource available within a grid-based software system. Resources
include data granules (such as a File), data-producing software systems (includ-
ing the below described profile servers, product servers, query servers, and so on),
computation-providing software systems, and resource profiles themselves. Re-
source profiles may contain additional resource-describing metadata [4].

• Query Object is a data structure which contains a query expression. A query ex-
pression assigns values to a predefined set of data elements that describe resourc-
es of interest to the user and a collection of obtained results.

Figure 1. UML class diagram of OODT

OODT Processing Components

OODT Connectors

OODT Data Components

Profile Server

Profile Client

Query Client

Product Server

Query Server

Product ClientMessaging Layer

Resource Profile

Query Object

ProfileHandler

IProfileHandler

0..*

IProfileServer

Resource Attributes Profile Attributes

11

Profile Element

0..* 0..*

Result

0..*

Query Expression

1

Result Metadata

1

IQueryHandler

QueryHandler

0..*

Querier Thread

0..*

IProductServer

IQueryServer

OODT Processing Components
• Product Servers are responsible for abstracting heterogeneous software interfac-

es to data sources (such as an SQL interface to a database, a File System interface
to a set of images, an HTTP interface to a set of web pages, and so on) into a single
interface that supports querying for retrieval of data and computational resources.
Users query product servers using the Query Object data structure.

• Product Clients connect and send queries (via a Query Object) to product serv-
ers. A query results in either data retrieval or use of a remote computational re-
source.

• Profile Servers generate and deliver metadata [5] in the form of Resource Profile
data structures, which are used for making informed decisions regarding the type
and location of resources that satisfy given criteria.

• Profile Clients connect and send queries to profile servers. After sending a query,
a profile client waits for the profile server to send back any Resource Profiles that
satisfy the query.

• Query Servers accept Query Objects, and then use profile servers to determine
the available data or computational resources that satisfy the user’s query. Once
all the resources have been collected, and processing has occurred, the data and
processing results are returned (in the form of result list of a Query Object) to the
originating user.

• Query Clients connect to query servers, issue queries, and retrieve query objects
with populated data results.

OODT Connector
• The Messaging Layer connector is a data bus which marshals resource profiles

and query objects between OODT client and server components.
Although OODT has shown to be quite effective at leveraging its architectural fo-

cus on data-grid systems, its heavyweight approach to implementing connectors (e.g.,
using off-the-shelf middleware such as CORBA [20] and RMI [25]) is not suitable for
deployment in DREAM environments. At the same time, several of the core capabilities
of OODT (e.g. resource discovery, query optimization, and resource description using
metadata) provide a sound basis for the services in GLIDE discussed in this paper.

There are several other technologies for large-scale data sharing. Grid Data Farm
[26] project is a parallel file system created for researchers in the field of high energy
acceleration. Its goal is to federate extremely large numbers of file systems on local PCs
and, at the same time, to manage the file replication across those systems, thus creating
a single global file system. Similar to OODT, the SDSC Storage Resource Broker [22]
is a middleware that provides access to large numbers of heterogeneous data sources.
Its query services attempt to retrieve files based on logical information rather than file
name or location, in much the same way that OODT maintains profile data.

2.3 Prism-MW
Prism-MW [18] is a middleware platform that provides explicit implementation-level
support for software architectural constructs. The top-left diagram in Figure 2 shows the

class design view of Prism-MW’s core. Brick is an abstract class that encapsulates com-
mon features of its subclasses (Architecture, Component, and Connector). The Archi-
tecture class records the configuration of its components and connectors, and provides
facilities for their addition, removal, and reconnection, possibly at system run-time. A
distributed application is implemented as a set of interacting Architecture objects, com-
municating via DistributionConnectors across process or machine boundaries. Compo-
nents in an architecture communicate by exchanging Events, which are routed by Con-
nectors. Finally, Prism-MW associates the IScaffold interface with every Brick. Scaf-
folds are used to schedule and dispatch events using a pool of threads in a decoupled
manner. IScaffold also directly aids architectural self-awareness by allowing the run-time
probing of a Brick’s behavior.

Prism-MW’s native support for architectural abstractions and extensive separation
of concerns allow it to be tailored to different architectural styles [21]. To that end,
Prism-MW provides the following:

1. the ability to distinguish among different architectural elements of a style —
Brick has an attribute that identifies its style-specific type (e.g., Client, Serv-
er, Pipe, Filter, and so on).

2. the ability to specify the architectural elements’ stylistic behaviors — Extensible-
Component, ExtensibleConnector, and ExtensiblePort classes provide tailorable
event routing, synchrony, and distribution support, respectively.

3. the ability to specify the rules and constraints that govern the architectural ele-
ments’ valid configurations — ExtensibleArchitecture provides tailorable support
for ensuring the topological constraints of a given style (e.g., in the client-server
style, Clients can connect to Servers, but not to one other Clients).

4. the ability to use multiple architectural styles within a single application — Ex-
tensibleArchitecture implements the IComponent interface, thereby allowing hi-
erarchical composition of components. Each hierarchical component is internally
composed of subarchitectures that can adhere to different architectural styles.

Prism-MW also comes with explicit support for component deployment [16] in the
form of Prism-DE, an environment for deploying and monitoring Prism-MW based
software systems.

Prism-MW directly enables several desired features of GLIDE. First, it provides the
needed low-level middleware services for use in DREAM environments, including de-
centralization, concurrency, distribution, programming language abstraction, and data
marshalling and unmarshalling. Second, unlike the support in current grid-based mid-
dleware systems (including OODT), Prism-MW enables the definition and (re)use of
architectural styles, thereby providing design guidelines and facilitating reuse of de-
signs across families of DREAM systems. Third, Prism-DE can be extended to aid
GLIDE users in constructing, deploying, and evolving grid-based DREAM systems.

A number of additional middleware technologies exist that support either architec-
tural design or for mobile and resource constrained computation, but rarely both [18].
An example of the former is Enterprise Java Beans (EJB), a popular commercial tech-
nology for creating component-based, distributed Java applications. An example of the
latter is XMIDDLE [27], an XML-based data sharing framework targeted at mobile en-

vironments. XMIDDLE provides data replication across mobile devices and pays par-
ticular attention to the frequent disconnection of these devices.

3 Arriving at GLIDE
GLIDE is a hybrid grid middleware which combines the salient properties of Prism-
MW and the core services of OODT, with the goal of extending the reach of the grid
beyond super-computing and desktop-or-better platforms to the realm of DREAM en-
vironments. To this end, the myriad of heterogeneous data (music files, images, science
data, accounting documents, and so on) and computational (web services, scientific
computing testbeds, and so on) resources made available by heavy-weight grids can
also be made available on their mobile counterparts. Thus, mobile grids enabled by
GLIDE have the potential to be both data-intensive, requiring the system to provide rich
metadata describing the abundant resources (and subsequently deliver and retrieve large
amounts of them), as well as computationally-intensive, focused on discovering and uti-
lizing data, systems, authorization, and access privileges to enable complex, distributed
processing and workflow.

Existing grid solutions such as Globus [12] and OODT [4] take a completely agnos-
tic approach to the amount of hardware, memory, and network resources available for
successfully executing, deploying, and evolving a grid-based software system. These
technologies consider the system’s architectural design to be outside their scope. In ad-
dition, they also fail to provide sufficient development-level support for building, de-
ploying, and evolving software applications. A solution that overcomes these limita-
tions is needed to realize the widely stated vision of “data and computation every-
where”. By implementing the core grid components of OODT using Prism-MW, we
believe to have created an effective prototype platform for investigating and addressing
these limitations.

3.1 GLIDE’s Design
The core components of OODT include six processing components, two data compo-
nents, and one messaging layer connector (recall Section 2.2). We used Prism-MW to
implement OODT’s core, thus arriving at GLIDE, shown in Figure 2. Our main objec-
tive was to retain the key properties and services of Prism-MW and OODT, such that
GLIDE would support architecture-based design, implementation, deployment, and
(runtime) evolution of data-intensive grid applications in DREAM environments. Be-
low we describe GLIDE’s architecture in light of this objective.

Each OODT processing component was implemented by subclassing Prism-MW’s
ExtensibleComponent class, using the asynchronous mode of operation. Asynchronous
interaction directly resulted in lower coupling among GLIDE’s processing components.
For example, as Figure 2 shows, the dependency relationships between GLIDE’s Client
and Server processing components, which existed in OODT (recall Figure 1), are re-
moved.

GLIDE’s components use Prism-MW’s Events to exchange messages. OODT data
components are sent between processing components by encapsulating them as param-
eters in Prism-MW Events. Leveraging Prism-MW’s Events to send and receive differ-

ent types of data enables homogenous interaction among GLIDE’s processing compo-
nents.

As discussed in Section 2.2, OODT’s connectors are not suitable for DREAM en-
vironments because of their heavy-weight. Furthermore, they only support synchronous
interaction, which is difficult to effect in highly decentralized and mobile systems char-
acterized by unreliable network links. To this end, we have leveraged Prism-MW’s
asynchronous connectors to implement OODT’s messaging layer class in GLIDE.
GLIDE’s connector leverages Prism-MW’s port objects that allow easy addition or re-
moval of TCP/IP connections, thus allowing the system’s topology to be adapted at
runtime. GLIDE’s connector also implements event filtering such that only the request-
ing client receives responses from the server.

Finally, to support interoperability of GLIDE with other grid technologies, we pro-
vide two additional utility classes: XMLProfileReader and XMLQueryObjReader
parse an XML representation of a resource profile and query object data structure, re-
spectively. Each string is parsed into a GLIDE data object. Similarly, resource profiles
and query objects can be serialized into XML.

The high degree of decoupling among GLIDE components directly aids easy dy-
namic adaptation, the lack of which is a key limitation in current grid systems. Ability

Figure 2. UML class diagram of GLIDE showing its Prism-MW and OODT foundation.

GLIDE

PRISM-MW Core

Extensible
Component

OODT Connectors

OODT Processing Components

OODT Data Components

IConnector

Scaffold
Abstract
Scaffold

Brick
Architecture

Extensible
Architecture

Component

Connector

Event

Port

IComponent
IPort

java.io.Serializable

IArchitecture
#mutualPort

Profile Server
Profile Client

Query Client

Product Client

Messaging Layer

Resource Profile

Query Object

0..*

0..*

Product ServerQuery Server

ProfileHandler

IProfileHandler
0..*

IProfileServer

IQueryHandler

QueryHandler

0..*

Querier Thread

0..*

IProductServerIQueryServer

Glide Utilities

XMLQueryObjReader

XMLProfileReader

Extensible
Connector

Extensible
Port

to easily adapt a system’s software architecture is an important property missing in
OODT that can be leveraged to improve the system’s functionality, scalability, availa-
bility, latency, and so on. For example, our recent studies [17] have shown that the
availability and latency of software systems in DREAM environments can be improved
significantly via dynamic adaptation.

3.2 Sample Application Using GLIDE
In order to evaluate the feasibility of GLIDE, we designed and implemented a Mobile
Media Sharing application (MMS), shown in Figure 3. MMS allows a user to query,
search, locate, and retrieve MP3 resources across a set of mobile, distributed, resource-
constrained devices. Users query mobile media servers for MP3 files by specifying val-
ues for genre and quality of the MP3 (described below), and if found, the MP3s are
streamed asychronously to the requesting mobile media client.

Figure 4 shows the overall distrib-
uted architecture of the MMS applica-
tion. A mobile device can act as a serv-
er, a client, or both. MobileMediaServ-
er and MobileMediaClient correspond
to the parts of the application that are
running on the server and the client
devices.

MobileMediaClient contains a
single component called MediaQuery-
GUI, which provides a graphical
front-end for creating MP3 queries.
MP3 queries use two query parame-
ters, MP3.Genre (e.g., rock, classical)
and MP3.Quality (e.g., 192 kb/s, 128
kb/s). MediaQueryGUI is attached to a
QueryConn, which is an instance of
GLIDE’s messaging layer connector
that forwards the queries to remote
servers and responses back to the clients.

MobileMediaServer is composed of three component types: MediaQueryServer,
MediaProductServer, and MediaProfileServer. MediaQueryServer parses the query re-
ceived from the client, retrieves the resource profiles that match the query from Medi-
aProfileServer, retrieves the mp3 file(s) in which the user was interested from the Me-
diaProductServer, and sends the MP3 file(s) back to the client.

The MMS application helps to illustrate different aspects of GLIDE: it has been de-
signed and implemented by leveraging most of GLIDE’s processing and data compo-
nents and the messaging layer connector, and has been deployed on DREAM devices.
In the next section we evaluate GLIDE using MMS as an example.

Figure 3. Mobile Media Sharing Application

3.3 Evaluation
In this section we evaluate GLIDE along the three dimensions outlined in the Introduc-
tion: (1) its support for architecture-based development, (2) its support for deployment
and evolution of the software system, and (3) its suitability for DREAM environments.

3.3.1 Architecture-Based Development Support
GLIDE inherits architecture-based development capabilities, including style aware-
ness, from Prism-MW [18]. Unlike most existing grid middleware solutions (e.g.
OODT), which provide support for either peer-to-peer or client-server styles, GLIDE
does not impose any particular (possibly ill-suited) architectural style on the developers
of a grid-based application. As a proof of concept, we have implemented several varia-
tions of the MMS application in different architectural styles including client-server,
layered client-server, peer-to-peer, and C2. The variations of MMS leveraged existing

Figure 4. Mobile Media Application Architecture

Mobile Media Architecture using GLIDE

GLIDE

GLIDE

GLIDEGLIDE

GLIDE

Profile ServerProduct Server

Query Server
Messaging Layer

Resource Profile
Query Object

Media
Product
Server

Media
Profile
Server

ServerConn

Media
Query
Server

QueryConn

MobileMediaClient

Media
Query

GUI

QueryConn

TC
P

/IP

Messaging Layer

GLIDE

MobileMediaServer

Query Client

support for these styles and were created with minimal effort. For example, changing
MMS from client-server to peer-to-peer required addition of three components and a
connector on the client side, and one component on the server side. Figure 5 shows the
peer-to-peer variant of MMS.

3.3.2 Deployment and Evolution Support
Drawing from its basis on Prism-MW, applications developed using GLIDE inherit key
deployment and evolution capabilities that were not present in OODT. These capabili-
ties include a graphical component deployment environment [16] and automated runt-
ime architectural reconfiguration [17]. These capabilities are necessary in DREAM en-
vironments, where bandwidth, connectivity, memory, and the like hinder the utility of
conventional deployment techniques (e.g., build scripts and configuration files) and
conventional evolution techniques (e.g., bringing down, modifying, recompiling, and
restarting the system). In addition to preventing runtime system modifications, existing
grid technologies require users to be familiar with the above conventional deployment
and evolution techniques. Considering that many grid users are scientists with little or
no formal software engineering training, they are ill-equipped to deploy and evolve
their grid systems. In Prism-MW this type of support is a core capability; GLIDE’s basis
in Prism-MW therefore directly enables it to effectively address this limitation.

3.3.3 DREAM Support
Resource scarcity poses the greatest challenge to any grid solution for DREAM envi-
ronments. We have leveraged Prism-MW’s efficient implementation of architectural
constructs [18] along with the following techniques to improve GLIDE’s performance
and minimize the effect of the computing environment’s heterogeneity:

Figure 5. Peer-to-peer variation of the Mobile Media Sharing application.

Media
Product
Server

Media
Profile
Server

ServerConn

Media
Query
Server

QueryConn

Media
Query
GUI

TCP/IP

Mobile Media Peer-to-Peer

Media
Product
Server

Media
Profile
Server

ServerConn

Media
Query
Server

QueryConn

Media
Query
GUI

Mobile Media Peer-to-Peer

• MinML [19], a lightweight XML parser, to parse the resource profiles and query
object data structures.

• W3C’s Jigsaw Web Server Base64 Encoding Library [11] to compress (at the
product server end) and uncompress (at the product client end) the exchanged da-
ta.

• Filtering inside the Messaging Layer to ensure event delivery only to the interest-
ed parties, thus minimizing propagation of events with large data loads (e.g., MP3
files). Specifically, GLIDE tags outgoing request events from a client with a
unique ID, which is later used to route the replies appropriately.

• Incremental data exchange via numbered data segments for cases when the relia-
bility of connectivity and network bandwidth prevent atomic exchange of large
amounts of data.

Table 1: Memory footprint of MobileMediaServer and MobileMediaClient in GLIDE
MobileMediaServer Java Packages # Live Objects Total Size (bytes)

Java java.lang 36 2016

glide.product 1 24

glide.profile 1 24

GLIDE’s Implementation
of OODT components

glide.query 1 32

glide.queryparser 1 160

glide.structs 8 232

Application
mobilemedia.product.handlers 1 32

mobilemedia.profile.handlers 1 8

glide.prism.core 26 1744

glide.prism.extensions.port 1 40

Prism-MW glide.prism.extensions.port.distribution 4 216

glide.prism.handler 2 32

glide.prism.util 18 1200

Total size 5760

MobileMediaClient

Java java.lang 28 1568

GLIDE’s implementation
of OODT components

glide.structs 7 208

Application mobilemedia 2 384

glide.prism.core 18 1304

glide.prism.extensions.port 1 40

Prism-MW glide.prism.extensions.port.distribution 3 136

glide.prism.handler 1 16

glide.prism.util 7 480

Total size 4136

As an illustration of GLIDE’s efficiency, Table 1 shows the memory footprint of
MobileMediaServer’s and MobileMediaClient’s implementation in GLIDE. The total
size of the MobileMediaServer was 5.7KB and MobileMediaClient was 4.1kb, which is
two orders of magnitude smaller than their implementation in OODT (707KB and
280KB, respectively). The memory overhead introduced by GLIDE on the client and
server devices was under 4KB.

4 Conclusions and Future Work
This paper has presented the motivation for and prototype implementation of a grid
middleware for decentralized, resource constrained, embedded, autonomic, and mobile
(DREAM) environments. Although the results of our work to date are very promising,
a number of pertinent issues remain unexplored.

Our immediate work will focus on (1) devising and evaluating suitable architectural
styles for grid computing, using GLIDE’s existing support for user-specified styles; (2)
extending GLIDE to provide a set of meta-level services, including monitoring of data
and metadata within a GLIDE system; and (3) addressing the issues of trust in grid ap-
plications. These issues represent but a small subset of related concerns that are emerg-
ing in this domain. We believe that GLIDE will afford us an effective platform for in-
vestigating this rich research area.

5 References
[1] Alchemi .NET Grid Computing Framework. http://www.alchemi.net/doc/0_6_1/in-

dex.html
[2] D. Booth et al. Web Services Architecture, http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211/
[3] A. Chrevenak et al. The Data Grid: Towards an Architecture for the Distributed Manage-

ment and Analysis of Large Scientific Datasets. Journal of Network and Computer Appli-
cations, 2000.

[4] D. Crichton et al. A Component Framework Supporting Peer Services for Space Data
Management. IEEE Aerospace Conference, Big Sky, Montana, 2002.

[5] D. J. Crichton, J. S. Hughes, and S. Kelly. A Science Data System Architecture for Infor-
mation Retrieval. in Clustering and Information Retrieval. W. Wu, H. Xiong, and S. Shek-
har, Eds.: Kluwer Academic Publishers, 2003, pp. 261-298.

[6] N. Davies, A. Friday and O. Storz. Exploring the Grid’s potential for ubiquitous comput-
ing. IEEE Pervasive Computing, Vol 3. No. 2, April-June, 2004, pp.74-75.

[7] M. Gudgin et al. Simple Object Access Protocol Version 1.2, 2003, http://www.w3.org/
TR/soap/.

[8] I. Foster et al. Grid Services for Distributed System Integration. IEEE Computer, pp. 37-
46, 2002.

[9] I. Foster et al. The Physiology of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration. Globus Research, Work-in-Progress 2002.

[10] I. Foster. What is the Grid? A Three Point Checklist. GRIDToday, Vol 1. No. 6, July 22,
2002.

[11] Jigsaw Overview. http://www.w3.org/Jigsaw/.

[12] C. Kesselman, I. Foster, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations, International Journal of Supercomputing Applications, pp. 1-25, 2001.

[13] N. Maibaum, T. Mundt. JXTA: A Technology Facilitating Mobile Peer-to-Peer Networks.
MobiWac 2002. Fort Worth, TX, October 2002.

[14] C. Mattmann et al. Software Architecture for Large-scale, Distributed, Data-Intensive Sys-
tems. 4th IEEE/IFIP Working Conference on Software Architecture (WICSA-4), Oslo,
Norway, 2004.

[15] N. Medvidovic et al. Software Architectural Support for Handheld Computing, IEEE Com-
puter (Cover Feature), vol. 36, pp. 60-67, 2003.

[16] M. Mikic-Rakic and N. Medvidovic. Architecture-Level Support for Software Component
Deployment in Resource Constrained Environments, 1st International IFIP/ACM Working
Conference on Component Deployment (CD'02), Berlin, Germany, 2002.

[17] M. Mikic-Rakic and N. Medvidovic. Software Architectural Support for Disconnected Op-
eration in Highly Distributed Environments. 7th International Symposium on Component
Based Software Engineering (CBSE-7), Edinburgh, UK, 2004.

[18] M. Mikic-Rakic and N. Medvidovic. Adaptable Architectural Middleware for Program-
ming-in-the-Small-and-Many. ACM/IFIP/USENIX International Middleware Conference
(Middleware 2003), Rio De Janeiro, Brazil, 2003.

[19] MinML A Minimal XML parser. http://www.wilson.co.uk/xml/minml.htm.
[20] Object-Management-Group. The Common Object Request Broker: Architecture and Spec-

ification, 1998.
[21] D. E. Perry and A. L. Wolf. Foundations for the Study of Software Architecture, ACM SIG-

SOFT Software Engineering Notes (SEN), vol. 17, 1992.
[22] A. Rajasekar, M. Wan, R. Moore. MySRB and SRB - Components of a Data Grid. High

Performance Distributed Computing (HPDC-11). Edinburgh, UK, July 2002.
[23] G. Singh et al. A Metadata Catalog Service for Data-Intensive Applications. IEEE Inter-

national Conference on Supercomputing, 2003.
[24] J. P. Sousa and D. Garlan. Aura: an Architectural Framework for User Mobility in Ubiq-

uitous Computing Environments. 3rd Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA-2002), Montreal, Canada, 2002, pp. 29-43.

[25] Sun-Microsystems, Java Remote Method Invocation (RMI), http://java.sun.com/products/
jdk/rmi/index.jsp, 2004.

[26] O Tatebe et. al. The Second Trans-Pacific Grid Datafarm Testbed and Experiments for
SC2003. 2004 International Symposium on Applications and the Internet, January 2004,
Tokyo, Japan.

[27] S. Zachariadis et. al. XMIDDLE: Information Sharing Middleware for a Mobile Environ-
ment. ICSE 2002, Orlando, FL, May 2002.

	GLIDE: A Grid-based Light-weight Infrastructure for Data-intensive Environments
	1 Introduction
	2 Background and Related Work
	2.1 Globus
	2.2 OODT
	2.3 Prism-MW

	3 Arriving at GLIDE
	3.1 GLIDE’s Design
	3.2 Sample Application Using GLIDE
	3.3 Evaluation

	4 Conclusions and Future Work
	5 References

