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ABSTRACT 
Design and validation of mixed-signal integrated systems require 
system-level model abstractions. Generalized Volterra series 
based models have been successfully applied for analog and RF 
component macromodels, but their complexity can sometimes 
limit their utility for time-varying systems and large circuits with 
complex device models or numerous parasitics. In this paper we 
propose simple and efficient analog and RF circuit macromodels 
that provide accurate model abstractions for large, complex time-
varying circuits over frequency bands of interest. By starting with 
the system-level block diagram model structures and focusing on 
the narrow RF bands, the proposed macromodels can efficiently 
capture the nonlinear behavior as well as the impact of RLC 
coupling parasitics via compact reduced-order model forms. 
While the macromodel can trade accuracy for simplicity in terms 
of the number of frequency expansion points, we find that 
expansion about one frequency point provides the accuracy 
required for system-level analysis of most RF and narrow-band 
analog components. The macromodel form corresponds to block 
diagram structures that are easily incorporated into our system-
level simulation tool based on Simulink. 

Categories and Subject Descriptors 
B.7.2 [Integrated Circuits]: Design Aids—Verification. 

General Terms 
Algorithms 

Keywords 
Macromodel, Analog/RF Circuits 

1. INTRODUCTION 
The advance of VLSI technology has made it possible to 

integrate an entire mixed-signal communication system onto a 
single IC or within a single electronic package. To design such 
systems affordably requires a top-down design methodology that 
includes efficient exploration of system-level architectures before 
detailed circuit implementation. In addition, following the design 
implementation, bottom-up verification is required to validate the 
overall system performance with the inclusion of nonidealities 
and parasitics. Clearly, both top-down design and bottom-up 

verification require model abstractions of the RF/analog 
components that are compatible with system-level analyses. 

During the past decade, Volterra series models have been 
developed for characterizing RF/analog circuits [1]-[3]. These 
macromodeling approaches have a solid theoretical background 
[4] and can be extremely accurate and efficient for small circuit 
blocks. In addition, the Volterra series model in symbolic form 
provides intuitive information on the internal behavior of 
RF/analog circuits. However, the complexity of the Volterra 
series model grows dramatically as the circuit size increases, 
since order reduction issue is not addressed in [1]-[3]. Even for 
small circuits, adding parasitic components can result in 
complicated Volterra series models. For this reason, the Volterra 
series model in its symbolic form is most applicable for top-down 
design/synthesis at early design stages [5], where parasitic 
components are not included. 

To address the model order reduction problem for analog 
components with parasitics, research has evolved from the 
interconnect macromodeling work that has been primarily focused 
on linear time-invariant (LTI) systems [6]-[8]. Recently, these 
techniques were extended to time-varying systems and weakly 
nonlinear systems in [9]-[12]. The nonlinear order reduction 
algorithms proposed in [10]-[12] are mathematically elegant and 
can generate accurate reduced-order systems for general nonlinear 
circuits over a wide frequency range, although they result in 
somewhat complex model representations. 

As IC technologies are scaled to finer feature sizes and circuit 
applications move to higher frequency bands, the problem of 
efficient RF component macromodeling becomes more 
pronounced. First, device models become increasingly complex in 
order to characterize the physical behavior for small devices at 
high frequency [13]. The high order derivative information that is 
required for some of the macromodeling approaches [1]-[3], [10]-
[11] is not explicitly available for the complex semi-empirical 
device models, such as the BSIM3 model. Secondly, as the 
frequency increases, the parasitics become more important and 
more complex. However, the bandwidths for GSM and WCDMA 
receivers are 935~960MHz and 2110~2170MHz [14]-[15] 
respectively, for example. In most system-level simulation tools 
such as SPW (Cadence) and COSSAP (Synopsys), complex low-
pass representation is employed to represent and simulate the 
narrow-band signal flow in analog and mixed-signal systems. 
These commercial system-level simulators, consequently, require 
macromodels for specific frequency bands, rather than a general 
wide-band model. 

In this paper we propose a macromodeling methodology for 
analog and RF components over a narrow-band frequency range 
of interest. Importantly, since the effect of frequency translation 
appears in both nonlinear systems and linear periodically time-
varying (LPTV) systems, we analyze the nonlinearities via a 
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linear time-varying approach. This, in turn, indicates that, within 
a narrow bandwidth, the frequency domain Volterra kernel 
transfer functions can be approximated accurately by applying 
existing linear order reduction algorithms for a corresponding 
LPTV system at the center frequency (expansion point). Next, we 
demonstrate that these narrow-band Volterra kernel transfer 
functions can be mapped to simple block diagram model 
structures required for system-level simulation. Theoretically, by 
increasing the number of center frequencies (expansion points) for 
Volterra kernel transfer function extraction, the proposed 
macromodeling approach can be applied for complicated model 
structures containing static nonlinear functions and linear transfer 
functions. In this paper, we find that simple model structure 
associated with one expansion point provides the sufficient 
accuracy within the narrow band of interest, even if the original 
circuit nonlinearity is a complex function over a wide frequency 
range. 

The proposed macromodeling approach, ROMAN (Reduced-
Order Macromodeling of Analog including Nonlinearities), 
provides several promising features compared with other 
modeling approaches. First, no high order derivative information 
of nonlinear devices is required during model generation. Second, 
the macromodel transfer functions are simplified by existing order 
reduction algorithms for linear systems. As such, simple 
macromodels are produced without requiring special nonlinear 
order reduction techniques. Finally, taking advantage of the 
narrow-band property, the proposed macromodel structures are 
assembled via simple block diagrams, and, consequently, are 
easily incorporated into a system-level simulation tool based on 
Simulink. The accuracy and efficiency of the proposed 
macromodels in system-level simulation are demonstrated by a 
GSM receiver in 0.25µm CMOS process. 

2. BACKGROUND 

2.1 Volterra Series Theory 
In general, the Volterra series representation of a time-

invariant nonlinear system can be written as [4]: 
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where ( )tyn  is the nth order response given by 
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( )tx  and ( )ty  are system input and output respectively, 
( )nnh ττ ,,1  is the nth order Volterra kernel, and N is the 

maximum order of system nonlinearities. 
Volterra series theory also provides an explicit formula for the 

steady-state response of weakly nonlinear systems. Consider the 
excitation of a multi-tone input 
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then the nth order steady-state response of the system can be 
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is the nth order kernel transfer function. Without loss of 
generality, we assume the Volterra kernel transfer functions are 
represented by their symmetric forms in this paper. 

2.2 Linear Periodically Time-varying System 
Consider a nonlinear system described by a set of differential-

algebraic equations [10] 
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where ( )tx  are the time-domain circuit variables or unknowns, 
( )tb  is a vector of large-signal excitations, and ( )•q  and ( )•f  are 

nonlinear functions describing the charge/flux and resistive terms, 
respectively, in the circuit. B and D are vectors that link the small-
signal input ( )tu  and output ( )ty  to the rest of the system. 

If input ( )tu  is small, its effect can be characterized by a 

perturbation analysis. Let ( )tx∗  denote the large-signal solution 

of (6) with ( )tu  set to zero. Linearizing (6) at ( )tx∗  yields 
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where ( )tx  and ( )ty  are the small-signal versions of ( )tx  and 
( )ty  respectively, and ( )tC  and ( )tG  are the time-varying 

derivative matrices of ( )•q  and ( )•f . 
Equation (7) describes a linear time-varying system with input 

( )tx  and output ( )ty . Especially, if the matrix coefficients ( )tC  
and ( )tG  in (7) are periodic in time, such a system is so called 
linear periodically time-varying (LPTV) system. The input-output 
relation of the LPTV system can be described by a frequency-
domain transfer function [10], [11] 
 ( ) ( ) ( )ωωω jXjtHjtY ⋅= ,,  (8) 
where 
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For an LPTV system with period T, the time-varying transfer 
function ( )ωjtH ,  in (8) is periodic in t, and, therefore, can be 
expanded into Fourier series [10] 
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where ( )ωjH k  is the Fourier coefficient, Tπω 20 =  and K is 
large enough so that the truncation error of the Fourier expansion 
in (10) is negligible. Substitute (10) into (8), then the following 
equation gives the steady-state response of the LPTV system 
under multi-tone input in (3). 
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3. MACROMODELING FOR WEAKLY 
NONLINEAR TIME-INVARIANT SYSTEM 

3.1 Linear Time-Varying Analysis 
Nonlinear

System
Input Output

( ) ( ) ( )tPtVtx ωω coscos 0 ⋅+⋅= ( )ty  
Fig. 1. Input-output relation of a nonlinear system 

It is well known that both nonlinear system and LPTV system 
present the effect of frequency translation. In what follows, we 
study the circuit nonlinearities from the perspective of linear time-
varying analysis. As such, we can derive a relation between the 
Volterra series representation and the LPTV system 
representation. For the reason of simplicity, we assume that the 
circuit for macromodeling is weakly nonlinear and its maximum 
order of nonlinearities is equal to 3. 

Consider a weakly nonlinear system with a two-tone input 
( ) ( )tPtV ωω coscos 0 ⋅+⋅ , as shown in Fig. 1. Both V and P are 

small enough so that the system in Fig. 1 remains weakly 
nonlinear. If we regard ( )tV 0cos ω⋅  as the input excitation that 
determines the time-varying operation point of the nonlinear 
circuit, then the input-output relation from input ( )tP ωcos⋅  to 
output ( )ty  can be described by an LPTV system. As such, the 
steady-state output response ( )ty  can be evaluated based on the 
LPTV system equations summarized in (8)-(11). 
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Equation (14) and (15) show that the output response ( )ty  
presents frequency translation effect since it contains harmonic 
components at various frequencies { }2,1;0 ±±=+ kkωω . Such a 
frequency translation is referred as the intermodulation effect in 
the community of nonlinear circuit analysis [1], if the nonlinear 
system in Fig. 1 is studied under the two-tone input 

( ) ( )tPtV ωω coscos 0 ⋅+⋅ . In the following, we show that the 
LPTV response in (12)-(15) is actually a subset of the overall 
response generated by the nonlinear circuit. Based on Volterra 
series theory described in (1)-(5), output ( )ty  is given by 
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where 
 PAAVAA ==== −− 2211  (20) 
 ωωωωωωωω =−==−= −− 220101  (21) 

After some mathematical manipulations, ( )ty  can be partitioned 
into two parts 
 ( ) ( ) ( )tytyty NLL +=  (22) 
In (22), ( )tyL  denotes the linear response, namely which is 
linearly proportional to the sinusoidal input amplitude P, 
 ( ) ( ) ( ) ( )tytytyty LLLL 321
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 ( ) ( ) ( )[ ]tjtj
L ejHejHPty ωω ωω −⋅−+⋅⋅= 111 2

~  (24) 

 
( ) ( )[

( ) ] tjktj
k

tj
L

eejkjH

ejkjHPVty

0
02

1
022

,

,
2

~

ωω

ω

ωω

ωω

⋅⋅−+

⋅⋅=

−

±=
∑

 (25) 

 

( ) ( )[
( ) ]

( )[
( ) ]tj

tj

tkjtj
k

tj
L

ejjjH

ejjjHPV

eejkjkjH

ejkjkjHPVty

ω

ω

ωω

ω

ωωω

ωωω

ωωω

ωωω

−

−

±=

⋅−−+

⋅−⋅+

⋅⋅−+

⋅⋅= ∑

003

003

2

2
003

1
003

2

3

,,

,,
4

3

,,

,,
8

3~

0

 (26) 

and ( )tyNL  denotes the nonlinear response that is a nonlinear 
function of P. As a subset of the overall response generated by the 
nonlinear circuit, ( )tyL  in (23)-(26) gives the output response 
that is linearly proportional to input ( )tP ωcos⋅ . Therefore, it is 
exactly the output response evaluated by the LPTV analysis in 
(12)-(15). Comparing (12)-(15) with (23)-(26), we reach the 
following relations. 
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where ωjs = . (27)-(29) are the key equations connecting 
original circuit nonlinearities with the corresponding LPTV 
system. Note that the LPTV transfer functions ( )sH 1±  and 

( )sH 2±  can be easily extracted by existing linear order reduction 

techniques [9], [10]. Substituting ( )sH 1±  and ( )sH 2±  into (28)-
(29), consequently, results in reduced-order Volterra kernels 

( )02  , ωjsH ±  and ( )003  , , ωω jjsH ±± . On the other hand, the 
reduced-order transfer function ( )sH1  can be easily extracted by 
linearizing the original nonlinear circuit at the DC operation 
point, although (27) doesn’t give an explicit relation between 

( )sH 0  and ( )sH1 . 

3.2 Model Structure Mapping 
The Volterra kernel transfer functions ( )sH1 , ( )02  , ωjsH ±  

and ( )003  , , ωω jjsH ±±  determine the circuit behaviors near the 
center frequency (expansion point) 0ω . In this subsection, we 
show that these kernel transfer functions can be mapped to simple 
macromodel structures. 
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Fig. 2. A simple macromodel structure 

Fig. 2 shows a simple model structure that is an extension of 
the Hammerstein model in [16]. In this subsection, we use this 
model structure as an example for Volterra kernel mapping, 
although the proposed ROMAN algorithm is not restricted to 
specific macromodel structures. For the macromodel in Fig. 2, 
 ( ) ( )sHsG 11 =  (30) 
is the 1st order Volterra kernel transfer function, and its 2nd and 
3rd order Volterra kernel transfer functions are given by [4] 
 ( ) ( ) ( ) ( )21221212 , ssGsGsGssH PP +⋅⋅=  (31) 
 ( ) ( ) ( ) ( ) ( )32133213213 ,, sssGsGsGsGsssH PPP ++⋅⋅⋅=  (32) 
Substitute ss =1  and 032 ωjss ±==  into (31)-(32), and, after 
some mathematical manipulations, we obtain 
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The detailed proof for (33)-(34) can be found in [17]. In (33)-(34), 
( )sGP  represents the transfer function of the input impedance 

match network employed in most RF circuits, and it can be easily 
extracted by applying linear order reduction algorithms at the DC 
operation point. Then, after ( )sGP , ( )sH1 , ( )02  , ωjsH ±  and 

( )003  , , ωω jjsH ±±  are determined, the transfer functions 
( )sG1 , ( )sG2  and ( )sG3  in Fig. 2 are determined as well. 
A simple version of the ROMAN algorithm is summarized in 

Fig. 3. The simple ROMAN algorithm in Fig. 3 approximates the 
Volterra kernel transfer functions ( )02  , ωjsH ±  and 

( )003  , , ωω jjsH ±±  at one center frequency (expansion point) 

0ω . However, our complete ROMAN algorithm is not restricted 
to such a single-point expansion. If necessary, we can extract the 
reduced-order Volterra kernel transfer functions at multi center 
frequencies (expansion points), i.e. ( ){ },2,1 , ,2 =± ijsH iω  and 

( ){ },2,1 , , ,3 =±± ijjsH ii ωω , and map those kernels to more 
complicated model structures. As the number of expansion points 

iω  increases, we can include more problem unknowns into the 
model structure and, theoretically, the ROMAN algorithm can be 
applied to various macromodels containing static nonlinear 
functions and linear transfer functions. The essence of the 
ROMAN algorithm is to externally approximate the nonlinear 
circuit behavior within the selected frequency bands of interest. 
However, as the bandwidth increases, a great number of 
frequency expansion points, as well as complicated model 
structures, are required to achieve the sufficient accuracy. In such 
cases, the ROMAN algorithm might lose its efficiency, since it 
doesn’t explore the internal structure of the circuit and solving a 
large set of problem unknowns externally results in high 

computation cost and various numerical problems. The Volterra 
series approaches in [1]-[3], on the other hand, investigate each 
nonlinearity in the circuit and build the macromodel internally. 
These approaches can capture circuit behaviors over a wide 
frequency range with complex macromodels, although the 
privilege of selecting frequency bands is lost during their internal 
macromodeling process. 

Fig. 3. Simple ROMAN implementation 

4. MACROMODELING FOR WEAKLY 
NONLINEAR TIME-VARYING SYSTEM 

The ROMAN algorithm proposed in this paper can be 
extended to weakly nonlinear periodically time-varying (NLPTV) 
systems, such as the RF mixer with fixed LO input. Note that, for 
NLPTV macromodeling, the symbols ( )sG1 , ( )sG2  and ( )sG3  in 
Fig. 2 represent the corresponding LPTV transfer functions. Due 
to the limit of space, the detailed mathematic description for 
NLPTV macromodeling is not included here. Further discussions 
on this topic can be found in [17]. 

5. SIMULATION RESULTS 
RF Input

2uV, 935MHz LNA

RF
Mixer

LO Input
1V, 864MHz

IF
Amplifer

RF Signal
935MHz

IF Signal
71MHz

IF Output
71MHz

 
Fig. 4. Block diagram of GSM receiver 

Shown in Fig. 4 is a GSM receiver system in 0.25µm TSMC 
CMOS process. Employing the proposed ROMAN algorithm, we 
first build the macromodels for LNA and RF mixer. The IF 
amplifier in Fig. 4 is assumed to be ideal for this analysis and, 
therefore, it is modeled by a linear transfer function. We should 
note, however, that nothing precludes us from representing this 
component by a ROMAN macromodel as well. Next, we connect 
all these components together and simulate the overall GSM 
receiver in our simulation tool to verify its performance at the 
system level. All the simulations are performed on a Pentium IV-
1.4GHz computer with 256 MB of memory. 

� Compute the DC operation point of the nonlinear circuit 
and extract the reduced-order transfer function ( )sH1  and 

( )sGP  by PRIMA [8]. 
� Given a sinusoidal input ( )tV 0cos ω , compute the steady-

state solution ( )tx∗  of the nonlinear circuit. Here, 0ω  is 
the center frequency and V is chosen small enough so that 
the circuit remains weakly nonlinear up to 3rd order. 

� Linearize the nonlinear circuit at ( )tx∗  and extract the 

reduced-order LPTV transfer function ( )sH 1±  and 

( )sH 2±  by TVP [10]. 
� Compute the reduced-order Volterra kernel transfer 

function ( )02  , ωjsH ±  and ( )003  , , ωω jjsH ±±  based 
on equation (28)-(29). 

� Map the obtained ( )sH1 , ( )02  , ωjsH ±  and 
( )003  , , ωω jjsH ±±  to the model structure in Fig. 2 

using equation (30), (33)-(34). 
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5.1 Low Noise Amplifier 
Fig. 5 shows the circuit schematic of a differential LNA that 

includes 13 MOS transistors. This unusually large number of 
transistors for an LNA is a good example since it produces highly 
complex nonlinear behaviors to test the proposed macromodels. 
The center frequency of the LNA is 900MHz. Applying ROMAN, 
we construct the LNA macromodel by the simple structure in Fig. 
2. In this example, ( )sGP  is the linear transfer function of the 
input impedance match network, as illustrated in Fig. 5. TABLE I 
shows the order numbers for both the original circuit and the 
linear transfer functions in the macromodel. 

VCC

Output

Input
M1 M2

( ) ( ) ( )
( )sV

sVgssVgs
sG

in

MM
P

21 −
=

 
Fig. 5. Circuit schematic of LNA 

TABLE I. System order for LNA macromodel 
 Original Circuit ( )sGP  ( )sG1  ( )sG2  ( )sG3  

Order 39 6 4 8 8 
We first perform steady-state analysis and test the 

macromodel using single-tone input with an amplitude range of 
1~10mV and frequency range of 750~1050MHz. This frequency 
range is reasonably large compared with typical bandwidths for 
RF applications [14]-[15]. Even for such a wide bandwidth, the 
maximum modeling error is 2.27% when defined as: 
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In (35), iŶ  is the ith order output harmonic obtained by the 
original LNA circuit, iY  is the corresponding result estimated by 
the macromodel, and N is chosen large enough so that those high 
order harmonics beyond N are negligible. 

Next, we run a two-tone test on the developed macromodel. 
The amplitude and frequency ranges of the 1st sinusoidal tone are 
set to 1~10mV and 750~1050MHz respectively. The amplitude of 
the 2nd sinusoidal tone is fixed at 10mV, and the frequency 
difference between two input tones is fixed at 1MHz. Fig. 6 
shows the estimated 3rd order intermodulation distortion (the only 
in-band distortion for LNA) from the macromodel. Fig. 7 shows 
the corresponding absolute error for the estimated distortion. 

Two observations can be made based on the error distribution 
in Fig. 7. First, the developed macromodel is most accurate 
around the center frequency 900MHz, since, in this example, the 
reduced-order Volterra kernel transfer functions ( )02  , ωjsH ±  
and ( )003  , , ωω jjsH ±±  are extracted at the center frequency 

⋅= πω 20 900Rad/Sec. This observation indicates that the 

frequency bands of interest can be selected by the ROMAN 
algorithm during the macromodeling process. Second, but more 
importantly, the high macromodeling accuracy at the center 
frequency 900MHz implies that, although the overall 
nonlinearities for the original LNA circuit are complicated in this 
example, its narrow-band behavior can still be approximated 
accurately by a simple macromodel structure associated with a 
single frequency expansion point. 
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Fig. 6. Estimated distortion from macromodel 
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Fig. 7. Error in intermodulation distortion 

For testing the simulation speed of the macromodel, we 
perform steady-state simulation on both the LNA circuit and its 
macromodel under single-tone input. The computation costs are 
1.71 seconds for the original circuit and 0.0293 seconds for the 
macromodel respectively. 

5.2 Double-Balanced Mixer 
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Fig. 8. Circuit schematic of mixer 

Fig. 8 displays a double-balanced mixer for down-conversion, 
in which the LO input is fixed as a sinusoidal signal of amplitude 
2V and frequency 874MHz. The input-output behavior from RF 
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input to IF output, therefore, is a weakly nonlinear periodically 
time-varying system [3]. We build the mixer model using the 
model structure in Fig. 2. TABLE II shows the order numbers for 
both the original circuit and the linear transfer functions in the 
macromodel*. 

TABLE II. System order for mixer macromodel 
 Original Circuit ( )sGP  ( )sG1  ( )sG2  ( )sG3  

Order 345 11 11 16 16 
We run steady-state analysis to test the macromodeling 

accuracy where the amplitude and frequency ranges for the RF 
input are set to 10~300mV and 750~1050MHz respectively. The 
maximum modeling error is 7.23%. Here, the macromodeling 
error is similarly evaluated using (35). 

For testing the simulation speed of the mixer model, we run 
steady-state simulation on both the mixer circuit and its 
macromodel. The computation costs are 10954 seconds for the 
original circuit and 0.0765 seconds for the macromodel 
respectively. 

5.3 System-Level Simulation 
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Fig. 9. Simulation results for GSM receiver 

Using our system-level simulation tool based on Simulink, a 
transient simulation is performed for the overall GSM receiver for 
the time range [ ]sµ1 ,0 . An FFT is applied to the output signal 
after the steady state is reached. Fig. 9 displays the output 
frequency spectra of various circuit components. The overall 
computation time is 28.44 seconds. Note that, without such 
macromodels, system-level verification with the inclusion of 
parasitics becomes impractical. 

6. CONCLUSIONS 
The behavior of RF circuits is characterized by complicated 

nonlinearities, due to the numerous nonlinear components that 
contribute to the overall circuit performance. However, efficient 
high-level simulation of RF systems requires simple macromodels 
for individual circuit blocks. By exploring the narrow-band 
property in RF applications, the proposed ROMAN algorithm can 
generate simple macromodels for RF circuits within the selected 
                                                                 
* In this case, mixer is a periodically time-varying system. Its order is 
proportional to the harmonic number generated by the LO excitation [10]. 
Due to the large LO amplitude, the LO harmonic number is set to 15 in 
this example. 

frequency bands of interest. These simple macromodels, with 
block diagram structures, can be easily incorporated into our 
system-level simulation tool based on Simulink for efficient high-
level evaluation, as demonstrated by the GSM receiver system 
example. 

7. ACKNOWLEDGMENTS 
This work has been supported by the MARCO Center for 

Circuits, Systems and Software (under MARCO contract 2001-
CT-888 and DARPA grant MDA972-02-1-0004) and the 
Semiconductor Research Corporation (under contract 2000-TJ-
779). 

8. REFERENCES 
[1] P. Wambacq and W. Sansen, Distortion Analysis of Analog 

Integrated Circuits, Kluwer Academic Publishers, Boston, 1998. 
[2] P. Wambacq, P. Dobrovolny, S. Donnay, M. Engels and I. Bolsens, 

“Compact modeling of nonlinear distortion in analog communication 
circuits,” IEEE DATE, pp. 350-354, 2000. 

[3] I. Vassiliou and A. Sangiovanni-Vincentelli, “A frequency-domain, 
Volterra series-based behavioral simulation tool for RF systems,” 
IEEE CICC, pp. 21-24, 1999. 

[4] M. Schetzen, The Volterra and Wiener Theories of Nonlinear 
Systems, J. Wiley & Sons, 1980. 

[5] G. Gielen, “Modeling and analysis techniques for system-level 
architectural design of telecom front-ends,” IEEE Trans. MTT, vol. 
50, pp. 360-368, Jan. 2002. 

[6] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation 
for timing analysis,” IEEE Trans. CAD, vol. 9, pp. 352-366, Apr. 
1990. 

[7] P. Feldmann and R. W. Freund, “Efficient linear analysis by Pade 
approximation via Lanczos process,” IEEE Trans. CAD, vol. 14, pp. 
639-649, May. 1995. 

[8] A. Odabasioglu, M. Celik and L. T. Pileggi, “PRIMA: passive 
reduced-order interconnect macromodeling algorithm,” IEEE Trans. 
CAD, vol. 17, pp. 645-654, Aug. 1998. 

[9] J. Phillips, “Model reduction of time-varying linear systems using 
approximate multipoint krylov-subspace projectors,” IEEE ICCAD, 
pp. 96-102, 1998. 

[10] J. Roychowdhury, “Reduced-order modeling of time-varying 
systems,” IEEE Trans. CAS – II, vol. 26, pp. 1273-1288, Oct. 1999. 

[11] J. Phillips, “Projection frameworks for model reduction of weakly 
nonlinear systems,” IEEE DAC, pp. 184-189, 2000. 

[12] M. Rewienski and J. White, “A trajectory piecewise-linear approach 
to model order reduction and fast simulation of nonlinear circuits and 
micromachined devices,” IEEE ICCAD, pp. 252-257, 2001. 

[13] M. Chan, K. Hui, C. Hu and P. Ko, “A robust and physical BSIM3 
nonquasistatic transient and AC small-signal model for circuit 
simulation,” IEEE Trans. Electron Devices, vol. 45, pp. 834-841, 
Apr. 1998. 

[14] P. Orsatti, F. Piazza and Q. Huang, “A 20mA-receiver, 50-mA-
transmit, single-chip GSM transceiver in 0.25-µm CMOS,” IEEE 
JSSSC, vol. 34, pp. 1869-1879, Dec. 1999. 

[15] A. Parssinen, J. Jussila, J. Ryynanen, L. Sumanen and K. Halonen, 
“A 2-GHz wide-band direct conversion receiver for WCDMA 
applications,” IEEE JSSC, vol. 34, pp. 1893-1903, Dec. 1999. 

[16] H. Unbehauen and G. Rao, Identification of Continuous Systems, 
Elsevier Science Publishing Inc., 1987. 

[17] X. Li, P. Li, Y. Xu and L. Pileggi, “Analog and RF circuit 
macromodels for system-level analysis,” Technical Report, Carnegie 
Mellon University, 2002. 

483


	Main Page
	DAC'03
	Front Matter
	Table of Contents
	Author Index




