Functional
verification of the
2990 superscalar,
multibook
microprocessor
complex

This paper describes the verification methods and techniques
that were established to verify the microarchitecture and
architectural correctness of the z990 microprocessor and
storage subsystem. The ring-based, four-book storage
subsystem links 64 superscalar microprocessors together in
this system. The verification process started at the unit level,
which focused on the correctness of the microarchitecture,
and then proceeded to the element level to verify the
architectural correctness of the microprocessor and

D. G. Bair

S. M. German
W. D. Wollyung
E. J. Kaminski, Jr.
J. Schafer

M. P. Mullen
W. J. Lewis

R. Wisniewski
J. Walter

S. Mittermaier
V. Vokhshoori
R. J. Adkins

M. Halas

T. Ruane

U. Hahn

storage subsystem. After successfully completing element
stress testing, the components were combined and

verified at the system level. Since the methods used at
system-level verification were much the same as the ones
used on the CMOS-based IBM S/390® Parallel Enterprise
Server G4, the focus of this paper is on the work done at

the unit and element levels.

Introduction

A major logic verification effort was required to verify
the functionality of the z990 superscalar, multibook
microprocessor complex. The verification team developed
and executed a staged verification plan based on a broad
range of verification technologies and collaborated with the
logic design team to formulate the verification plan to ensure
that all features of this complex system were fully verified.
To successfully verify this design point, the verification
team built on the hierarchical verification approach
used on the CMOS S/390* Parallel Enterprise Server
G4 System [1]. For this system, the verification effort
began at the protocol level using an abstract model. It
then continued at the designer level, subunit level, unit
level, multiunit level, element/chip level, and finally system
level. The abstract protocol model, using a formal
verification tool called the Murphi Verifier, allowed the
team to verify the multibook protocol before the design
was committed to a hardware description language (HDL).
All major units in the microprocessor were first verified in

a unit simulation environment. Subunit and multiunit
simulation environments were created as necessary to fully
stress the microarchitecture.

The verification team included a core of expert
verification engineers who were responsible for setting the
direction of the different simulation environments. These
experts would select the simulation logic boundaries
as well as the verification technology used to verify
a particular piece of the design point. Both proven
verification technologies and new, leading-edge techniques
were used to verify this complex design point. There was
no set formula to determine which technology to use for
a given environment. The verification techniques from
which the team of experts selected included the following
technologies: Murphi Verifier, extended coverage models,
asynchronous clock modeling [2], random command-driven
techniques, architectural test-case generators, system
reset verification, disabled or degraded configuration
verification, recovery verification, and performance
verification techniques.

©Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

D. G. BAIR ET AL.

347

348

ankl | Eal
[e] [¢] [e] [¢]
EE Mem @E Mem

2 IL;

HH
%]
(S}

C C

Mem Mem

ENEENE
=l [=] =] [=]
ENEENE
=] [=] =] [=]

Four-book z990 system. (P: processor; Mem: section of main mem-
ory; L2: L2 cache; SC: system control.)

Book 0 Book 1

Book 3 Book 2

O,

Four-book z990 system showing a typical state of the protocol
model. M4 and M5 are messages issued by Node 2; M6 and M7
are messages issued by Node 3. The three cache-line states are
EXCL (exclusive); IM (intervention master); and INV (invalid).

Formal verification of the memory ring protocol
Figure 1 illustrates a four-book z990 system. Each book
contains processors (P), a section of main memory (Mem),
an L2 cache (L2), and a system control (SC). The books

D. G. BAIR ET AL.

send and receive messages on a bidirectional ring. When a
processor issues a memory request that cannot be satisfied
locally within the book, the SC sends messages to the
other books on the ring. The messages that flow on the
ring and the rules for processing these messages form the
memory ring protocol.

Because the memory ring protocol for the system was
a new design with many novel features, the design team
considered it important to formally verify the protocol.
Over the course of the project, the formal verification
process revealed a number of crucial problems, which
led to major changes in the design of the protocol.
Significantly, most of these problems were not detected
in the course of random simulation of the logic-level
implementation.

The general method for analyzing a complex protocol,
such as the z990 ring protocol, is to create an abstract
protocol model that can be checked by systematically
examining all of its reachable states. There are two
reasons why the team needed to use an abstract model
instead of attempting to formally verify the logic-level
implementation of the protocol. First, the logic-level
implementation was much too large to formally verify by
current methods. To check the correctness of the z990
ring protocol, the team had to show that when the four
books interacted on the ring, no errors could arise from
the interaction. While the logic-level implementation of
the four books was much too large to verify formally, a
protocol model of the four books was small enough to be
fully analyzed. The second reason for building a protocol
model was that it allowed the designers to check the
correctness of new protocol features before implementing
them. The team found that this ability saved them
valuable time in the design project.

The tool used by the team to model and verify the
protocol was a version of the Murphi Verifier [3],
extended to increase its capacity for verifying large
systems. The extended verifier used data stored on disk
as well as in main memory [4].

The team constructed a protocol model that represented
the operation of the four books with respect to a single
memory address. The purpose of the model was to check
whether the protocol maintains a few crucial memory
system properties, including coherence, across the four
books. With the property of coherence, if one book has
a copy of the data marked exclusive, no other book has
a copy of that data. Since there was little interaction
between memory operations on different addresses,
properties such as coherence could be analyzed in an
abstract model having only a single memory address.

A typical state of the model is illustrated in Figure 2.
The state of each book is represented by a box, where the
upper part of the box contains information about the

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

directory state of the book and the lower part of the box
shows which messages are present at the book. The left
and right halves of the message area correspond to
different stages of message processing within the book. In
the ring protocol, when a book issues a memory request, it
sends two messages around the ring in opposite directions.
The figure shows two messages from the red book (Book 3)
and two messages from the green book (Book 2). The
actual model contained many state variables not shown
in the diagram.

Our protocol modeling and verification effort started
in 2000 and continued for two years. During this time,
the protocol was in constant revision, partly in response
to problems detected by protocol verification and partly
owing to problems detected by other traditional simulation
environments. One advantage of the team’s approach was
that the model could be changed very rapidly and reverified
as the protocol evolved.

The types of errors found by protocol verification
included

Errors in the complex rules governing when messages
can be issued on the ring and the order in which
messages are processed in a book.

Errors in the rules by which books keep track of the
operations that are currently pending (in progress).
Errors in the rules for assigning accept or reject
responses to memory requests.

During development, random simulation was applied to
the system implementation continuously. In some cases, an
error found by protocol verification remained uncorrected
in the implementation for many months. It is interesting
to note that random simulation did not detect these
errors, even after months of searching with simulation.

As a result of the experience of using protocol
verification on the z990 system, the Systems and
Technology Group is planning to use formal protocol
verification in its future projects. The team found that the
ability to check protocol features prior to implementation
saved valuable time in the design process.

Memory storage controller verification
The 2990 was the first zSeries* server with a memory
storage controller (MSC) unit-level simulation environment.
This environment was developed as a result of exposures
found during the initial power-on of previous design
points. The analysis of test-floor escape for prior systems
indicated a weakness in the ability to stress the MSC
design with various memory configurations and a need
to narrow the focus of the initial power-on sequence.
The MSC verification environment was built on the
same platform as the SC environment, described in more
detail in the next section. There were two main reasons

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Memory card 0 Memory card 2
{DmMM 00}, {DIMM 10}, {DIMM 20}, {DIMM 30},
HDIMM 011 {DIMM 11 HDIMM 21} H DIMM 314
pivm 02]{ H{ pivim 12]] HpmMm 2214 H DiMM 321,
H{DivMM 03} {DivMM 13} IpiMwm 40} | (HDivM 23| H Dimm 331

F0 Fl F4 FO Fl
L osmt HU smr L swr L s L] swr

Data Key Data
| | |
| MSC |

SC-to-MSC driver

Denali MMAV-based memory model.

for this. The first was to share as much of the verification
environment as possible to avoid duplication of common
sharable resources. This allowed us to use a very small
team to control and maintain a completely separate
environment. Second, this allowed the two environments
to be seamlessly joined into a larger test platform with
minimal changes to the environment. This larger
environment also provided a feedback process for the
MSC unit platform. All problems that were uniquely
found in either SC or system simulation models were
analyzed, and enhancements were made in the MSC unit
environment to eliminate this exposure in the unit model.

Prior test-floor feedback also indicated that the team
needed to enhance the verification of the memory
interface. During our analysis, we investigated tools that
were available in the marketplace to aid in the testing of
the memory design. We discovered that Denali Software
produced a tool called Denali MMAV** that verified
DRAM memory specifications. We were able to retrofit
the Denali MMAYV tool into the MSC environment with
the help of our internal simulation tools department.
With this tool, we were able to enhance the checking
on the memory interface.

The Denali MMAV-based model is shown in Figure 3.
The main purpose of this model was to verify the protocol
between the MSC design and a virtual representation of
the main memory cards. The connection to memory was
accomplished via the synchronous memory interface
(SMI). The SMI is a separate chip that provides a
connection to the real memory. In this model, we used the
SMI simply to provide a path to the memory. The Denali
MMAV tool was designed around dynamic random-access

D. G. BAIR ET AL.

349

350

Memory card Memory card
[Rank 0]||/[Rank 0 | Rank 0 Rank 0

K
[Rank 1]| [Rank1] &%
[Rank2 J||[Rank2]
Rank 3]||[[Rank 3 |[Rank]

i s s s [

K
Rank 1 Rank 1 (Key)
[Rank2 J||[Rank2 |

Rank 3 |||[Rank 3][Rank]|

i s [] s

COres | [COores |[Cores | (COres | [Cores | |Cores| | cores || cores

Dual || Dual || Dual |[Dual |[Dual | [Dual || Dual || Dual |} [C++

One-book system control simulation environment.

memory (DRAM) technology. Our memory design used
industry-standard dual inline memory module (DIMM)
technology. To use the MMAV tool, the user needed to
build a model of the DIMM, including any necessary
buffers. Building a strict representation of memory would
have taken 72 DRAMs per SMI chip (4 DIMMs X 18
DRAMs/DIMM) and a large amount of overhead in the
complicated modeling connections. Our goal here was not
to verify the DIMM, but to prove that the MSC design
was capable of functioning with the DIMM technology. To
simplify the connection to memory, we used the MMAV
tool to widen the bit definition of the DRAM data to
build our minimal configuration. By evaluating the
memory connections, we removed the redundant DIMM
connections to provide this simplified representation. This
simplification also provided a cleaner memory layout for
memory initialization. Our new model took a 72-DRAMs-
per-SMI chip to a minimum of four “super” DRAMs per
SMI chip. Using this simplified memory connection, we
were able to issue all memory commands through the
Denali MMAYV tool and verify the MSC-to-main-memory
protocol.

The Denali MMAV tool did not come without a
financial burden; every simulation run required a license
from Denali Software. We needed to balance the value
added by using the Denali model against the cost of the
licenses. Since the Denali environment was almost as
transparent as moving to the SC environment, we felt that
we needed only to spot check some percentage of tests to
prove that the base MSC unit platform was not violating
any memory specifications. The team decided that ten

D. G. BAIR ET AL.

Denali MMAYV licenses would give us sufficient capacity
while limiting the cost.

SC verification
The SC verification environment focused on testing the
functionality of the system controller control (SCC) and
system controller data (SCD) chips, although it also aided
in the testing of the MSC chip because the MSC hardware
description language (HDL) was also contained in the SC
simulation models. However, as described in the previous
section, the MSC was more thoroughly tested in its own
environment.

The SC provides four basic functions in the z990 system:

1. It interconnects four books of eight dual-core processor
chips via a ring fabric.

2. It provides a second-level shared cache between the
private L1 cache in each processor and the memory
cards.

3. It acts as a cache for certain input/output (I/O) data
accesses by the memory bus adapter (MBA).

4. It provides data management functions for data
sharing between processors and I/O, maintaining data
coherency, and guaranteeing that each processor is
always working with the most recent copy of data.

Two main simulation models were used in the SC
verification environment: a one-book model, shown in
Figure 4, and a four-book model. The four-book model
could be dynamically configured at run time to represent
any supported system configuration (e.g., two-book closed
ring, three-book open ring, and so on), which allowed us
to avoid having to build and maintain a multitude of
models. The four-book model could even be configured
as a one-book system, but we kept the separate one-book
model since the model size was smaller and the simulation
jobs ran faster.

SC chip-level verification was accomplished by building
on “random-based” environments and methodologies used
on previous S/390 systems, such as the G4 system [1].
However, the z990 SC had many new design features, such
as the ring fabric, that posed significant new challenges to
the verification team.

One significant improvement to the SC verification
environment was to add “looping” capabilities to the
processor driver. From the team’s experience with
previous systems, we recognized that one weak point of a
random-driven environment is that it is inherently difficult
to generate synchronous-type loops, also called /ivelocks.
In the past, the team had test-floor escapes in which a bug
in the SCC could cause a processor request to “starve”
and ultimately hang. This class of bug would be uncovered
only by creating a repeated pattern of commands; any

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

slight deviation from the pattern would cause the errant
logic to break out of its livelock state. The team
implemented two different loop modes in the processor
driver—a user loop mode and a random loop mode. The
user loop mode gave the user the ability to create a
specific set of processor commands, including cycle
delays, on which the processor driver would loop during
execution. The random loop mode allowed the user to
specify a list of commands, and the processor driver would
choose its own loop using those commands. These loop
modes actually enabled the team to catch several SCC
bugs that would otherwise have escaped to the test floor.

The move to four books from the two nodes of previous
systems introduced a new ring structure and coherency
protocol. Owing to the ongoing evolution of the ring
design, no stimulus was directly applied to the ring
interface because of changes in the interface protocol.
Ring traffic was generated by driving the microprocessor
and I/O interfaces with commands that would, in turn,
cause the SC to generate commands across the ring.

The team took measurements of bus utilization and
determined that sufficient ring traffic was being
generated and a separate ring driver was not required.

The ring protocol depended on the following states:
intervention master (IM), memory master, multicopy, and
local directory state information. Different combinations of
directory states were warm-loaded into the SC arrays at
the beginning of the simulation runs. This allowed the
test cases to reach interesting directory states early in the
simulation run. A set of remote access bits were also used
in the configuration array segment boundaries to reduce
ring traffic. This was needed for addresses being used both
locally and exclusively. These bits were preloaded for
coherency and to influence the ring traffic.

To correlate the Murphi abstract model with the actual
model, the rules from the Murphi model were implemented
as checks on the HDL model. Even with this effort,
differences between the Murphi and HDL models
existed. These differences were exposed when a number
of problems were found on the test floor. The checking
drawn from the Murphi model was expanded after a
number of coherency problems were found in the
hardware. These problems involved long delays that
resulted in defeating the IM bit address protection and
resulted in out-of-order processing of ring requests. The
team should have introduced longer delays affecting
individual requests in the verification process, either by
direct manipulation of internal wires or latch values in the
simulation model or by using some of the disable switches
that were included in the hardware. This would have
uncovered many of the test-floor escapes that resulted
from long delays and for which the blocking conditions
for large blocks of time were rare.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

The team collected statistics on the ring priority logic
(requestors granted during request period, number of
cycles before grant in request period). While we initially
collected this information in order to assess efficiency, we
later used and augmented the statistics to fine-tune the
priority to correct problems discovered on the test floor.
The improvements to the statistics involved increasing the
categories of requestors so that some categories could be
ignored while others were watched more closely.

Another new feature of the ring structure was the
ability to perform concurrent book upgrades in which new
books with processors, I/O, and memory could be added
without having to take the machine offline. The testing of
this feature was implemented with a control sequence
located primarily in the processor driver, where the
millicode operations for the sequence were generated
and sent. The testing of the upgrade function involved
quiescing the processor (see the section on quiesce below),
holding I/O, and changing ring fences as needed to open
the ring, add a book, and close the ring. While the ring
fences were active, random patterns with and without
good error-correction code and parity and interface
alignment protocol (IAP) patterns were directed against
the fenced ring interfaces. As long as the ring fences were
verified in this environment, the team did not think
it necessary to run the actual IAP sequence while
performing the concurrent book upgrades. The IAP
sequence was tested separately in another simulation
environment, saving thousands of cycles in the concurrent
book upgrade sequence. When a new book was brought
online, additional addresses were made available to the
processor and I/O drivers that resided in physical memory
on the new book.

Elastic interfaces (EIs) were used on the SC-MBA
interface, book-to-book interface, and MSC-SMI
interface. The EI logic was responsible for presenting all
of the incoming interface data to the receiving I/O blocks
on the same clock cycle, even though the interface lines
could have been skewed over a cycle boundary. The cycle
in which the EI logic presented data to the receiving I/O
blocks was known as the target cycle. The logic for the EI
was verified separately using gate-level models before
the logic was tested at the element level. The goal
for verification at the element level was to verify the
operation of the IAP controls, the interface fences, and
the effects of changes in delays due to wires and EI target
cycles. Verification of the code that drives the IAP process
was done at the system level.

To take advantage of the faster one-cycle simulation
models, the team replaced the EI logic in those models
with dummy HDL that modeled the delays for the EI
target cycle. The team modeled wire delay using a newly
developed bidirectional HDL wire delay driver, which was
added to the simulation model during the model-build

D. G. BAIR ET AL.

351

352

I-cache
]
v |
L2, E-unit T
Random DRV
envelope
P DRV Translator | TLB2 |\-»| CHK | TLB2
space) CHK |<—|
R-unit
SR
; i
D-cache

Translator unit simulation environment. (E-unit: execution unit;
R-unit: register unit.)

process without affecting the HDL design libraries. This
form of modeling the wire delay was used in element
simulation and also in system simulation. Because it was
an HDL solution, it could be used on the hardware
accelerators during system simulation initial machine load
testing.

Care was taken to correlate the target cycle values used
in the one-cycle and two-cycle models [1, 5] with EI logic
and the hardware running on the test floor. Because IAP
took up to 200,000 simulation cycles for some interfaces, a
post-IAP state was captured after completing IAP so that
it could be loaded into the model without running IAP for
the majority of the two-cycle test cases. These states were
affected by the wire delay used, so a number of states
were collected and the appropriate one was loaded with
respect to the wire delay being used in a particular
simulation model. The same post-IAP states were used
in element and system simulation. By using the actual
post-IAP states, the EI target cycle settings remained
consistent in all environments, whether running our
simulation models (either through the actual IAP
sequence or after loading a post-IAP state), or running
real hardware on the test floor.

The ring IAP presented an extra level of complexity
because five chip-to-chip connections were needed to
connect one book to another on each ring port. One SCC
and four SCD chips on each book had to communicate
with their counterparts on the other book. Because the
IAP calibrated an interface to the worst delay encountered
on the wires for that interface on a per-chip basis, and
because all five chips had to see the same delay for the
logic to function correctly, an extra voting step was used
for the ring calibration in which the worst case was
determined for the five chips and shared with the other
four chips. Voting was followed by another step to ensure
that the calibration values were correct. The team

D. G. BAIR ET AL.

programmed the wire-delay driver to show different delays
between the five chips in order to verify that the voting
function worked correctly.

Initially, delays between pairs of books were set over a
random range centered on the expected nominal delays
for the book interconnects across the backplane. The logic
was not designed for completely arbitrary delays around
the ring, and adjustments were made to constrain the
delays to more closely reflect the physical placement
of cards in the backplane and, where a book was not
installed, the use of shunting cards. A range was still used
to allow for differences in cycle times, but the delays
across each leg were now related to the delays on the
other legs. While some differences were anticipated
because of placement on the backplane and because
variance was added in simulation to account for this, there
was another source of delay differences. When cycle times
cause the delays to be near a cycle boundary, the delay
across the wire could just make or just miss timing,
thereby causing a deviation from the balanced delays, with
one or more legs seeing an extra cycle. The design was
not expected to handle this case, and the EI was used to
balance the delays by adding additional cycles to the legs
that fell on the short side of the delay boundary under
service processor control.

IAP is controlled through a set of registers that is
accessed via the clock serial interface. Using the serial
interface in the SC model would have required too many
simulation cycles, so software drivers were used to modify
the latches directly. Because the serial interface timing
between chips could vary, variable delays for the model
accesses between chips were added to identify any
problems that might result from the timing differences.

Processor verification

The verification of the processors in a z990 system—
because of their size and complexity—was done at both
the unit and the processor level. Unit environments were
created for the translator unit, the instruction unit (I-unit),
the execution unit (E-unit), and the buffer control
element (BCE) unit. In addition, a subunit environment
was created for the operand buffer. The structure of a
unit simulation environment is shown in Figure 5.

In the past, the BCE was the only unit that had an
extensive unit environment. The team added a unit
environment for the translator because its logic was now
in a separate unit (it had previously been part of the
BCE) and, with the addition of a second-level translation-
lookaside buffer (TLB2) (discussed below), the translator
was now more complex than on previous machines.
Extensive I-unit and E-unit environments were created
because of both past test-floor escapes and the increased
complexity of the z990 design. Finally, the team created a
subunit environment for the operand buffer because, in

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

addition to its complexity, there was no way to adequately
test this function at the element level. The team found
that by concentrating on verification at the unit level,
problems could be discovered and fixed more quickly and
that the resulting element simulation environment ran
with fewer errors than on previous machines.

Translator unit verification

The zSeries address translator translates virtual addresses
used by programs into absolute addresses used to access
real storage. The translation can involve several table
lookups (up to 35) as well as a prefixing operation (done
to relocate the first 4K of storage). The address translator
must be able to support 24-, 31-, and 64-bit addresses.

To improve performance, the translator contains a TLB2,

where information on recently translated addresses is kept.

The team used an address translation reference model
called address space to provide us with a set of virtual
addresses and the data required for the translation
process. The address space and other generic functions
(for example, a random number generator) used for
simulation were contained in a shared library called the
random simulation environment. Addresses were randomly
picked from the address space by software drivers and
used to stimulate the inputs of the translator. Software
monitors were connected to each interface to check
protocol conformance and expected results.

In addition to the interface checkers doing a black-box
check, we also used a white-box checker for the TLB2.
This was needed to verify performance characteristics
of the TLB2 that were not visible at the interfaces
of the translator. The TLB2 checker was a software
representation of the real hardware TLB2. To avoid
simulation speed slowdown, the equivalence between
hardware and software was checked only when the TLB2
contents changed and when the test case ended. The
TLB2 checker was also used to preload the TLB2 and
to ensure a graceful degradation of the TLB2 arrays.

Operand buffer subunit verification

The random test-case driver approach was used to verify
the functionality of the operand buffer control logic [1].
As shown in Figure 6, the environment included the
operand buffer controls, dataflow logic, and fetch control
logic. These were surrounded by drivers representing the
I-unit (where address generation was done), the E-unit,
and the BCE, as well as by software monitors.

The monitors/drivers were responsible for initiating
requests, responding to logic requests, initiating cross-
invalidates (XIs), and verifying the results at the end of
each request by checking the correctness of the data and
exceptions being reported. All driver operations were
under the control of various parameter files. This allowed
control of the delay between request and responses, XIs,

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Parameter
file

Instruction Operand BCE
unit I fetch unit
behavioral control logic behavioral
Execution Operand buffer
L unit control/
behavioral dataflow logic

Low-level
end-of-request/instruction
checking

Operand
refetch monitor

Translator unit simulation environment.

exceptions, branch wrong indications, and BCE address
compare, allowing specific areas to be easily targeted.

It was particularly difficult to verify the operand refetch
mechanism. This was complicated by the out-of-order
data returned from the BCE. The team verified this by
modeling the operand buffers in software, keeping track of
valid operand buffers as well as the addresses and data
associated with each operand buffer. Simulation code
would randomly pick a cycle to force XIs, obtain an
address to invalidate, and force XIs to all operand buffers
associated with that address. At that time, the actual
buffer data was modified to cause a failure if old data was
used before refetch and the first buffer to be refetched
was saved. As each request was processed, the code
verified that the correct buffers were refetched at the
correct time. This mechanism allowed the buffers to be
refetched multiple times per instruction. Because the data
could be returned out of order, the monitors had to
ensure that only the correct buffers were refetched and
that no buffer with old data was used. Using this method,
the team was able to quickly discover and fix complex
problems at the unit level.

I-unit verification

The methodology used in the I-unit verification
environment was the random test-case driver approach
described in [1]. This allowed for much longer test cases
to be run in a shorter period of time, since there was no
need to generate a test case prior to run time. Another
reason for using the random test-case driver method for
unit simulation was to differentiate it from the processor
element environment, which used pregenerated test cases.
The different methodologies helped to expand the testing

D. G. BAIR ET AL.

353

354

// opcode enab excp fmt arc exe

{ Ox38, 10, -, 1, 1, 1, 5, 3, 6, O,
{ 0x39, 10, -, 1, 1, 1, 5, 3, 6, O,
{ o0x3B, 10, -, 1, 1, 1, 5, 3, 6, O,
{ Ox3F, 50, -, 1, 1, 1, 5, 3, 6, O,
{ O0x40, 50, -, 2, 1, 1, 1, 5, 3, 4,
{ O0x41, 250, -, 2, 1, 1, 1, 5, 3, 3,
{ Ox42, 50, -, 2, 1, 1, 1, 5, 3, 4,
{ 0x43, 50, -, 2, 1, 1, 1, 5, 3, 4,
{ Ox45, 50, -, 2, 1, 1, 6, 4, 9, 0,
{ Ox46, 50, -, 2, 1, 1, 6, 4, 4, 0,
{ O0x47, 150, -, 2, 1, 1, 3, 1, 1, O,
{ Ox48, 50, -, 2, 1, 1, 1, 5, 3, O,
{ 0x49, 50, -, 2, 1, 1, 1, 5, 3, 4,
{ Ox4A, 50, -, 2, 1, 1, 1, 5, 3, 4,
{ Ox4C, 50, -, 2, 1, 1, 6, 6, 5, 0,
{ O0x4D, 50, -, 2, 1, 1, 6, 4, 9, 0,
{ Ox4E, 10, -, 2, 1, 1, 6, 6, 5, O,
}

LD ST S e = T e S S e A T S R N - -

sup grp pip fwd zin dov zck plc sto fet r1 r2 ru

A 2D DDPEPEDDDEDSEDDE DD DS DS

mis alg mis2 mnem
9, 0, 0, 0, 55, 51, 0, 0O, O, O, "LER" }
, 9, 0, 0, 0, 51, 51, 0, 0, 0, 1, "“CER" }
9, 0, 0, 0, 58, 51, 0, O, O, 1, "SER" }
9, 0, 0, 0, 58, 51, 0, 0O, O, 1, "SUR" }
9, 1, 1, 0, 11, 00, O, 0O, 0O, 0, "STH" }
9, 1, 0, 0, 45, 00, 0, 0O, O, 0, "LA" }
9, 1, 1, o0, 11, 00, O, O, 0, 0, *"STC" }
, 9, 1, 0, 1, 18, 00, 0, 0, 0, 0, "IC" 1,
9, 1, 0, 0, 45, 00, 0, O, O, 0, "BAL" 1},
9, 1, 0, o0, 18, 00, O, 8, 0, 0, "BCT" }
9, 1, 0, 0, 00, 00, O, O, O, O, "BC" }
9, 1, o0, 1, 15, 00, O, 0O, O, 0O, "LH" }
9, 1, o, 1, 11, 00, O, O, O, 1, "CH" }
, 9, 1, 0, 1, 18, 00, 0, 0, 0, 1, "“AH" 1,
9, 0, 0, 1, 18, 00, 0, 32, 0, 0, "MH" 1
9, 1, 0, 0, 45, 00, 0O, 0O, O, 0, "BAS" }
9, 0, 1, 0, 11, 00, O, 8, 0, 0, "cvD" }

Example of the common E-unit/I-unit opcode table.

coverage, filling in holes (both known and unanticipated)
that might have existed in the test-case generator.

At the core of the I-unit environment was the opcode
table; a portion of the table is shown in Figure 7. The
opcode table listed all opcodes that could be decoded and
executed by the hardware, and provided a means for both
driving the simulation and checking the correctness of the
hardware.

There are two columns in the table that affected how
the test case was constructed. One column was a relative
weight, which affected the probability for a given opcode
to be selected for decode. The other column controlled
the probability that the selected opcode would have an
I-unit-detected exception associated with it. The remaining
columns contained information that the software monitor
interpreted for verification of the hardware. The opcode
table was shared by both the I-unit and the E-unit
simulation environments. This allowed the team to detect
interface discrepancies before the two units were built into
a common model.

The software monitors in the I-unit verification
environment were logically divided into two distinct
pieces. The first piece ensured that the correct instruction
was decoded. When the hardware issued an instruction
fetch to a previously unused address, the opcode table was
accessed a number of times to load an instruction stream
at the fetched address. Once an instruction was correctly

D. G. BAIR ET AL.

decoded, the monitors would then check that all data
associated with the execution of the instruction was
handled properly by the I-unit hardware. The monitors
would do this by creating an instruction object for each
decoded instruction. This object became the central
reference point for all monitors in the environment.

As the instruction advanced through the pipeline, the
expected values would be extracted from the object

and compared with the actual values generated by the
hardware. In addition, some monitors would add expected
data to the object that would be used in turn by monitors
later in the pipeline.

Emphasis was placed on verifying functions that were
not easily tested in a test-case-generation environment.
Functions such as address-generation interlock (AGI),
AGTI bypass, serialization, address-mode changes, and
program-event recording (PER) could be stressed more
heavily in the unit simulation environment. In addition to
having random rather than predetermined test cases, the
team was also able to exercise greater control over the
interfaces from the connecting units because the effect on
those units did not have to be considered. This enabled
the team to reach interesting corner conditions more
easily.

The I-unit environment for this system also included
the branch-prediction logic (BPL). On past machines, this
was verified in a separate environment as well as at the

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

element level. By incorporating the BPL in the I-unit
environment, the team was able to reduce the work effort
because separate BPL drivers were not needed. The stress
on the BPL could be controlled by varying the weights of
the branch instructions in the opcode table. In addition,
by not separating the BPL from the rest of the I-unit,

the team was able to find many complex bugs in the
interaction between BPL, instruction fetching, and the
decode logic.

E-unit verification

The methodology for verifying the E-unit was similar to
that described in [1]. AVPGEN (an IBM tool originally
developed for S/390 verification) was used to generate
architectural verification programs (AVPs), and a random
environment was built to drive the interfaces to the E-unit
from the I-unit, BCE, and register unit (R-unit). Several
enhancements were made to this process to verify the

new features of this microprocessor E-unit. In particular,
symbolic instruction graphs (SIGs) were created to stress
the superscalar nature of the machine, including register
dependencies, forwarding, and special dispatch grouping
cases. An example of a simple superscalar SIG is shown in
Figure 8(a), and one with register dependencies is shown
in Figure 8(b).

The SIG in Figure 8(a) simply generated sequences of
triplets of instructions that could be grouped together for
dispatch. The E-unit had three execution pipes, the first
of which was designated the R- Pat h. It could receive
only certain branch instructions, which were listed in
the AnyRPat hOp () macro. The other two pipes could
receive superscalar instructions, which were listed in the
AnySuper Scal ar Op() macro. Whether or not a group
of three instructions was actually issued together was a
function of the I-unit driver in the random environment.

The SIG in Figure 8(b) generated pairs of instructions
that could be grouped together for dispatch, where the
first instruction would forward operand data to the
second. The first instruction modified a target register
(designated as R1), which was used as a source by the
second instruction (as either an Rl or R2 field). This
would force the E-unit to do the forwarding.

A second enhancement to the E-unit verification
methodology was the addition of coverage modeling.
Several “cross-product” coverage models were created to
measure the coverage of our tests. One model was the
cross product of all possible groupings of instruction
triplets. This model had over 250,000 coverage points (or
tasks), and it took several months for us to hit all of them.
To do so, we created a coverage feedback process by
which we automatically adjusted the SIG macros to try
to force cases that had not yet occurred. Other coverage
models included all of the forwarding cases as well as all
of the special grouping rule cases.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Other enhancements included new cycle-by-cycle
monitors for several architectural features (condition code
setting, branch resolution, and serialization), the mixing of
special milliop instructions with z/Series instructions, and
the creation of many special configuration files to bias the
frequency with which the I-unit driver would optimally
group instructions for dispatch, the dispatch rate, and the
frequency with which other blocking conditions would
occur (for example, a data miss from the L1 cache).

BCE unit verification

The BCE has evolved since the advent of the G4 system.
The unified cache was split into a data cache (D-cache)
and instruction cache (I-cache). The translation function
became a unit of its own with two interfaces, one to the
D-cache and one to the I-cache. To supply more data

to the I-unit and E-unit, each cache has two pipes for
requests based on address bit 55. The I-unit presents

its requests without regard to address bit 55. The BCE
handled routing the request to the correct pipe. A major
challenge for verification was the introduction of out-of-
sequence (OOS) fetching. The BCE must continue to
honor and process requests, even when the older requests
miss in the L1 cache. There are no controls in the BCE
that would enable it to process the requests in order. To
run the processor as fast as possible, an asynchronous
interface was added between the processors and the SC.

The BCE was verified using the random methodology
employed on G4 [1]. An important aspect of this
methodology was that the interface drivers honored the
interface protocol, but generally made no attempt to
mimic the missing hardware. For example, in the real
microprocessor, the translator can only be working on
an I-cache request or a D-cache request. Since the logic
contained in the BCE does not have this restriction, there
are independent drivers for the I-cache-to-translator
interface and for the D-cache-to-translator interface.

This keeps both the I-cache and D-cache logic busy,
which increases the probability of conflicts in the
priority logic-to-the-L2 interface, thus giving the team
better utilization of simulation cycles.

The drivers were developed with the ability to bias
toward interesting behaviors. One area that was targeted
was fetching from lines in transit from the L2. To improve
performance, the BCE services requests to transit lines,
returning data to the requesting unit when it arrives at the
cache. By using information from the monitors, the drivers
were able to generate requests to lines that were currently
receiving data from the SC. To attack potential hangs, the
monitors blocked the driver from doing stores until a
randomly selected older fetch completed. Both of these
approaches targeted areas where past unit simulation was
weak and where OOS made bugs more likely. We were 355

D. G. BAIR ET AL.

356

#include <super.mac>

macro Triple()

end
1
start super;

/* Generate sequences of 3 instructions which may be dispatched together &7
/* Defines AnyPathOp() and AnySuperScalarOp() macros =

/* Create a macro to randomly generate a 3 instruction sequence =

sig {
AnyRPathOp() with NoBranch; /* 'NoBranch' directive -> next sequential instr*/
AnySuperScalar0Op();
AnySuperScalar0Op();
}
orcam
super: sig { /* Randomly pick a number between 5 and 20, and generate that)
/* number of 'Triple' sequences. &y

sequence 5..20 of Triple(););

/* Generate multiple sequences of instructions, one of which will 'forward' its =
/* result to the subsequent one. =)
#include <super_fwd.mac> > /* Defines AnyGRFwdS10p() macro, etc... =
macro Forward() /* Create a new macro to generate forwarding 'Pairs'. =)
sig {
AnyGRFwdS10p() with x:R1; /* Generate a GPR forwarding op; declare =)
/* variable 'x', and associate it with tgt reg &7/
Oneof (
AnyGRFwdT10p() with Rl=x; /* Generate a GPR op which has the =
/* same source reg as the target reg =)
/* of the prior op. =
AnyGRFwdT10p() with R2=x;
)
}
orcam
super_fwd: sig {
/* Randomly pick a number between 10 and 30, and generate that &7/
/* number of forwarding 'Pairs' of instructions. =)
sequence 5..20 of Forward(););
end
|
start super_fwd;

Symbolic instruction graphs: (a) Creating superscalar instruction streams. (b) Stressing register interlock.

successful in finding bugs that would have been more
difficult to detect at higher levels of simulation.
Out-of-sequence fetching and asynchronous interfaces
introduced design complexity that required increased
internal monitoring to properly predict BCE responses.
This monitoring tended to be more complex since internal
unit signals were less rigidly defined; but this approach did

D. G. BAIR ET AL.

allow for earlier detection of hardware problems, thus
making the debugging process easier. Another benefit

was the ability to aggressively change L2 data to stress
multiprocessor (MP) testing. Knowing the details of the
directory, the monitor was able to change L2 data earlier
and more frequently, thus allowing the verification team to
quickly and easily locate any MP data integrity problems.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

The z/Architecture™ allows for self-modifying code;
when a store into the instruction stream occurs, this is
referred to as program store compare (PSC). The split data
and instruction caches complicate the logic for detecting
PSC. The PSC escapes on the prior system illustrated a
potential weakness in the random methodology. Even
though the simulation monitor and the logic were
independently designed, we ended up using the same
algorithm, eliminating the independent check. A more
pragmatic approach was used on the z990 machine. The
checking was divided into three independent sections. The
first part made sure that whenever a line associated with a
valid instruction-fetch ID was lost from the I-cache, the
I-cache informed the E-unit of an instruction-fetch ID
invalidate. Losing the line was important because, to save
bits, the PSC logic tracks a line by its location in the cache.
The following actions caused the I-cache to lose a line:
replacing a line with a new line, external XI from the SC,
internal XI from the D-cache, or a purge cache command
from the translator. The second part of the checking
ensured that whenever a store occurred, the line was not
valid in the I-cache. The monitor also ensured that stores
to lines not held exclusively in the D-cache resulted in an
internal XI to the I-cache. The third part made sure that
an internal XI was reported whenever a request hit a valid
instruction-fetch ID, and that the hit was reported to the
E-unit when the store occurred. Unfortunately, the PSC
verification code was not completed until after the first-
pass silicon was released to manufacturing, and the test
floor did find a PSC logic problem that would otherwise
have been found in simulation.

This unit environment did a good job stressing the BCE
design. The processor element environment was verifying
the full processor, including the BCE, six months before
unit simulation considered the D-cache functional. Until
this point, nightly BCE unit regression runs exercised only
the I-cache. Submitting short D-cache runs during the day
located enough logic problems to keep the designers busy.
This meant that there were D-cache problems pulled out
at element level that normally would have been found at
the unit level. One example of this was exceptions. By the
time the processor element simulation was running cleanly
enough that it was ready to start running AVPs with
exception conditions, the unit simulation focus was still on
getting the D-cache to consistently run clean short runs
with basic fetches and stores without exception conditions.

In the end, there were four more test-floor escapes
on this system than on the prior system (11 compared
with 7). Out-of-sequence fetches and the memory book
ring introduced an interesting class of hangs that were
difficult to capture in a random environment. The hangs
were related to cyclic behavior that developed in three-
and four-book SC configurations with regard to XIs and
data returns. Improvements were incorporated to go after

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

these hangs, but more innovative work is needed in this
area.

Processor element verification

As in [1], the processor model included the HDL design
of the I-unit, E-unit, R-unit, and BCE, along with a
software driver for the L2 and Licensed Internal Code

for the more complex z/Series instructions. AVPGEN was
used as the primary test generator for “mainline” function,
and the same set of additional functions described in [1]
was again verified. The following sections describe new
methodology and testing unique to this microprocessor.

New architecture

Since this microprocessor supports trimodal addressing
(24-, 31-, and 64-bit), it was important to stress all three,
including the transitions from one to another. The
z/Architecture includes instructions for switching to any
of the addressing modes (SAM24, SAM31, SAM64). To
verify these transitions, several special SIGs were written;
an example is shown in Figure 9.

The load address (LA) in the SIG in Figure 9 is just to
initialize a loop counter (which will have a value in the
range of 4 to 8). The main part of the SIG generates a
set-addressing code (SAM) instruction followed by a test-
addressing mode (TAM) instruction, followed by some
other instruction. That sequence is repeated several times
to obtain a mix of different SAM instructions. Finally,
there is a branch instruction with a target of the loop
instruction. The constraints on the branch instruction
force the branch to be taken the first time, and it uses
the loop count (Rl register) initialized by the LA.

Dual-core design

This design point included two processor cores on each
processor chip. Even though the processor verification
model consisted of a single processor, the team needed to
take into account the dual-core nature of the chip. One
way we did this was to create a dual-core driver that was
a software behavioral program designed to create traffic
on the bus from the other processor to the L2. Random
commands and responses were sent at random times
(with good parity) to try to stress the “real” core in our
model. The dual-core driver was also used for recovery
testing. The recovery algorithm for the machine requires
communication between the two cores (assuming that both
are functional). The dual-core driver was the vehicle that
provided the handshaking for the nonexistent core. This
allowed the team to completely verify dual-core recovery
with a single-core model.

Operand buffer refetch

The operand buffer controls in the microprocessor design
could “lose” data after it was returned from the L1 cache, 357

D. G. BAIR ET AL.

358

/* Generate a sequence of instructions which randomly sets the address mode, 2/

/* followed by a test of the new mode, and some other random instruction. Do this =/
/* in a loop, between 4 and 8 times. Note: the TAM instruction sets the &
/* Condition Code based on the address mode. =/

f#include <anyop.mac> /* Defines AnyOp() Macro */

sam: sig {
LA with x:R1, B2=0, X2=0, D2=4..8; /* Load Loop Count */
loop: oneof(SAM24; SAM31; SAM64;);

/*Loop back

end
}
start sam;

TAM; /* Test Resulting Address Mode 5
AnyOp(loop); /* Choose some random instruction =
oneof (SAM24; SAM31; SAM64;);

TAM;

AnyOp(Tloop);

oneof (SAM24; SAM31; SAM64;);

TAM;

AnyOp(loop);

oneof (BCT loop; BCTR loop; BRCT Toop;) with TakeBranch, Rl=x;

ol

Symbolic instruction graph: Transitioning between addressing modes.

for example, due to a XI from another processor in a
symmetric multiprocessor (SMP) system. Because of the
storage consistency requirements of the z/Architecture,
the operand buffers had to refetch the data. This was

a complex area of the design. To test it thoroughly,

the team created a special refetch driver, which ran in
conjunction with a refetch monitor to artificially invalidate
the data in the operand buffers at random points in time,
forcing a refetch to occur. This enabled the team to find
complex MP bugs while having only a single core in the
model.

Quiesce

Another complex area of the processor design was the
quiescing of the system required by certain z/Series system
instructions. The z/Architecture dictated that whenever
certain instructions were run in an SMP system, the other
processors had to “stop” while the processor executing the
instruction completed the operation. An example of this
was the invalidate page table entry instruction, which
caused a change to a translation table entry. Other
processors could not reference the table entry while it

was being changed. There was an elaborate protocol for
quiescing the processors, designed to ensure that the
architecture was adhered to while at the same time
optimizing overall system performance. To verify this

D. G. BAIR ET AL.

protocol, a quiesce driver was created to emulate other
processors in an SMP system, as well as the SC (the single
point of control for the quiesce algorithm). The driver
needed to handle both local and remote cases of the
quiesce, as well as fast and slow versions of the algorithm
(when an optimistic fast mode was rejected by the SC
because of a collision, the algorithm dropped back to a
slow mode).

Pervasive functions

To improve the verification of non-mainline areas, we
incorporated much of it into our mainline regression.
These areas included the following:

e Disables: The processor design included many latches
that disabled a functional area of the design. For
example, the BPL could be shut off entirely. These
disables were included as potential workarounds for
design bugs on the test floor and as degrade modes for
recovery actions in a customer machine. There were
more than 100 of these disable latches. We were able to
randomly set them in our mainline regression and, in
many cases, the team wrote special monitor programs
to verify that we were disabling the intended functional
area.

* Address compare: Address compare was a manual
operator control that detected the fetching, storing, or

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

instruction fetching of a given address. The team wrote
a program to randomly initialize the address compare
settings (based on addresses in an AVP) and then wrote
a monitor to ensure that the address compare was
correctly detected.

Instruction step: This was another manual operator
control designed to cause an interrupt after each
instruction executed. A monitor was created to make
sure the interrupt occurred when in this mode and was
run with the mainline regression AVPs.

e Opcode compare: Opcode compare was a control that
caused one or more actions to occur when a particular
instruction opcode was encountered: for example, to
invoke Licensed Internal Code. Again, the team wrote a
setup program and a special monitor to verify that the
correct action was taken at the proper time, using AVPs
in our mainline regression.

Forced serialization: Certain events in the processor
were defined to serialize architecturally. This meant that
prefetched instructions were thrown away and refetched,
and that instruction dispatching was reset and restarted.
To test this feature, the team wrote a driver program
that artificially forced serialization events to occur at
random points and cleared the instruction buffers to
ensure that the I-unit was refetching the instructions.

e Random asynchronous interrupts: Certain events in
the system can cause an asynchronous interrupt (for
example, a timer pop or an I/O interrupt). Again, the
team wrote a driver program to test this feature that
randomly forced asynchronous events at random points
and ran this program with the mainline regression
AVPs.

Array preloads

To make more effective use of simulation cycles, the team
wrote programs to preload many arrays that would normally
be loaded over time by the design. These included the

L1 instruction and data caches, the TLB1 and TLB2
arrays, and the branch history table arrays. The loader
programs were designed to load addresses from the AVP
test cases. Using the loaders, the arrays could be loaded
with all of the addresses from the AVP, a random subset
of the addresses, or none of them. Preloading the arrays

provided for more realistic simulation and better coverage.

Since the arrays were not in the empty state prior to every
run, the cache and buffer hit-and-miss behavior was
different during the starting cycles of each run. This was
especially important given the shortness of the runs in
terms of real machine cycles. By preloading these arrays,
our simulation runs started from a state that could
otherwise take hundreds or thousands of cycles to

reach.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Parameter files

Finally, to control the biasing of the many software
drivers in the processor simulation environment, special
parameter files (called config files) were created. One file
biased the runs toward long delays from the L2 for fetch
data, another file caused many XIs to be sent from the
L2, and so on. To create interesting combinations of these
config files in any particular test, the team created a type
of config file that specified other config files in such a way
that random cross products of these parameter files were
chosen.

Coverage

In this project, coverage was approached from a more
methodical point of view than in previous projects. Two
different methods were used: cross-product coverage using
Meteor, an internal tool which is an extension of Comet
[6], and discrete-point coverage using a C++ class named
RndSt at s.

At the beginning of the project, the team created a list
of functions for which the completeness of testing was of
particular concern. The list contained a combination of
basic architectural features (for example, instructions
in the architecture), newly implemented and complex
functions (for example, the compression unit and
translator), and areas that had been problems on past
programs such as PER and start interpreted execution
(SIE). The team also attempted to create these models at
an architectural level in order to maximize the amount of
reuse from one program to another.

Process of creating and designing
To implement coverage metrics on each functional
area, the team went through several phases. First, we
determined a detailed list of attributes of the function to
be covered. Next, we created the database of coverage
events for the domain and models in the Meteor tool. We
then configured the environment and wrote programs and
scripts to extract, format, and deliver coverage data to
the Meteor server. After that, the team collected and
measured coverage data, analyzed results, and redirected
test-case generation to cover the holes we had located.
We repeated this last step until the coverage goal for
the domain (a group of attributes that describe a specific
function) was met.

The following coverage domains were created:

® PER coverage: Program event recording is designed to
assist in debugging programs. On the basis of an analysis
of test-floor escapes from previous projects, the team
felt it was important to create a coverage domain for
PER. The team tracked several models (a model is a
comprehensive list of coverage events related to a
specific domain or logic function):

D. G. BAIR ET AL.

359

360

Branch instructions compared with address mode,
architecture mode, PER code, whether the branch
target was within a specified storage range, and wrap
condition.

Store instructions (including store using real address
instructions) compared with address mode,
architecture mode, and valid PER code.

mode, and address mode.
Instruction coverage: In the complex design of the
7990 system, roughly 700 instructions are defined in the
architecture. The team implemented a domain to verify
that all instructions had been executed in all valid
addressing, translation, and architectural modes. The
team also verified that each instruction that could
change the condition code had been simulated with all
possible condition codes, and that we had tested all
valid instruction and exception combinations.
Summary of basic architected features: The purpose of

this domain was to monitor our test-case generator. The
team wanted to ensure that it could generate all possible

hardware architectural modes (for example, all possible
values for control registers, floating-point control
register, and program status word).

Load real address (LRA) instruction: The team tracked
coverage on the multiple variations of the LRA
instruction because, relative to other instructions, we
handled address translation and exceptions differently.

This detailed coverage model contained 105 events (tasks

or logic states that should occur in simulation). Each
event was made up of the combination of a mnemonic,
a detailed exception, and the address mode.
Instrumentation: Trace and instrumentation were debug
assist functions that allowed the design engineers to
collect data about the processor state and performance
during execution. While the processor was active, data
was written into several 64-bit arrays that could be

periodically read and analyzed. A detailed verification of

this function would have been very time-consuming, but
we had to be sure that, at a minimum, there was real

logic driving each bit. This coverage model ensured that

each bit had been observed to have both a 0 and a /
value.

Translator: The new design of the translation logic,
which was now a separate unit (described above in
the processor verification section), made it a prime
candidate for coverage metrics. The team created

a domain to monitor our coverage for translator
exceptions in combination with architecture mode
and SIE mode. The team collected trace data for this
coverage model from both the translator unit and the
element simulation environments.

Compression call instruction: This complex instruction
had a large number of architected features, and the

D. G. BAIR ET AL.

Exceptions compared with all PER codes, architecture

detailed coverage model contained about 2800 legal
combinations. Some of the attributes included in this
model were the condition code, source length, target
length, and exceptions.

Superscalar grouping: There were complex rules

that defined which instructions could be executed
simultaneously. The team created models that
monitored three areas addressed by these rules. First,
we ensured that all legal combinations of up to three
instructions were observed. Next, we verified that certain
groupings did not negatively affect performance. Finally,
we ensured that certain grouping were given special
treatment to enhance performance (for example,
operand forwarding). The team spent considerable
resources to reach 100% coverage on this model in

both E-unit and processor element simulation.

e Storage controller responses to processor commands: This
domain covered a fundamental function of the storage
controller: to handle processor commands. The primary
attributes in this domain were the processor commands
and the SC response. This domain contained about
19,000 legal events.

Findings and actions taken
Specific examples of some problems found included the
following:

1. The LRA instruction was never tested with a specific
exception.

2. Some instrumentation bits were never exercised.

3. The RLOCL instruction was never generated with a
PER store exception.

4. An E-unit driver bug was preventing full coverage of
operand forwarding.

5. Undirected test-case generation did not fully cover a
model.

6. All valid combinations of floating-point rounding mode
were not being generated.

7. The logic for detailed information during a response to
some processor requests was missing.

To correct these problems, several actions were taken:

1. Extensive manual test-case redirection was done for
several models.

2. Corrections and enhancements were made to
AVPGEN.

3. Corrections were made to the software drivers.

4. Corrections were made to the software monitors (to
correct holes caused by trace collection bugs).

5. An automated feedback mechanism was instituted in
the E-unit simulation environment, described above.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Exceptions f
04 05 10 1 12 28 29

H H H H H H H
H H H H H H H

.GGGGGG

(&)
Q
@
Q
@
Q

2A

| ESAME ——]

2B 2C 2D 38 39 3A 3B 3B

Q
Q
Q
X
X
X
X
X

Exceptions f
04 05 10 11 12 28 29

QX aaa

X X X

H H H

X X X

X X X

X X X
Txxxxx
G G X X X X X
G X X x x X

X X X X X X X X
H H G X X Xx X X

X X X X X
X X X X X
X X X X X
X X X X X

Coverage progress for xlat-arch domain in CP element simulation

Red =Not covered 05/07/2003
Background = Covered without specific effort
Yellow = Holes left after one year of improvement

Translator element exception coverage.

Figure 10 shows the holes in the translator element
coverage model. In this figure, G represents a guest
exception, H represents a host exception, and X represents
an illegal state. The red areas are holes that existed when
coverage was first analyzed; yellow areas are holes
remaining after all remedies had been implemented.
Similar coverage information was also collected at the
translator-unit level. There were a few holes left in both

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

random unit and processor element simulation at the time
of tape-out, but between the two environments, all
combinations of exceptions were covered 100%.

Coverage infrastructure and tools

In the processor element environment, we decided to
collect data for some of our coverage models by parsing
the test-case files after generation and prior to simulation.

D. G. BAIR ET AL.

361

362

The advantage of collecting data by this method was that
the collection mechanics were independent of design
changes. The team took into consideration that we would
be collecting coverage data on some failing test cases, but
we decided that for our purposes, this was not important
for two reasons. First, the sole purpose of coverage is to
measure test completeness and efficiency; test correctness
falls under functional verification. Second, the failing test
cases were all screened, defects were opened on them, and
fixes were eventually provided and verified. As a result, by
the end of the project, all test cases ran successfully.

The team identified the test-case groups that best tested
the function targeted by the coverage model and enabled
data collection on these test groups. Each day, after the
test cases were generated, the coverage collection engine
was started. This engine consisted of a test-case parser
class, a program that contains all of the subroutines to
process the collected data for each of the coverage
models, and a configuration table that controls the
important parameters pertaining to this engine.

The parser extracted the architectural information
from each test case—for example, instruction opcode,
mnemonic, address, translation and architectural mode,
absolute and virtual instruction addresses, absolute and
virtual operand addresses, and so on—and passed this
information to each of the coverage subroutines.
According to the function under coverage test, relevant
information was directed to a trace file. The trace files
were sent to our coverage server and received in the
coverage environment, where they were read by Meteor,
the coverage measurement engine, and the coverage
data was processed and recorded. The team used a
configuration table to control and optimize the use
of this environment and to enhance performance. Some
of the features controlled this way were the enabling and
disabling of the coverage data gathering and the number
of trace files collected for each coverage domain.

The RndCover class of the random environment was
created specifically to make it as easy as possible to collect
coverage data during simulation. The general process used
to enable data collection was to create a parameter file
that described the model attributes. At run time, a
parameter file determined how the data was formatted,
where the data would be sent if the test case was
successful, and, possibly, the source of the data in the
simulation model. It also provided a method of controlling
the amount of data per coverage model that was sent to
the coverage server. At the end of the simulation, a
postprocessor could be called to format the trace data,
which was then sent to the Meteor server.

Two different mechanisms were used to determine the
exact data to be collected: the trigger and the C++
method. The trigger mechanism worked by defining an
event as a Boolean combination of simulation model

D. G. BAIR ET AL.

facilities. For each cycle, when the triggering event was
true, the value of each facility in the list was recorded in
the trace file. The C++ method mechanism required

the user to add code to a monitor or driver. The code
calculated values and controlled the timing when the data
would be written to the trace file.

Methodology discussion

Over the course of this project, the team discovered
several things about this methodology that affected their
efficiency and work flow:

The majority of time spent working in the coverage
arena is spent analyzing data, refining the coverage
models, and redirecting test-case generation.

It is good policy for the person who is doing coverage
to be responsible for test-case generation as well.

e Keeping in mind that logic will change over the course
of the project, the coverage engineer should build as
much flexibility and extensibility into the coverage
environment as possible.

Results and concluding remarks
As with any complex design point, the team had its share
of design problems that escaped to the test floor. The test
floor found 65 problems in the laboratory hardware; while
this number was a bit higher than the goal, it represented
less then 1.5% of the total number of problems found in
the logic. All test-floor escapes were thoroughly analyzed
by the verification team, and corrective actions were taken
to enhance the verification environment to help prevent
future escapes.

Two of the classes of problems that were prevalent
on the test floor had failing scenarios that proved
very difficult to recreate in simulation: MP hangs and
multibook ring problems. The MP hangs were caused by
problems in the new OOS logic located in the BCE unit.
This was a focus area for both the design and verification
teams, but bugs still escaped to the test floor. The
multibook ring problems were discovered very late in the
test-floor cycle. Again, this logic was a new design concept
for this system. Once the verification team understood the
underlying failing mechanism, we were able to enhance
their checking programs to detect the failing mechanism
without having to create the actual failure. This not only
enabled us to find known test-floor escapes, but it also
enabled us to find additional bugs in the multibook ring
design.

The 2990 team was satisfied with the verification
results of this system. There were many new verification
environments and methodologies created to fully verify
and stress this design point. One example of a
methodology change was the introduction of protocol
verification. This marks the most extensive use of protocol

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

verification thus far in the design of an IBM server system.
The abstract protocol model for the 2990 memory protocol
was developed and refined over a period of two years,
tracking the development of the protocol. In contrast,
previous uses of protocol verification tended to be at a
single stage in system development.

Modeling the protocol in an ongoing way allowed the
2990 designers to test new features of the protocol before
constructing the HDL implementation. The verification
team determined that this approach improves the quality
of the final design and saves valuable development time
during the project.

Another important innovation was that the team, in its
verification efforts, started to establish a connection
between the high-level abstract model and the
implementation. High-level properties derived from the
abstract protocol model were implemented as checks
on the HDL implementation in the random simulation
environment. This allowed for more thorough checking
of the implementation than would otherwise have been
possible. For future projects, we intend to expand the
connection between high-level and implementation-level
verification.

This project was the first time the verification team
seriously collected and analyzed coverage results. Given
the large number of test cases that were run, there was a
huge amount of coverage data being produced on a daily
basis. We quickly realized that we would not be able to
collect coverage data for every simulation run. The current
coverage collection and processing tools were stretched
beyond their limits. We had both reliability and scalability
problems with the toolset. Run-time limits were developed
to collect only a broad sample of the total coverage data.
We have analyzed the bottlenecks in the current toolset
and are correcting this for future projects so that more
data can be collected and analyzed.

Designs are growing in complexity, and new verification
tools, techniques, and technologies are constantly being
invented by both vendor and in-house teams to address
these complex design points. To increase the effectiveness
of the verification team, the experience and innovation of
its verification engineers will guide our choice of which
tools should be used to yield a better design, which
techniques should be applied to the problem set for the
greatest benefit, and how new technology can improve the
process while avoiding flashy trends that do not address a
specific area of the process in a needed way. Knowledge
gained from past experience and recognition of the
directions in which new designs are changing increase the
team’s ability to prevent problems encountered in the past
and to seek out new problems in the cutting-edge logic
designs of the future.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

Acknowledgments

The authors acknowledge all z990 design team members
and other individuals throughout IBM for their
contributions to the verification effort. We would
particularly like to thank Sebastian Burckhardt, Kevin
Calabrese, Mark Decker, Thomas Gilbert, Gary Hallock,
Anne Huston, Patrick Duffy, Matthias Heizmann, Steven
Licker, Anna Mozeshtam, Alia Shah, Klaus Keuerleber,
Joerg Deutschle, Sascha Eckmann, and Wei-Yi Xiao.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Denali Software,
Incorporated or The Open Group.

References

1. B. Wile, M. P. Mullen, C. Hanson, D. G. Bair, K. M.
Lasko, P. J. Duffy, E. J. Kaminski, Jr., T. E. Gilbert, S. M.
Licker, R. G. Sheldon, W. D. Wollyung, W. J. Lewis, and
R. L. Adkins, “Functional Verification of the CMOS S/390
Parallel Enterprise Server G4 System,” IBM J. Res. & Dev.
41, No. 4/5, 549-566 (July/September 1997); see http://
www.research.ibm.com/journal/rd/414/mullen.pdf.

2. J. M. Ludden, W. Roesner, G. M. Heiling, J. R. Reysa,

J. R. Jackson, B.-L. Chu, M. L. Behm, J. R. Baumgartner,
R. D. Peterson, J. Abdulhafiz, W. E. Bucy, J. H. Klaus,
D. J. Klema, T. N. Le, F. D. Lewis, P. E. Milling, L. A.
McConville, B. S. Nelson, V. Paruthi, T. W. Pouarz, A. D.
Romonosky, J. Stuecheli, K. D. Thompson, D. W. Victor,
and B. Wile, “Functional Verification of the POWER4
Microprocessor and POWER4 Multiprocessor Systems,”
IBM J. Res. & Dev. 46, No. 1, 53-76 (January 2002); see
http://www.research.ibm.com/journal/rd/461/ludden.pdf.

3. D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang,
“Protocol Verification as a Hardware Design Aid,”
Proceedings of the IEEE International Conference on
Computer Design: VLSI in Computers and Processors,
Cambridge, MA, October 1992, pp. 522-525.

4. S. M. German, “Formal Design of Cache Memory
Protocols in IBM,” Formal Methods Syst. Design 22, No. 2,
133-141 (March 2003); see http://www.kluweronline.com/
issn/0925-9856/contents/.

5. Gary A. Van Huben, “The Role of Two-Cycle Simulation
in the S/390 Verification Process,” IBM J. Res. & Dev. 41,
No. 4/5, 593-599 (July/September 1997); see http://
www.research.ibm.com/journal/rd/414/vanhuben.pdf.

6. R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. Ziv, “User
Defined Coverage—A Tool Supported Methodology for
Design Verification,” Proceedings of the Design Automation
Conference (DAC’98), San Francisco, June 1998, pp. 158—
163; see http://www.sigda.org/Archives/ProceedingArchives/
Dac/Dac98/papers/1998/dac98/pdffiles/09_2.pdf.

Received September 22, 2003; accepted for publication
December 1, 2003; Internet publication April 27, 2004

D. G. BAIR ET AL.

363

364

Dean G. Bair [BM Systems and Technology Group,

522 South Road, Poughkeepsie, New York 12601
(dgbair@us.ibm.com). Mr. Bair, a Senior Software Engineer,
joined IBM in 1984. He received his B.S. degree in electrical
engineering from the State University of New York at New
Paltz in 1998. He has worked in the field of verification for 18
years and has verified multiple design points including I/O
controllers, shared L2 cache designs, and microprocessors.
Mr. Bair was the verification team leader for the z990
superscalar multibook microprocessor complex, as well as
previous generations of zSeries machines. He has received
numerous awards, including multiple IBM Outstanding
Innovation Awards, and patents for his efforts in the field

of verification. Mr. Bair is currently working on verifying
future Systems and Technology Group design points.

Steven M. German IBM Research Division, IBM Thomas
J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (german@watson.ibm.com). Dr. German
received his A.B. and Ph.D. degrees in applied mathematics
from Harvard University in 1974 and 1981, respectively.

He has more than 25 years of experience in many aspects

of formal methods. In the 1970s, he developed the first
automated system for proving the absence of common run-
time errors in computer programs. After joining IBM in 1995,
he originated a new field of verification algorithms for
checking processor pipelines. Recently, he has focused on
verification of multiprocessor memory protocols. Dr. German
pioneered the Formal Design approach for developing
hardware protocols, in which formal verification is integrated
into the design process. He led the project to formally verify
the memory protocol for the zSeries server and is currently
verifying its successors.

William D. Wollyung [BM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(wollyung@us.ibm.com). Mr. Wollyung is an Advisory
Engineer. He joined IBM in 1974 and has been in verification
since 1983. He received a B.S. degree in computer science
from Lasalle University in 1998. He has worked on processor,
storage controller, I/O, and memory verification, and is
currently working on memory controller verification. Mr.
Wollyung received a Gold Level Quality Award for his

work in 9121 simulation, and IBM Outstanding Technical
Achievement Awards for his work on 3090 S verification,
S/390 G4 processor verification, and S/390 G5 storage
subsystem development. He also received an IBM Outstanding
Contribution Award for the G6 opera server development.

Edward J. Kaminski, Jr. IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(ekamin01 @us.ibm.com). Mr. Kaminski, a Senior Verification
Engineer at the IBM Poughkeepsie facility, received his

B.S. degree in electrical engineering from the Rensselaer
Polytechnic Institute in 1987. He joined IBM at Poughkeepsie
in 1987, working on symmetric multiprocessor (SMP) storage
subsystem verification for the 3090 H2 design; he has
continued in verification through subsequent generations of
SMP designs to the current zSeries servers. Mr. Kaminski has
received multiple awards for verification work, including an
IBM Outstanding Technical Achievement Award.

D. G. BAIR ET AL.

James Schafer IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(schafer@us.ibm.com). Mr. Schafer received a B.S. degree
from Purdue University in 1982, joining IBM that same year.
For his first eleven years with IBM, he worked on logic
product diagnostic systems in East Fishkill, where he
published several papers and received his first IBM
Outstanding Technical Achievement Award. His functional
verification career began in 1993 in Austin, working on
various PowerPC support chips. Mr. Schafer started with
the S/390 Server Group in 1996, and is currently a Senior
Engineer working as team leader for system controller
element verification. He has received multiple awards

for his zSeries verification work, including an IBM
Outstanding Innovation Award and an IBM Outstanding
Technical Achievement Award.

Michael P. Mullen [BM Systems and Technology

Group, 522 South Road, Poughkeepsie, New York 12601
(mpmullen@us.ibm.com). Mr. Mullen is currently a Senior
Programmer. He received a B.S. degree in computer science
from Union College in 1976, joining IBM that same year,
and an M.S. degree in computer/information sciences from
Syracuse University in 1981. Mr. Mullen has worked on the
development of many mainframe systems; he is currently
responsible for the hardware design verification of IBM
z/Series processors. He has received several IBM Outstanding
Technical Achievement Awards for his work in microcode
development, the AVPGEN system, and hardware verification.

William J. Lewis IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(wjlewis@us.ibm.com). Mr. Lewis joined IBM in 1982 and is
currently a Senior Engineer. He received a B.A. degree in
computer science from the State University of New York at
Oswego. After starting out in the hardware performance area,
he has worked in design verification since 1985. Mr. Lewis has
received IBM Outstanding Technical Achievement Awards for
G4 and G5 processor verification, and an IBM Outstanding
Innovation Award for zSeries verification.

Rebecca Wisniewski 1BM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(wisnski@us.ibm.com). Ms. Wisniewski joined IBM in 1982
after receiving a B.S. degree in computer science from the
College of Engineering, University of Illinois at Urbana—
Champaign. She started in the hardware performance area,
focusing on processor performance. In 1993, she began working
in simulation on scalable POWERparallel adapters and switches.
Since 1998 she has been doing buffer control element (BCE)
unit simulation and is currently the zSeries processor verification
leader. Ms. Wisniewski has received an IBM Outstanding
Innovation Award for her work on z9000 verification.

Joerg Walter IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (jwalter@de.ibm.com). Dr. Walter
received his diploma in electrical engineering in 1986 and his
Ph.D. in computer science in 1993, both from the University
of Stuttgart, Germany. He joined IBM in Boeblingen in 1993,

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

working on memory card verification for the S/390 Parallel
Enterprise Server G3. Dr. Walter is currently the verification
team leader for the Boeblingen zSeries processor verification

group.

Steven Mittermaier IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(mitt@us.ibm.com). Mr. Mittermaier received an A.A.S.
degree in electrical engineering from the University of Toledo
in 1988, and a B.S. degree in electrical engineering in 1996
from the State University of New York at New Paltz. He
joined IBM in 1988, working on photolithographic tools
and support in semiconductor production. He later joined
the CEC verification group in Poughkeepsie, working on
processor simulation and becoming an expert on cross-
product coverage. Mr. Mittermaier is currently working

on processor verification and coverage for future Systems
and Technology Group products.

Visda Vokhshoori IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(visda@us.ibm.com). Ms. Vokhshoori received a B.S. degree
in electrical engineering from the State University of New
York at New Paltz in 1998, and an M.S. degree in electrical
engineering from Columbia University in 2002. She joined the
IBM z/OS component test group in 1998 as a consultant. In
2001 Ms. Vokhshoori joined the hardware verification group,
where she is engaged in various verification projects with a
concentration in functional coverage verification.

Robert J. Adkins IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(adkins@us.ibm.com). Mr. Adkins is an Advisory Software
Engineer. He has been in verification since 1985 and has
worked on both processor and storage controller verification
for multiple Server Group systems. He has received IBM
Outstanding Technical Achievement Awards for his work
on ES/9000 CP element simulation, S/390 G4 processor
verification, and S/390 G5 storage subsystem development,
and an IBM Outstanding Contribution Award for his work
on S/390 G6 opera server development. Mr. Adkins currently
works on the verification of future Systems and Technology
Group microprocessors.

Michael Halas IBM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12603
(mohalas@us.ibm.com). Mr. Halas received a B.S. degree in
electrical/computer engineering from Rutgers University in
2001. He worked at Compaq Computer as a co-op student in
2000 on Tru64 UNIX clustering software and at IBM as an
intern in 2001, joining the company as a full-time employee in
2002. He has worked on random verification of the BCE and
a z990 I/O adapter chip. Mr. Halas is a verification engineer
currently working on verification of the system controller for
future Systems and Technology Group projects.

Thomas Ruane [BM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(ruane@us.ibm.com). Mr. Ruane received a B.A. degree in
English from the State University of New York at New Paltz

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

in 1976 and an M.S. degree in computer science from Union
College in 1980, joining IBM that same year. He is currently
working on element simulation and tool support for follow-on
7990 systems.

Ursel Hahn IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (hahnurs@de.ibm.com). Mrs.
Hahn is currently an engineer in the IBM Server Group. She
joined IBM in 1977 and is currently working on coverage,
element simulation, and AVPGEN for follow-on z990 system:s.

D. G. BAIR ET AL.

365

