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systems

This paper describes the methods and
simulation techniques used to verify the
microarchitecture design and functional
performance of the IBM POWER4 processor
and the POWER4-based Regatta system.
The approach was hierarchical, based on but
considerably expanding the practice used for
verification of the CMOS-based IBM S/390
Parallel Enterprise ServerTM G4. For POWER4,
verification began at the abstract, high-level
design phase and continued throughout the
designer and unit levels, the multi-unit level,
and finally the multiple-chip system level. The
abstract (high-level design) phase permitted
early validation of the POWER4 processor
design prior to its commitment to HDL.
The designer and unit-level stages
focused on ensuring the correctness of the
microarchitectural components. Multi-unit-
level verification, performed on storage and
I/O components as well as on the processor,
confirmed architectural compliance for each
of the chips and subsystems. Finally, system-

level verification tested multiprocessor
coherence and system-level function,
including processor-to-I/O communication and
validation of multiple hardware configurations.
In parallel with design and functional
validation, verification of reliability functions,
performance, and degraded configurations
was also performed at most of the levels in
the hierarchy.

Introduction
The sophistication of the POWER4 processor and system
design required a major logic verification effort. Verifying
the POWER4 superscalar, out-of-order execution
processor, which can allow more than 200 simultaneous
“in-flight” instructions, required detailed test plans, a
breadth of simulation technology, and a staged execution
plan. The 32-way multiprocessor system configuration
created further verification challenges for validating cache
coherency, system integrity, and memory management.

To successfully verify this logic design, the verification
team employed a wide array of methodologies, using a
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hierarchical approach to exploit different optimal
methodologies as appropriate for each level. The
combination of different methods at different levels
enabled each level to attack the verification problem from
its own unique angle, establishing new test scenarios and
checking for correctness across all functions contained in
the particular level.

The hierarchical verification approach expanded the
practice used on the CMOS S/390 Parallel Enterprise
Server* G4 system [1]. For POWER4, verification began
at the abstract, high-level design phase, continued at the
designer and unit levels and the multi-unit level, and was
completed at the multiple-chip, system level. The abstract,
high-level design phase of the verification allowed for
early validation of the POWER4 processor design, prior
to commitment to hardware description language (HDL).
The designer- and unit-level verification stages focused
on ensuring the correctness of the microarchitectural
components. Multi-unit-level verification, performed on
the processor, storage, and I/O components, confirmed
architectural compliance for each of the chips and
subsystems. System-level verification performed
multiprocessor (MP) coherence and system-level function
testing, including processor-to-I/O communication and
validation of multiple hardware configurations. In parallel
with these efforts, verification of reliability functions,
performance, and degraded configurations was performed
at many of these levels of the hierarchy.

As the high-level verification test plan was constructed,
known methods were considered. Methodologies used
included both proven verification technologies and new,
leading-edge techniques. Proven methods included the use
of command-driven random techniques, architectural test-
case-generation engines at both the processor and the
system level, system reset verification, and disabled or
degraded configuration testing. Included among the new
methods were high-level verification on the abstracted
model, model checking, extended coverage techniques, and
asynchronous clock modeling on cycle-simulation engines.

The line count for all of the very-high-speed integrated-
circuit HDL (VHDL) of POWER4 was approximately 1.5
million. The verification environment added approximately
another one million lines of C/C�� code, making this a
very large chip-verification model. Aside from the special
requirements for performance and robustness of the
VHDL-processing tools, the sheer amount of code made
robust data management a necessity.

Staffing for verification was obtained from a wide
variety of sources and included both experienced and
novice verification engineers. Expertise came from prior
IBM programs, especially in the PowerPC* family. Experts
were charged with teaching new verification engineers
as well as leading the unit-, element-, and system-level
verification teams. These leaders defined the detailed test

plans; the test plans were then reviewed by experienced
system-verification leaders from other IBM sites, and
additional recommendations were applied. Peer reviews
performed by verification leaders outside the POWER4
team were done throughout the life of the program.

This paper describes the verification plans,
methodologies, execution, and experiences of the
POWER4 functional verification effort. It begins by
addressing the verification challenges presented by the
complex microarchitecture. It addresses the methods
employed at each level of verification and concludes
with the results and achievements of the effort.

POWER4 architecture and microarchitecture
overview
To fully appreciate some of the challenges involved,
it is necessary to point out some aspects of the general
PowerPC architecture and the implemented POWER4
microarchitectural features that exploit this architecture
for maximum performance.

PowerPC RISC architecture
PowerPC [2] is traditionally recognized as a reduced-
instruction-set computer (RISC) architecture which
adheres to a basic philosophy of keeping the hardware
design simple. The intent is to place more responsibility
on software than is done by traditional complex-
instruction-set computer (CISC) architectures such as
the IBM S/390* or the Intel x86. Despite this notion of
keeping things simple, the architecture presents many
challenges to the verification process:

● The ordering of performance-critical instructions is
often the responsibility of software and is accomplished
by inserting context-synchronizing instructions into the
instruction stream at the proper point. This increases
the difficulty of verification because it is possible to
create illegal instruction streams which lead to
unpredictable hardware behavior.

● A weakly consistent memory model is assumed; the
order in which loads and stores execute with respect to
each other and to accesses by other processors can vary
significantly. In general, loads and stores can execute
out of order with respect to other processors and one
another (on the same processor), provided that all
accesses are consistent and properly aligned accesses
are atomic.

● Address translation responsibility is shared between
software and hardware. PowerPC translation uses a two-
step approach which separates the “effective-to-real”
translation mechanism into an “effective-to-virtual”
address translation and then a “virtual-to-real” address
translation.
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● Logical partitioning (LPAR) in PowerPC provides
software (known as the Hypervisor code) with a
mechanism to run multiple operating systems on a single
Regatta system. At most, each processor resides in a
single partition. It is the responsibility of the Hypervisor
software to establish the proper real address partitions
to make this possible. However, it is the responsibility
of hardware to prevent code running in one partition
from interfering with code running in another partition.

● Concurrent modification and execution (CMODX) in the
PowerPC architecture allows for the modification of one
processor’s instruction stream by another processor
without the need for software synchronization between
processors.

POWER4 microarchitecture implementation
In addition to the PowerPC architecture, the sophisticated
microarchitecture, or implementation, of POWER4 [3]
presented significant challenges to the verification
team. Some of the more challenging features requiring
verification in order to ensure adherence to the PowerPC
architecture included

● Two superscalar, out-of-order processor cores per chip.
● Three separate buffer and caching mechanisms devoted

to address translation.
● Performance-oriented data-access queues for

simultaneous tracking of load misses and storage-access
ordering.

● Aggressive prefetch for both instructions and data.
● Instruction cracking and microcode sequencing.
● Speculative execution for up to 16 unresolved branches.
● A three-tiered branch-prediction algorithm.
● Dual IEEE-compliant floating-point execution units.
● Three levels of cache: Each processor core has its own

L1 instruction cache and L1 data cache. The L2 and L3
caches are shared by both cores and contain both
instructions and data.

Overview of the design and verification flow

Logic design foundations
IBM has a successful history of more than twenty years in
exploiting the benefits of a synchronous and mostly level-
sensitive scan design (LSSD) rules-driven design style for
functional verification [4]. The advantages of this
methodology manifest themselves primarily as

● Design specification in a high-level (resistor-transistor-
logic-level) hardware design language.

● Complete separation of functional verification from
timing verification.

● Cycle-based simulation.

● Simulation coverage analysis using properties of the
high-level language specification.

● Formal Boolean equivalence proof of gate/transistor-
level implementation vs. high-level design.

From the start it was the clear goal for POWER4
functional verification to base 90% of the functional
verification work on the design specification in HDL.
This requirement, however, had to be balanced against
the ambitious goals of the project:

● A totally new, highly complex microarchitecture which
demanded an earlier start of verification in order to
be able to identify major microarchitectural problems
before major effort had been committed to HDL coding.

● Aggressive use of custom design at the transistor level
to achieve the clock-frequency goal of more than
1 GHz. This required the availability of an advanced
formal equivalence-checking tool (Verity [4]) which
supports all custom design styles necessary to achieve
the frequency goal. This was an absolute prerequisite for
decoupling functional verification from the transistor
level and thus for doing effective verification at all.

Overview of design modeling levels
During the development cycle, several modeling
abstractions of the design were used; these are shown
in Figure 1.

The M1 model represents a traditional “timer” model.
It models the machine strictly from a transaction
viewpoint, interprets instruction traces of typical
applications and benchmarks, and predicts machine
performance. The modeling on this level was begun during
the earliest days of the project. The model was maintained

Figure 1

The four main POWER4 model abstraction levels that were built.

M1: Early tradeoff analysis with focus
 on performance prediction.  Later
 focus on performance validation.  

M2: Link detailed performance modeling
 with high-level behavioral
 specification  

M3: Fully detailed RTL (VHDL) model;
 latch/signal/Boolean-accurate     

M4: Gate/transistor-level model;
 result of custom circuit design
 or logic synthesis 

Verification
focus
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and adjusted even after the chip hardware existed,
although its use shifted from performance prediction to
performance analysis.

The M2 model is a new, abstract microarchitectural
model; it is discussed in the next section.

M3 in this scheme is the name of the traditional RTL
model, specified in VHDL. The VHDL model is the
complete, detailed behavioral specification. It is accurate
down to every latch, is Boolean-function-accurate with
respect to the transistor-level implementation, and is the
main focus of the verification process.

Finally, M4 is the “real” thing: the physical netlist that
connects the custom transistor macros with gate-level
netlists that were the output of logic synthesis.

The verification methodology began at the M2 modeling
level, but most verification was performed at the M3
level. A hierarchical approach was used at the M3 level,
starting with designer’s blocks and progressing to system
simulation, as shown in Figure 2. This approach optimized
the bug-discovery rate by finding the greatest portion of
bugs at the lowest possible level, where simulation-debug-
fix iterations are the fastest.

Design modeling levels: M2
Today’s HDL models are aimed at describing
implementations and fail at capturing a designer’s real

intent. It was necessary to raise the level of abstraction
and create a model that captures the design at the
microarchitectural level. Many verification tasks could
be improved with such a “high-level” model: simulation
(speed), formal verification (model size, easy separation of
control logic), coverage (obvious structures to instrument
for coverage models), and test program generation
(project-specific reference model for focused test
generation).

At the beginning of the POWER4 project, it was
decided that such a microarchitectural high-level model
(the M2 model) was necessary for the processor core
because the machine is so complex that it was not
reasonable to predict the performance of the processor using
only the traditional methods for performance modeling.
The convergence of needs from the performance and
verification teams made the existence of an additional
model in the design process a necessity.

The M2 model was the primary design vehicle for the
processor core during the first year of the project. A
C/C�� modeling framework was created to enable a
core team of microarchitects to write an efficient, concise
microarchitectural model. The lower levels of the design
hierarchy used C/C�� code, which supports model
partitioning, simulation control flow, built-in elements
such as latches, and performance-related constructs.

Figure 2

POWER4 verification hierarchy progressing from the M2 model to a 32-way Regatta H multiprocessor system M3 RTL model.

IF/ID

ISFXLS

M2
Core/GPS

IFU
I-cache

IDU

ISU

FXU

O/R

FPU

Sunfish

LSU
D-cache

CORE
Chip

2-way
MCM

16-way Regatta H Regatta H

GPS

Stage I/O

System N System N

Staged units

M2 Block Unit Multi-unit Chip N-way System

J. M. LUDDEN ET AL. IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002

56



Furthermore, the system allowed the designers to use
VHDL for the structural specification of the upper levels
of the hierarchy. Not only is netlist-type information the
obvious domain of an HDL, but early partitioning on
this level was also a task for high-level physical design.
Sharing the same source between physical and high-level
performance/functional design was highly desirable.

The overall experience of microarchitectural modeling
on the POWER4 project was very successful. Not only
were reliable performance measurements derived from
the model, but the verification process benefited in
major ways:

● A machine-readable, executable specification proved
early on that the processor in general “hangs together.”
Many fundamental flaws in the microarchitecture (such
as hang situations) were found during high-level design.

● Simply running benchmarks for performance prediction
through the model proved to have unexpected positive
side effects on early verification. This code would
normally have been run on the RTL model much later
in the project.

● The verification infrastructure and the verification team
got an early start with an executable model that was
available one year earlier than the actual HDL model.

As a new addition to the methodology, the M2
approach had its problems, the most important one
probably being that there is no “science” that defines the
appropriate abstraction level for a “microarchitectural”
model (as opposed to RTL, for instance). Over time a
dynamic compromise was found, in which the focus shifted
from performance modeling to functional verification over
the course of the high-level design phase.

Design modeling levels: M3
The hardware description language of choice for
POWER4 was a subset of VHDL, the industry-standard
HDL, and the primary choice in the IBM Server Group.
The definition of a subset had a basis in the tools as well
as in the methodology decisions the project had made.
TexVHDL, named after the cycle-based simulator TexSim*
used in POWER4, limits VHDL to its synthesizable
subset, which guarantees that the RTL specification can be
mapped unambiguously to a Boolean network or a finite-
state machine, which is the basis for cycle simulation and
formal verification.

One of the methodology decisions in the POWER4
project was to require the RTL specification to be latch-
accurate to the point of not allowing any automatic latch
inference by tools. This meant that the logic designers had
to instantiate the exact latch library elements for every
state-holding element, as well as the LSSD scan path that
connects the latches for manufacturing test. This VHDL

style was appropriate because a large part of POWER4
was a custom-engineered chip. The advantage of having all
of these physical aspects available on the RTL level was
that the designers were able to verify pervasive chip-wide
functions early in the project cycle, before the availability
of any physical netlist. The Verity Boolean-equivalence
check guaranteed the accuracy of the VHDL-level
simulation results.

It was a key logic design decision for POWER4 to use
a more advanced interpretation of the LSSD design rules,
which allowed the separation of strict master–slave pair
latches into two distinct and separate latch elements. This
design style allowed for aggressive cycle stealing, which
was required for the ambitious cycle-time design point.

For the cycle-based simulation approach, the existence
of two discrete latches required two simulator cycles per
POWER4 machine cycle. This would have divided the
simulation throughput by a factor of 2 if it had not been
for special provisions (referred to as “latch partitioning”)
in the model build programs. Latch partitioning allowed
a standard master–slave latch to be modeled as a single
state-holding element. For formal verification, this
splitting of the latch pair would normally have meant a
doubling of the state variables for these algorithms. This
could have prohibited most of the use of these tools on
POWER4. For this reason, a novel state-folding algorithm
was devised that allowed us to automatically eliminate
one level of latches. Formal verification was thus able to
process dramatically larger design partitions than would
have been possible otherwise.

New verification tools

Simulators

Cycle-based simulation
The synchronous design style used by IBM, allowing
the separation of timing verification from functional
verification, evaluates the state of the logic at the end of
each machine cycle. Such a zero-delay evaluation of the
Boolean logic gates between state elements is organized in
a rank-ordered fashion such that the overhead of event-
driven algorithms is eliminated. This type of cycle-based
simulation has the additional advantage that performance
and memory requirements scale at most linearly with
model size.

The principles behind the cycle-based simulator TexSim
are described briefly in [4]. It is a compiled-code cycle
simulator that is optimized to take advantage of the
superscalar, pipelined nature of PowerPC machines.
Boolean functions of the model were mapped to single-
cycle Boolean instructions of the host processor.

The POWER4 project created several requirements
that induced a number of innovations:
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● TexVHDL language processing: The POWER4 project
brought language-processing technology to a level that
was able to support the complexity of the TexVHDL
subset so that it could be processed into a form usable
by cycle-based simulation. Mapping TexVHDL to a
Boolean netlist level requires algorithms akin to logic
synthesis, but the required turnaround of a full-chip
compile for verification has to fall within a matter of
minutes, which requires radically different implementations.

● Parallel instance models: The largest system that had to
be simulated was larger than anything ever before
simulated in RTL: a 32-way SMP, 16 instances of a
180-million-transistor chip plus its memory hierarchy and
some I/O chips. We packed replicated units tightly by
using the vectored, 32-bit word of the host processor for
the evaluation of up to 32 separate instances of identical
blocks. This optimization has the effect that for up to
32 “parallel instances” of the POWER4 processors, the
model grows (and therefore the performance degrades)
only sublinearly.

● Multi-value cycle-based simulation: Concluding that the
multi-value evaluation of logic is orthogonal to the
event-driven execution of HDL models, we added a
multi-value (0, 1, x, z) feature to the second-generation
TexSim, not only making power-on-reset (POR)
simulation possible (the POWER4 model would have far
exceeded the capacity of any event-driven simulator),
but also bringing it to within about three to four times
the speed of two-value-cycle-based simulation.

Verification acceleration
An important component of the massive verification
“horsepower” needed to verify the POWER4 systems was
a special-purpose hardware-verification accelerator called
AWAN. It uses a massive network of Boolean-function
processors, each of which is loaded with up to 128 000
logic instructions. Typically, each run through the
sequence of all instructions in all logic processors
constitutes one machine cycle, thus implementing the
cycle-based simulation paradigm.

Throughput of the AWAN verification is limited by
model load, setup, results analysis, and most significantly
by the amount of interaction between the engine and the
computing host. The importance of spending most of the
run time in the engine at full speed limits the amount of
interaction the verification control environment can have
with the AWAN model. The raw-model performance of
the POWER4 chip running on AWAN exceeds 2500 cycles
per second, with the POWER4 chip containing 174 million
transistors. For POWER4 the ideal application of AWAN
was in pervasive verification (see the section on special
verification topics). It was also used to run exerciser code
that previously had been run in the hardware bringup
laboratory.

Boolean-equivalence checking
For POWER4, traditional verification along with
functional formal verification was used to validate the
functional behavior of the RTL description of the design,
expressed in VHDL, against a higher-level reference
model (i.e., a set of correctness properties). This RTL
description then became the reference model against
which to verify the transistor-level model. The Boolean-
equivalence checker Verity was used to ensure identical
logical behavior between the two models. This comparison
implicitly validated the transistor-level implementation
with respect to all results obtained from the functional
verification of the RTL.

The ability to verify the correct functional behavior of
the pre-hardware design by simulating an RTL model
and then using Boolean-equivalence checking to provide
closure to the verification methodology has been a key
part of IBM methodology for twenty years. Verity was the
latest and best Boolean-equivalence checking tool within
IBM [5, 6], but it stands on the shoulders of the tools
that preceded it.

The ability of Verity to handle all of the circuit styles
required to implement a 1GHz microprocessor was critical
to the successful closure of the POWER4 verification
methodology. The transistor circuit styles supported for
the POWER4 included static, two-phase domino, pass-
gate, pseudo-n-MOS, and various custom storage elements
for register files. Verity verified the logical function of
almost every transistor on the POWER4 chip, both custom
and synthesized. The unverified parts were array cores and
analog parts such as those used for chip I/O; verification
was used to provide coverage on these components.
Additionally, Verity performed consistency checks which
verified that the rules governing a specific design style
were observed. For example, “floating net” conditions
were detected in which the logical state of a net would
be undefined.

The use of Verity for the equivalence checking of
POWER4 sequential designs requires identical state
encoding for the circuit implementation and the RTL. The
state-holding elements on both sides must be identified
and put into one-to-one correlation. This is referred to
as latch correspondence, and it was achieved by using
a variety of techniques such as scan-chain traversal,
naming conventions, and connectivity analysis. Automatic
identification of latches in a flat transistor-level
representation of the implementation was achieved
by using pattern-matching techniques.

The task of verifying the entire POWER4 chip,
encompassing the core, all units, and all macros, was
accomplished by using a hierarchical approach. Verity has a
well-defined hierarchical verification methodology in which
a hierarchical partition of the CMOS implementation can
be verified against a similar partition in the high-level
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hierarchical RTL specification. Verity can use and test
functional boundary conditions expressed as logical
constraints by the designers. Verity ensures that the
constraints obeyed by a generating macro satisfy the
constraints that a receiving macro expects. This was all
brought together by a rigorous audit methodology, which
ensured that all macros were verified using Verity, and the
hierarchical verification methodology ensured that the
functional boundary conditions were satisfied. In this
manner, a bottom-up approach made the verification of
the entire chip feasible. At the chip level, all that was left
to be verified was the interconnect between the units
and the core (a total of 250 000 comparisons) and the
boundary conditions (2000 constraints). That verification
goal was achieved in less than 24 hours on an RS/6000*
Workstation Model 270 using 1.5 GB of memory. In total,
414 custom macros, 448 synthesized designs, eight units,
the core, and the chip were verified.

Functional formal verification
Functional formal verification (FFV) is the process of
proving the correct functionality of a model. There exist
numerous FFV techniques ranging from theorem proving,
in which a user manually guides a mechanized proof
system to a desired conclusion, to automated techniques
that exhaustively explore the behaviors of the design
under test (DUT). We employed the latter exclusively
for POWER4 because of their relative ease of use. The
domain of application was to assess the correctness of
the RTL implementation itself.

FFV requires three components: the DUT, a random
“irritator” which provides the set of possible input stimuli
to the DUT (i.e., it encodes the set of input assumptions
of the DUT), and a set of correctness properties. Given
these three components, the tool set automatically proves
that the composition of the DUT and its irritator cannot
violate the properties, or provides a simulation-like trace
exhibiting a failure. In most cases, the property can be
specified in the language of the DUT by the addition of
checkstop logic, and the irritator can be expressed by
nondeterministic HDL.

Note that unlike FFV, cycle simulation cannot prove
the absence of design flaws, and cannot yield 100% state
coverage on even medium-sized blocks. FFV provides
exhaustive coverage implicitly, but the penalty of this
exhaustive search is that FFV uses exponentially
increasing resources (with respect to design size)
to attempt to complete a proof. This typically limits
application to the block level and mandates manual
reduction work for larger blocks. Also, one must spend
the effort required to build a block-level verification
environment to enable FFV.

The tool that was used for FFV on POWER4 was
RuleBase [7], developed by the IBM Haifa Research

Laboratory as a user-friendly extension to an enhanced
version of SMV (Symbolic Model Verifier) licensed from
Carnegie Mellon University. It is a symbolic model
checker, which exhaustively and symbolically enumerates
the set of reachable states of the DUT. RuleBase also
incorporates several reduction techniques which
automatically reduce design size before SMV is
called, alleviating the degree of exponential blowup.
RuleBase utilizes a set of unique languages: EDL for
writing the irritator, and Sugar for writing properties.

After discussions with design and verification project
leaders, we initially identified several primary design
components for targeted FFV. The choice was based
on complexity, rate of change, difficulty of verification
using traditional verification methods, and areas that
have experienced late bugs on previous projects. These
efforts were often very fruitful and yielded a significant
number of extremely complex bugs in a fairly short
period of time. Nevertheless, size barriers limited
what could be accomplished with FFV, so traditional
verification and FFV complemented each other well
in the effort of attaining as high a degree of coverage
as possible.

We applied FFV to some extent on approximately 40
design components throughout the processor and found
more than 200 design flaws at various stages and of
varying complexity. At least one bug was found by almost
every application of FFV. In most cases, FFV began
significantly later than verification. It is estimated that
15% of these bugs were of extreme complexity and
would have been difficult for traditional verification.
In some cases, a late bug found in verification or in
the laboratory was recreated and its correction verified
efficiently with FFV.

The application of FFV by the designers themselves,
using the FFV team as consultants, tended to be very
fruitful. For example, less time was spent transmitting
design information between team members; therefore, FFV
could readily be applied as soon as logic was available or
modified, and the degree of coverage could be much greater
because of the reduced potential for omitted rules or
miscommunication. The process of formal specification
alone tended to benefit the design components
dramatically. A significant percentage of bugs found were
merely cases the designer had overlooked. FFV benefits
on POWER4 included finding many complex bugs early,
enhancing the block-level specification, ensuring that a
block was ready for the next level of simulation, and
reproducing traditional simulation bugs and laboratory
bugs.

Coverage
Coverage analysis was a monumental task in meeting our
strategic verification goals, and coverage tools provided
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the leverage to tackle the mountains of data that were
generated during verification.

The goal of coverage is to reduce the risk of a
hardware design bug escaping detection in a verification
environment. While verification teams have used basic
coverage measurements for years, the POWER4
verification team actively sought state-of-the-art
technology to use on this project. Progress is no longer
measured with a single arbitrary gauge; instead we rely
on an arsenal of tools to address the diverse needs of our
multi-tiered effort. Coverage tools were at the foundation
of our process and provided our verification teams with
the feedback necessary to deliver quality products on time.

POWER4 verification relied primarily on four coverage
tools: Bugspray, Comet, Abacus, and Covet. These tools
supported a verification methodology that allowed us to
specify events to be monitored during simulation run time.
Each of the tools has provisions for collecting, storing, and
reporting the data from simulation. They differ largely in
the type of data they were designed to collect and in the
scope of their application. Just as we have increased the
number of teams in our verification hierarchy, we have
also increased the use of coverage tools. We now have
pervasive use of coverage tools in all levels of verification,
including unit, multi-unit, chip, and system simulation.

Bugspray provides an extension to the VHDL language
which allows logic designers to add special macros directly
into the design. Bugspray macros are excellent for
targeting microarchitecture events such as state-machine
transitions; more significantly, they enable the engineers
most familiar with the design to define coverage events
and to direct coverage to areas they believe to be most
susceptible to bugs. Bugspray events help the verification
team identify areas of weakness more quickly and easily.
The events can be one of three types. They can pinpoint
events that should never be seen, enumerate difficult,
hard-to-create scenarios, or identify unique scenarios
that are worth saving.

Bugspray was most useful at the lower levels of
verification for two reasons. First, the events monitored
by Bugspray are typically easier to encounter in these
environments. They generally have fewer timing inhibitors
on primary inputs because artificial stimuli are used
instead of the RTL model to drive those inputs. Second,
the additional Bugspray macros have a negative impact on
both model size and speed, both already at a premium in
the higher levels of verification.

Comet is a general-purpose coverage tool that can be
used throughout the verification hierarchy. Comet tracers
can parse important microarchitecture events such as
dispatch and completion times and the number of rename
registers in use. Comet tracers can also parse protocol
events such as the number of times an intervention
response appears on the POWER4 fabric bus and

the number of transitions between L2 MESI1 states.
Finally, Comet can be used for the simpler task of
counting the number of signal transitions coming
from a chip or card I/O.

The use of Comet was targeted to the upper levels of
the verification spectrum, from core to chip, and from
N-way to system simulation. The strengths of Comet were
most apparent in the analysis of timing relationships
between events. The analysis is actually handled outside
the model under test and also outside the coverage model
itself. One must first conceive of a trace analyzer that is
powerful enough to establish relationships among what
would otherwise be considered unrelated events. The trace
analyzer filters the data, logging interesting events or
scenarios, and then passes that information into Comet,
where it is added to a database of similar occurrences.
Comet coverage models are then prepared which take
the collection of logged events and prepare an analysis
of all related coverage events. The end result is a list of
interesting coverage events that have not been previously
encountered.

Abacus, as its name implies, was originally a simple set
of counters used for delineating features of the PowerPC
architecture. Abacus was created several years ago to help
us gauge the effectiveness of our test cases. Abacus simply
parses a test case for its only input. The test case is
broken down into architecturally significant segments
which include instruction-level monitors for counting the
number of times an instruction is executed, a particular
field is set to a specific value, a particular instruction
produces an interrupt, etc.

Abacus remains a staple of coverage at the processor
core and chip level of verification for analyzing the
features of the PowerPC architecture, an application
which it performs exceptionally well. The verification
team used the reports from Abacus to identify test-case
deficiencies and weaknesses in the test-case generators.
One might say that Abacus supplied us with a “report
card” on the completeness of our architectural test-case
suite.

What Abacus provides for PowerPC processor
architecture, Covet provides for the rest of the system
architecture. Covet is a special-purpose coverage tool that
perfectly complements the bus-protocol checkers that
were used to verify the operation of the storage and I/O
subsystems. It can analyze and report on a series of bus
transactions, looking for specific events such as race
conditions presented at the interface of a coherence
unit. Covet’s coverage model monitors the occurrence of
concurrent events that stress a unit. For example, Covet
will analyze the many address collisions in the system at

1 The IBM “MESI” cache consistency protocol specifies four possible cache-data
states: modified, exclusive, shared, or invalid.
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the interface of each cache controller to ensure that
coherence and data integrity are maintained.

Covet was used exclusively by N-way and system
verification. In many respects, Covet and Comet were
similar in scope and purpose. Whereas Comet is a
general-purpose coverage tool using any data as input,
Covet is much better suited for use with trace data
generated for Coherency Monitor Lite (CML), a bus
monitor that checks for coherency violations anywhere
in the system. Because of Covet’s close ties to CML, it is
perfect for tracking and analyzing coherency events in the
large N-way models. The verification teams use the Covet
coverage reports to target additional areas of testing that
may be naturally hard to come by. Covet gave us the
advantage of monitoring how well we were stressing the
system at the bus level.

Designer- and block-level verification
Because the POWER4 design, from a microarchitectural
standpoint, was significantly different from its predecessors,
there was significant opportunity to extract many bugs
from the logic at the block level early in the development
cycle. Verification at the block level allows not only
speedier run times because of the small model sizes,
but also a more stressful environment for a given
block under test than a larger chip model might provide.
With very little effort, the block simulator can describe
relatively complex interactions of low-level events that
can stress the window conditions of a design. Trying to
identify these same events with an architectural test-case
generator can be extraordinarily difficult.

There were three primary tool sets or methodologies
used to perform block-level verification for the POWER4
design. These were the following:

● TIMEDIAG/GENRAND.
● C/C�� interface drivers and checkers.
● Functional formal verification.

TIMEDIAG/GENRAND enabled the user to create
fairly complex and stressful environments for the block
under test. TIMEDIAG is a graphics-based tool that
allows the engineer to define generic interface-protocol
timing diagrams. The timing diagrams define potential
scenarios or actions on the design interfaces and specify
the expected behavior of the design. (Looping conditions,
random values, complex expressions, and start-up
specifications were all supported by the tool.) These
diagrams can then be used individually or in various
combinations by the GENRAND tool to create reasonably
complex scenarios for the design under test. This
verification methodology was particularly attractive to a
portion of the design community that did not carry
C/C�� programming as part of their skill set. The

graphical waveform capture of TIMEDIAG allowed this
group to define test cases of varying complexity in a very
intuitive way.

C/C�� code was generated to irritate interfaces and
check results of the design under test. Some of this code
utilized random pattern-generation techniques to improve
overall coverage. Checking code was written to monitor
both outputs and internal functions of the RTL model.
The checking code was written in a modular format
to allow the checking to migrate up into the larger
verification models. Again, the size of the design under
test at the block level allowed quick turns of the models
and led to the overall efficiencies of “wringing out” bugs
at the lowest level of the simulation model hierarchy.

Unit-level verification

Unit and multi-unit verification using random-
command-driven methodology
The unit level is viewed by some as a “sweet spot” in the
verification hierarchy. It provides significant return in
terms of quantity and quality of bugs removed. Unit-level
verification was performed on functional units, such as
the instruction decode unit, the L1 data cache, and the
L2 cache.

There were definitely tradeoffs regarding the extent
to which every functional unit had to be verified in a
standalone unit-verification environment. A considerable
investment in resources was required in order to design
each unit-verification environment. A typical unit
environment using the random-command-driven (RCD)
methodology, as shown in Figure 3, consists of one or
more interface drivers, interface monitors, and unit
monitor checkers within the RTL model, and of course a
significant amount of C/C�� RTX code which serves as
the central command center and directs cycle-by-cycle
command changes and monitors for test-case failures.

Figure 3

The random-command-driven verification environment used in 
GPS-unit and multi-unit verification.
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Driver, unit monitor, interface monitor, and checker
The following is a description of the RCD methodology
that was used on most units and used exclusively on
POWER4 storage subsystem (GPS) multi-unit verification.
When performing unit verification, we needed a means for
driving the interfaces of the design under test (DUT)
instead of relying on actual RTL from interconnected
units. Two methods were used to generate the necessary
stimuli:

● Start with a test case that is generated by hand or use
a test-case generator to generate test cases. A program
extracts the transactions that affect the unit. The driver
uses this information to provide the necessary stimuli to
stress the unit. This approach was typically used on units
that were close to the core complex.

● A driver under the influence of a parameter file and a
random-number generator initiates random transactions
to the DUT. The drivers are not restricted by what
the real unit RTL would normally do, but by what the
interface protocol allows. This has the advantage that it
is easier to write and maintain. In addition, the driver
can provide some unique sequences that the real
hardware may exercise only under some extremely rare
condition. Since the driver can create the transactions
“on the fly,” it can more easily react to the current
state of the unit under test and drive the unit to some
complex “corner” case. In contrast to the pre-generated
test patterns, the dynamic test generator has a priori
knowledge of the unit state space before it generates the
test case for the next verification cycle. This approach
was more appropriate for testing storage units, since
these units typically have straightforward transaction
requirements.

To ensure that the DUT behaves according to
specification, we used interface monitors and a unit
checker. An interface monitor verifies a particular
interface of the unit and is also responsible for ensuring
that the interface protocol is correct. The unit checker
checks for proper unit behavior across all interfaces and
within the unit. It also updates the reference state of the
unit as a result of the unit’s responses to the stimuli. This
reference state can be used by the drivers to enhance
stimuli sent to the unit in order to arrive at some hard-to-
reach corner case. The checking is done in real time, cycle
by cycle. Since checking is made against some ground
rules rather than by predicting results, checking is
straightforward. When a discrepancy is detected, the
monitor flags the error, prints out pertinent information
concerning the error, and terminates the test case. This
method of verification increases the run-time efficiency of
the environment by minimizing the number of cycles run
between a failure and its detection. Furthermore, it was

useful to totally isolate the driver from the interface
monitor and checker/monitor combination. In this way, we
were able to move the interface monitors and checkers up
to the next level of the verification hierarchy to help
detect and isolate design defects faster at run time.

Unit and multi-unit verification used an internally
developed software library that supplied a foundation for
writing the driver, unit monitor, interface monitor, and
checker. The library support included

● Hierarchical facility management.
● A synchronization point to read/write the hardware

facilities (signals).
● Error message handling, such as temporarily ignoring a

fail error message for a known failure condition in order
to allow further testing.

● Random-number and parameter-biasing management.

The library allowed the verification engineers to
concentrate on their primary job of verifying the DUT,
rather than concerning themselves with low-level simulator
application interfaces and file-management chores.

RCD verification of the cache, fabric, memory, and I/O
The storage subsystem (GPS, consisting of cache,
fabric, memory, and I/O) verification was accomplished by
applying the RCD methodology. A model of a typical unit-
verification environment in the GPS subsystem is shown in
Figure 3.

Before the start of any simulation run, a well-thought-
out address pool was generated. This was critical, as a
truly random address generator would not stress the cache
design well. We needed to select addresses according to
the design of the particular cache that we exercised
(e.g., to target a specific number of congruence classes
and banks). Once a set of addresses was established,
all transactions used those addresses throughout the
simulation run. This helped ensure high resource
contention.

In addition, cache preloading was used to stress address
and cache-line traffic and contention. By applying cache
preloading, some of the more interesting areas of the GPS
state space were reached without using a significant
amount of simulation time to initialize the caches from
the power-on system state. The advantages included
shorter test cases and assistance in targeting specific
conditions (such as causing castouts from a cache more
readily). Two methods were used to generate cache
preloads: handwritten sequences and random generation.
Handwritten sequences were used in performance-
verification tests to generate preloads for the specific
address sequences used in that test.

Random generation, the dominant method used in unit
verification, used a Monte Carlo progressive-constraint-
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based system. Each type of preload (combination of cache
states and levels of caches) was enumerated. For each
enumeration, constraints on that preload were formed.
Constraints can include physical congruence-class
requirements and cache-coherency rules. The following
process was then evaluated at the start of the test case.
For each address to be preloaded, a preload depth was
chosen for the maximum number of preloads for that
address. Successive valid random preloads were chosen
until the desired depth was reached or no more preloads
were valid (based on the constraints). For each test, the
bias for each preload state was chosen randomly. This
“fixed for each test” bias gave greater variation in preload
ratios. Additionally, both valid and invalid preload data
were allowed. For invalid cases, the data was noncoherent
random data.

While random transactions were being entered into the
model, a detailed trace of transactions and reactions to
those transactions was logged in an activity file. This log
file proved to be indispensable in isolating and debugging
failures. Detailed facility trace data during the failure time
was provided to the designers to help locate the design
fault. By using this log file, the majority of design fixes
could be corrected and verified within one day.

Dynamic test-case generation
The dynamic test-case framework (Dtf) is a C��-based
library for the generation of model-directed random
dynamic test cases. It is the most advanced application
of the RCD verification methodology applied at the unit
level in POWER4 and was used throughout the GPS
multi-unit environment. Its primary purpose is to use the
information gathered in monitoring the validity of the test
to assist in randomly driving that test to expose bugs in
the logic faster and more often. To provide and control
this means of information passing, Dtf provides a common
interface for storing and querying state information and a
common interface for using that information to run the
test case.

The conduit for monitor feedback travels through the
Dtf directory and queries. The Dtf directory is a class
for storing and organizing state information. A particular
entry in that directory can be associated with an arbitrary
number of states. A Dtf directory query can process any
first-order Boolean combination of states across any of
the existing Dtf directories.

The Dtf command selector provides a common interface
for the software drivers which use information from Dtf
directory queries in generating pseudorandom behavior.
Each type of command is encapsulated in a Dtf command
“factory,” which generates everything needed to execute
a specific command of that type. The selector chooses
randomly from the command factories in that driver
according to specified bias weights. That selection is done

with a Poisson distribution, which gives a more realistic
pattern of event arrivals than a uniform distribution. In
addition to relative weights, the selection of a command is
influenced by a set of predicate functions associated with
that command. These predicates both indicate when the
command can be executed and provide information to
the command from the applicable directory queries.

This selection process was a rather simple model for
selection. Frequently, however, more interesting models
were desirable. This need led to the development of the
Dtf command sequence, which allowed the use of an
arbitrary hierarchical Markov model to control the
selection of commands. Typically, a command sequence
would be used to model a situation that, in the past,
had led to troublesome behavior. Through the use of
predicates that use directory queries related to the
activity of other drivers, a command sequence can even
be used to coordinate complex behavior among multiple
drivers.

In addition to its use in GPS, the Dtf library was used
to design a new unit simulation environment in the core
of POWER4. The previous simulation environment had
allowed several bugs to pass that were later caught in the
laboratory. The environment included two major drivers,
one for the ISU (instruction sequence unit)-to-IFU
interface and one for the CIU (cache interface unit)-to-
IFU interface. For those pieces, we wrote new drivers that
used Dtf to bias the control of those operations. These
new drivers paid immediate dividends, finding several bugs
in the hardware.

Sunfish and Outrigger unit verification
Sunfish, an external bridge I/O chip, and Outrigger, an
external memory controller chip, were verified by the
POWER4 team and were treated much as another unit
of the POWER4 chip. At the unit level, Sunfish and
Outrigger verification used the RCD methodology, as
shown in Figure 2, as well as a significant amount of
deterministic testing. The deterministic test cases, called
unit verification programs (UVPs), were standalone
test cases with specific register-setting values. In the
deterministic testing mode, the UVP drivers replaced the
random drivers in the model and were used to test specific
boundary conditions, recreate failures found by other
methods, and test specific conditions that were difficult
to hit with RCD. In addition, an orthogonal method was
applied in both the deterministic and random methods.
The concept of this method originated from [8], but all
variables (commands) were allowed to vary under the
control of the orthogonal matrix, instead of varying only
one variable at a time while holding all others constant.
Although this method was not exhaustive in testing all
combinations, it provided the best coverage for a given
amount of resource.

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 J. M. LUDDEN ET AL.

63



Multi-unit and chip verification

Genie/Genesys/GenesysPro pseudorandom test-
case generators
The processor core (functional units and L1 cache) multi-
unit-level and chip-level (incorporating both the core and
GPS) verification strategy for POWER4 was based on
architectural verification programs (AVPs). The AVPs
were generated by model-based test generators
(Genesys/Genie/GenesysPro) according to a
comprehensive plan which covered all of the PowerPC
architecture specification. Major components [9] of these
generators are depicted in Figure 4.

Genesys
Genesys provides an efficient method to generate
PowerPC AVPs. It generates pseudorandom AVPs
according to its user’s directives. Missing or incomplete
directives were completed randomly by the tool, but the
random selections were biased toward the generation of
interesting cases. The random capabilities of Genesys
assisted in finding design defects beyond the limited scope
of manually written AVPs.

Genesys allows its user to select the instructions which
appear in the AVP, and their order. For each instruction,
both syntactic and semantic selections are available; the
syntactic selections assign values to the instruction fields,
while the semantic selections dictate the occurrence of
events (via biased generation functions). The whole
generation process is run under the control of many global
parameters, which may be changed or overridden by more
specific directives. The user can set initial values for the
design resources (such as registers and memory).

Genie
Genie is a multiprocessor (MP) version of Genesys
capable of generating false-sharing and true-sharing
test cases with either deterministic (both unique and

nonunique) results or nondeterministic results that can be
checked by a run-time coherency monitor/protocol checker
(CML).

GenesysPro
GenesysPro incorporates the learning of almost ten years
of pseudorandom instruction-level test-case generator
development into an entirely new tool. It is intended for
both uniprocessor and multiprocessor verification. While
the underlying principles and structure of the Genesys
model-based test generator are unchanged, many new
features have been implemented which allow the users
even more powerful methods of writing directed test cases.
This is necessary to keep up with the ever-increasing
sophistication of microarchitectures such as the POWER4.

Since GenesysPro was in the experimental stages of
development for the POWER4 project, its usage was
limited to a handful of advanced test-case scenarios that
were difficult or impossible to accomplish with Genesys or
Genie.

Static and random test-case methodology at the
processor core multi-unit level
At the uniprocessor core level, two major verification
phases were defined: static and random. Both phases
relied almost exclusively on test-case generators for the
creation of AVPs.

For the static phase, libraries of AVPs were developed
which provided broad coverage of both the architecture
and the implementation-specific features of POWER4.
A partial set of these tests (approximately 150 000) was
used to regress each model to assess the quality of the
VHDL delivered. This subset would run overnight on the
simulation farm. The complete static regression consisted
of approximately 500 000 tests and was run against major
VHDL deliveries. It required about three days of run time
on the simulation farm to complete.

In general, the complete regression “bucket” consisted
of different types of test cases. These were run both with
and without random external interrupts:

● StarterSet— one instance of the same instruction per
test.

● JumpStarterSet—10, 50, or 100 instructions of the same
type per test.

● Complex Every Others (CEOs)—All possible pairs of
instructions (for those that can be generated).

● IVPs to cover events that were not targeted by the
above tests. IVPs (implementation verification
programs) were implementation-specific tests such as
specific sequences that AIX* developers identified as
interesting and sequences that were identified by lead
architects and designers.

● Tests that found previous bugs.

Figure 4

Genesys/Genie/GenesisPro pseudorandom-instruction-level test-
case generators comprising four elements.
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For the random phase, a degree of randomness in the
definitions (“defs”) was necessary to guarantee their
quality; they had to be specific enough to target the
specified tasks, but random enough that different AVPs
were generated each time. The nature of the random tests
varied considerably from def file to def file. Short, single-
instruction AVPs were used initially, followed by
increasingly more complicated mixing of random
instructions. In general, the AVPs were developed to stress
the interaction of the various units on the processor core.

The above tests were run on both core- and
uniprocessor-level models (see below). The core model
allowed for faster simulation performance than the chip
model, since it used a C�� behavior to represent the
storage-control element instead of the actual GPS VHDL.
The added benefit of this behavior was that it allowed for
more robust stimuli to be applied to the portions of the
core that interfaced with the GPS, i.e., the IFU and LSU.

UNI and dyadic chip-level verification
Two models were utilized to stress the interaction of the
processor core and the GPS:

● UNI model: Combined the GPS and a single processor
core.

● Dyadic model: Combined both processor cores with the
GPS and chip pervasive logic. This model contained the
complete POWER4 VHDL.

This section describes the major verification challenges
and methodologies which were utilized in these two
models to verify the architecture and the implementation.

For the UNI model, the methodology was similar to the
core verification effort. In general, many of the same tests
that exercised the core model with the L2 cache behavioral
model (C��) were repeated on the UNI model. This
accomplished two main goals.

First, it allowed the verification team to verify that the
core VHDL actually performed correctly with the GPS
VHDL under a wide array of tests and stimuli. This step
was necessary to validate what was done on the core
model using only the L2 cache behavioral. While the
L2 behavioral allows for more robust irritation than is
possible with the real GPS VHDL, it was possible that
there were subtle differences which would have to be
accounted for by repeating the tests on the UNI model.
This also presented a wide variety of stimuli to the
GPS VHDL from the core for the first time.

Second, with the incorporation of the real GPS VHDL
into the model, the verification team could make use of
Coherency Monitor Lite (CML). CML is valuable in
verifying certain “ugly ops” [3], or instructions which would
otherwise be difficult to verify; examples of this include tlbie,
tlbiel, sync, lwsync, eieio, and several cache instructions

such as dcbt, dcbtst, dcbf, and icbi. Verifying that these
instructions have been properly executed by the RTL
model can be difficult using solely AVPs and RTX
checkers. An example of a bug that was detected on the
UNI model by CML was the case of a noncacheable load
that was sent out twice to the GPS by the core. Because of
the manner in which the PowerPC architecture uses
noncacheable memory pages for interaction with I/O
devices, this is not allowed. No other checkers in the
environment detected this error.

On the dyadic model, special focus was applied to
multiprocessor (MP) test scenarios. The primary tool used
for stimulus on the dyadic model was Genie. All tests run
on the dyadic model were checked by CML for MP problems
and protocol violations. Some tests were deterministic
and relied on CML as an additional means of checking
the results, while other tests were nondeterministic and
relied completely on CML for determining the correctness of
the results.

In particular, bugs that were found on the dyadic model
related to the reservation mechanism by employing code
that mimics actual “test and set” operations as they were
performed by an operating system or applications. In
addition, CML detected consistency bugs where two
processors were reading and writing partially overlapping
bytes of memory simultaneously but not returning a
consistent result. The incorporation of CML into the UNI
and dyadic models is a direct result of the escape analysis
of the POWER3 processor in which such bugs were found
only by CML in system simulation or by the hardware
testing on the test floor. This demonstrates the continual
evolutionary nature of processor-verification techniques
and the value of analyzing previous escapes to laboratory
and higher levels of simulation. Whereas the most
common types of escapes to the hardware laboratory
on POWER3 were related to load ordering (mostly
consistency), not a single load-ordering problem was
found in the laboratory on POWER4 hardware. The
GenesysPro tool was used on the dyadic model to verify
the CMODX-type scenarios described previously. While
this tool was experimental for the POWER4 program,
it allowed the verification team to recreate problems
previously seen only in the laboratory and to verify fixes.
Furthermore, it allowed the verification team to execute a
directed test plan to cover other related scenarios and
increased the level of confidence that time-to-market
goals would be achieved.

Regatta2 system verification
System simulation is the highest hierarchical level of
verification. The main objective for system simulation is to

2 Regatta is the code name given to the MP system comprising the POWER4 along
with all other system chips.
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verify interactions among chips using actual chip VHDL
for the processor, memory, and I/O chips. Building a
32-way POWER4 system using VHDL for a full 32-way
system is neither practical nor the best approach to verify
a system. The challenge for system simulation was to come
up with several different, smaller configuration models
that effectively represented the 32-way structure without
the full 32-way model. A 32-way system consists of four
multichip modules (MCMs) connected using the MCM-to-
MCM bus structure. Each MCM contains four POWER4
chips interconnected using a chip-to-chip bus structure. In
addition, each POWER4 chip has memory and I/O buses
providing connections to L3 cache, memory controller,
and I/O chips. Three categories of models were used:

● Chip-to-chip models based on one MCM, with and
without I/O.

● MCM-to-MCM models, with and without I/O.
● Combination models, using both chip-to-chip and MCM-

to-MCM models, with and without I/O.

Two eight-way models, one chip-to-chip and one MCM-
to-MCM, were the workhorses of system simulation. Most
of the functional logic bugs were found using these eight-
way models. Without using parallel-instance models, the
system-model sizes would have been too large to run in
our batch system simulation environment. Only limited
testing was done on the larger models because the
model environment was too big to provide the testing
level achieved using the eight-way model. The system-
verification environment used the same RTX checkers as
those written for lower hierarchical levels. On the models
which included the I/O chips, HDL PCI behaviorals were
developed and compiled into the models to create I/O
traffic. Additional code was developed to support the I/O
chips at the system level.

Regatta system-verification test generation and
checking
Two internally developed test-case generators were used
by system simulation—MultiProcessor Test Generator
(MPTG) and Genie/DmaInjector. A third test-case
generator, SysGen, was used to a much lesser extent.
MPTG and Genie were both used for N-way without
I/O testing. All three generators were used for I/O testing.

MPTG is a system-based test-case-generation program,
designed to generate comprehensive, system-level test
cases for the memory hierarchy of MP systems. MPTG
generates test cases that focus on causing interactions
among all of the chips (including I/O) in the system.
The MPTG test-case generator has two separate parts:
a generic test-generation engine and a system-specific
machine model. The machine model includes protocol
tables and preload rules for all caches, and thus provides

the MPTG tool with detailed knowledge of the memory
hierarchy of the system under test. The user can create
test cases that precisely target certain cache-coherency
scenarios. This is done in MPTG by using load/store
combinations with various address streams to address
the cache directories.

MPTG test specifications are created and written
through the MPTG graphical user interface. There were
mechanisms to provide precise control over MPTG to
create tests with varying degrees of deterministic and
random events. The test specification is loaded into the
MPTG generic test-generation engine and applied to the
system-specific machine model to generate a “bucket” of
test cases. The test specification can exploit this model
to enumerate tests that cover various combinations of
parameters in the protocol tables of the machine model.
Because of the nature of true sharing, which was the focus
of MPTG test cases mentioned in the beginning, MPTG
cannot predict the final results of testing, and MPTG tests
must be dynamically checked by using CML.

CML detects the types of bugs that typically arise in the
interaction of components of a complex MP system. Types
of rules verified by CML include MP cache coherence,
memory and cache consistency, synchronization,
reservations, external interrupts, and ordering and
propagation of I/O traffic at several levels of the I/O
hierarchy. CML consists of three components—tracers,
checkers, and the plotter:

● Tracers are software state machines that monitor various
interfaces or components of the system during simulation
and produce trace files of all relevant traffic.

● Checkers: CML contains hundreds of checkers, most of
which are based on architectural rules. The checkers run
after simulation has completed.

● Plotter: The CML plotter is a debug tool that provides a
device-vs.-cycle-time plot of all system activity captured
by the tracers.

Regatta N-way system simulation testing
N-way testing refers to Regatta MP models that do not
include I/O chips. A large number of MPTG tests written
for previous PowerPC N-way systems were ported so
that they could be used to verify the Regatta system. In
addition, a large number of new MPTG tests were created
specifically to verify the Regatta system. The POWER4
microarchitecture includes a new L2 cache design with
three slices, a new L3 cache design with shared and
private modes, and a new interprocessor connection
architecture with both chip-to-chip connections and
MCM-to-MCM connections. Previous MP systems
usually had all of the memory behind one (or two)
memory controller(s), with the individual processors
connected on a common system bus. For the Regatta
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system, a memory controller can be attached to each
POWER4 chip.

The basic philosophy for verifying an MP system is to
have two or more processors access the same memory
word or cache line during a test. For the Regatta N-way
systems, tests were created which selected the memory
addresses in a controlled manner so that all interesting
combinations of processors and targeted memory
controllers could be exercised. Processor transactions
were chosen randomly, based on weights in MPTG test
cases. Specific tests had to be written for each system
configuration, since the mapping of address to memory
varied depending on whether the L3s behind each chip
were in shared or private mode and whether there was
a single MCM or multiple MCMs in the system model.

Another challenge for Regatta verification was related
to the new L2 architecture, which had a six-deep store
queue on each of three L2 slices. Two processor cores
share the same L2 cache. For stressing the L2 store
queues, addresses were selected to target stores to the
lower or upper 64 bytes of targeted cache lines on
selected L2 slices. The tests were created to use byte,
halfword, word, doubleword, quadword, or random
combinations of all sizes of stores only, or stores in
random combination with other transaction types.

The Regatta architecture defined a new data-prefetching
mechanism in which core accesses to sequential cache
lines are detected and used to cause core data prefetches.
These data prefetches are converted into L2 data
prefetches and L3 data prefetches. A series of new tests
were written to cause data prefetches to be generated in
both forward and backward directions using the dcbt and
dcbtst instructions, with a flag indicating data prefetching
in a forward or backward direction.

The Outrigger Memory Controller was new for the
Regatta system, and tests were written for the system
environment to target it and the L3 controller located
in front of it. The memory controller, for performance
purposes, maintains a “partial line” store queue which
allows multiple processor or I/O writes to a cache line to
be “accumulated” before writing to the memory dimms.
To support ECC, the data must be read from the memory
dimms, overlaid with the “new” partial write data, and
then written back to the dimms with newly generated
ECC. This made partial writes slow, since both a read and
a write memory access were required. Tests were written
to stress the memory and L3 controller by varying the
number of processors sharing cacheable and noncacheable
shared addresses, the number of L3s and L3 slices to
which the addresses belonged, and the weighting of stores
versus loads.

Covet was used to evaluate whether the tests were
examining all of the desired sequences. New tests were
written to hit certain scenarios which were not exercised

by the initial tests. One of the lessons learned from
experience with testing the Regatta system is that with
such a complex and large model, it was difficult to run test
cases long enough to examine everything. It took a long
time to cause L3 castouts, and it was difficult to align
castouts with other accesses to the same 512-byte region. To
facilitate verification and cause L2 castouts, the L2 cache
configuration was changed from eight-way set-associative
to direct-mapped for certain tests.

Regatta I/O system simulation testing
The I/O system model consisted of the N-way model plus
the actual I/O chip VHDL. Key simulation challenges
included the numerous system configurations, ensuring the
compatibility of I/O chips, and interrupt structure changes.

The I/O system structure consisted of a POWER4
processor and an I/O bus called GX, each of which can
connect to the Sunfish I/O chip. The Sunfish supports up
to four intermediate I/O buses called RIOs, which connect
to a RIO-to-PCI bridge chip called Speedwagon. PCI
behaviorals (called Monty) were added in a nonsymmetrical
manner to stress different PCI bus-loading characteristics.

Test-case generation was provided by the same two
tools used in the N-way system testing and SysGen.
MPTG, described previously, has knowledge of all
processors, system memory, I/O behavioral commands,
and memory-mapped I/O, including processor MMIOs
(processor accesses to I/O addresses), Monty DMAs (PCI
accesses to main memory), and external interrupts from
Monty. The test cases contain memory initialization data,
processor instruction sequences, and Monty command
sequences for DMAs and interrupts. Unlike the other
generators, MPTG also use TCE (Translation Control
Entry, used in I/O address translation) tables, which is a
key component of I/O testing.

DmaInjector could read Genie test cases and create
an internal image of memory, which it then used as the
target memory range for DMA. By using unused bytes in
cache lines accessed by the processor, DmaInjector also
generated expected results for its DMA transactions. The
DMA transactions also caused cache-line thrashing
between processors and I/O devices.

SysGen was used primarily to validate AS/400* features
of the I/O structure.

The external interrupt testing for Regatta focused on
the new Sunfish interrupt controller. The Sunfish chip
introduced a new interrupt bus protocol that was based
on PowerPC interrupts. One of the Sunfish chips was
configured to be the “primary” Sunfish and acted as the
interrupt bus arbiter and interrupt presenter. The other
Sunfish chips were configured to act as routers to the
primary Sunfish. Test plans and configurations were
managed to cover the various interrupt modes in the
new protocol.
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The external interrupts were generated through the PCI
behaviorals and sent to the interrupt presenter, and the
interrupted processor sent configuration stores out to
I/O to turn off the interrupt. The interrupt handler was
designed to work with defined bus unit identifiers (BUIDs)
that closely represented the anticipated product-level
initialization. The handler read the external interrupt
request register (XIRR) from the interrupt presenter and
used the BUID information gathered there to determine
the activity required to turn off the interrupt (such as
configuration stores to I/O). The end of interrupt (EOI)
came when the handler wrote back to the XIRR. The
interrupt handler also supported nesting of interrupts.
I/O interrupts were set up with a variety of priorities.
This nesting required the interrupt presenter to manage
multiple outstanding interrupts to the same processor.
Interprocessor interrupts (IPIs) were also supported.
Within the interrupt handler, IPIs were treated similarly
to external interrupts minus the configuration stores to
I/O. The test-case generator(s) were designed to allow for
IPIs and external interrupts. The interrupt-handler code
was included in these tests. A variety of test cases were
generated with these interrupts. Other I/O activity
(MMIOs and DMAs) also contributed to stress the Sunfish
I/O bridge in conjunction with the interrupts. Various
external interrupts were set up both as directed (an interrupt
sent to a specific processor) and as global (an interrupt
sent with a specific server number that the interrupt
presenter decodes to mean one of several processors
which the presenter is allowed to choose).

The interrupts were checked using two methods.
Coherency Monitor Lite (CML) checked that the nested
interrupts occurred with the correct priorities. CML also
checked that the global interrupts (defined with a specific
server number) were directed to the correct processors.
This verified the LPAR portion of the interrupt protocol.
Additionally, CML checked basic interrupt functionality
such as ordering protocols (one example is that an EOI
must not pass an MMIO store to a device) and made sure
that every I/O interrupt was matched with an interrupt
acknowledgment and an EOI. The second method for
checking interrupts was done by using individual processor
counters for the interrupts. This method worked well to
identify missing, extra, or misdirected interrupts.

Special verification topics

Pervasive RAS/debug
In this paper, the term pervasive verification refers to a
plethora of essential items in the POWER4 chip that
provide reliability, availability, and serviceability (RAS)
functionality. Typical features include scanning the state
of the processor, array built-in self-test (ABIST), logic
built-in self-test (LBIST), array display/alter, interface

alignment procedure testing, I/O shorts tests, internal
serial communication port (SCOM) (JTAG), debug
(trace array logging, trace stop on error, and trace stop on
trigger), and error injection/detection/correction/reporting.
While these features provide customer RAS capability,
they are also invaluable features for use in debugging
problems in the laboratory. Most debugging occurs
without logic analyzers.

Most of the POWER4 pervasive verification was
implemented at the chip and system levels. The chip
model was used for most pervasive features because of
its simulation speed, while the system model focused on
validating initialization and debug functions. The system
models closely resembled the bringup configuration used
in the laboratory. The models were built using real card
and board data to validate chip-to-chip interconnections
and proper chip-input pullup and pulldown resistors.
Both the AWAN and MVLSIM simulators were used.

The service processor in the system controls the
initialization and performs debug procedures through a
serial interface (JTAG) to each chip in the system. A
service processor command library was developed which
was used by both simulation and the bringup laboratory.
Test cases used the library and were common between
simulation and the laboratory. A number of significant
achievements were realized as a result of this strategy.
A complete POR using full scan sequences was executed
successfully before the chip was taped out, simulation was
able to match LBIST signatures with the real hardware,
full ABIST ran to completion using fault injection and
fuse repair, and a complete set of tests were developed
and run in simulation that could be run out of L2 to help
the sort at wafer test. All of these significantly reduced
the time spent on chip bringup in the laboratory.

Performance verification
Many sophisticated microarchitecture features of
POWER4 exist in the design. Simply verifying that these
features operate from a functional perspective, however,
is inadequate. The performance of the total design must
be verified. As the microarchitecture was developed,
various high-level performance models (see the overview
section) were used to enable design tradeoffs. These high-
level features could be latency projections on paper or
complicated cycle-approximate models of all of the
important microarchitectural features. The goal of
performance verification was to verify that the high-
level models matched the implementation, thus giving
confidence to performance projections based on those
models.

Several methods of simulation were used to verify
individual components of the system as well as the entire
system. The system was broken into two main portions:
the processor core and GPS storage subsystem. Specific
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tests were developed for each model. These tests included
very specific sequences, synthetic instruction sequences,
and application code segments.

Verification of the processor core itself was based
mainly on correlation of specific instruction sequences
between the M1 and M3 models. The same instruction
sequence would be executed on both models. The timing
of specific events would then be compared between the
two models. Furthermore, the actual run time of specific
instruction sequences was verified. One of the most
difficult aspects in model correlation was the use of free-
running counters that controlled resource allocation. If
these counters did not match exactly between the models,
stall conditions due to resource allocation would come out
of sync. This would cause a rapid degradation in the event
correlation and make valid comparisons impossible.

For verifying storage subsystem performance, we found
it most useful to drive the processor interfaces by a variety
of methods. The most simple method was based on
command text files, which provided a method to verify
latencies and bandwidths throughout the system. Design
features, such as arbitration mechanisms, and overall
latencies were tested by these methods. To complete the
feedback system with the core, a C��-based processor
behavioral was used that provided only the core
functionality needed. This behavioral provided an ideal
system performance assuming a perfect processor core.
The feedback system was needed for streaming-data
technical workloads. In these workloads, the rate at which
data is returned determines the requesting rate. This
simple core behavioral allowed the isolation of design
performance issues to the storage subsystem.

Use of the above techniques enabled significant
improvements in both implementation performance and
modeling accuracy. On the basis of design defects found
and design changes achieved through more accurate
modeling and projections, these tests encouraged
significant improvements in performance—in some cases
as high as 100% for large-memory daxpy (a technical
workload from the LINPACK suite of benchmarks).
The performance findings also improved sustained L2
bandwidth by 30% by identifying a bug caused by an
incorrect signal used for pacing.

Asynchronous interface verification
As core processor frequencies continue to increase faster
than DRAM and I/O technology, designers look to
asynchronous interfaces between memory and I/O to
communicate independently of the processor clock
frequency. Asynchronous interfaces can be categorized
into two general categories—pseudo and true asynchronous.
Pseudo asynchronous interfaces are the most prevalent;
these are defined by two logical blocks clocked at integer
multiples of each other. POWER4 uses this type of interface

in several areas. For example, the L3 cache, FBC, and GX
operate at 1/n (where n � 1, 2, 3, 4, etc.) of the processor
frequency. True asynchronous interfaces must operate
correctly on noninteger multiples. The memory controller
(Outrigger) uses such an interface so that the memory
subsystem can operate at optimal frequencies that are
independent of the slower DDR memory access times.

The goal of verification was to prevent hardware
asynchronous interface escapes by using both model
checking and simulation techniques. Real hardware
interfaces were subject to jitter, meta-stability, and
combinatorial logic switching. Current hardware
simulators, both cycle-based and event-driven, do not
correctly model the unpredictable behavior seen in the
laboratory. Additionally, timing analysis across such
interfaces cannot prove the correctness of the design.
Previously, the primary method of verification was manual
inspection of the design language. This has proven to be
susceptible to omissions in asynchronous crossings and
difficulties in accurately mapping the design language into
circuit diagrams. This problem becomes more complex as
designers use prepackaged libraries.

The first step in verifying asynchronous interfaces was
to identify all instances in which a signal crosses from one
clock domain to another clock domain. This was done
by monitoring the “rate” at which a latch output would
change relative to the other latches. This can uniquely
identify the clock domain to which a particular latch
belongs. The next task was to map the primary inputs or
latch inputs to any given latch. Since the clock domain of
each latch was already known, and the path from any latch
to the sources for that latch was known, the path could be
identified as synchronous or asynchronous. Also, the path
could be analyzed to check whether asynchronous design
guidelines had been followed. Once all asynchronous
crossings had been identified, during cycle-based
simulation the output of an asynchronous latch could be
randomly modified to simulate both jitter and the effects
of combinatorial logic switching. Verification coverage
metrics were developed to ensure that all asynchronous
interfaces had been verified.

Verification IT infrastructure

Sim farm
A massive simulation infrastructure was required to
simulate a processor and system of this size and
sophistication. The infrastructure begins with the “sim
farm,” which consists of thousands of IBM pSeries*
workstations and servers running the AIX operating
system in Austin, Texas, and Rochester, Minnesota. The
network is connected using 100Mb Ethernet at each site.
The processing capability enabled us to average over a
billion cycles per day.

IBM J. RES. & DEV. VOL. 46 NO. 1 JANUARY 2002 J. M. LUDDEN ET AL.

69



Job submission
The simulation team created roughly 10 000 definitions
and specifications in order to test and target different
parts of the microarchitecture, parameter combinations,
and coverage events. An internal job-submission tool
enabled us to resolve several challenges in managing the
numerous defs across thousands of systems. First, some
of the defs were more “interesting” than others, so one
would wish to generate more tests from those defs than the
others. Second, the defs were created over more than a
year, so when a new interesting def was created, it was
important for that def to receive priority. Third, we
wanted to submit jobs such that each def would meet a
threshold criterion (defined as the number of cycles or
number of tests before ceasing to generate tests from that
def) equally with other defs. For example, we wanted all
10 000 defs at 60% of their criteria at the same time,
rather than 5000 defs at 3% and 5000 defs at 97%. This
feature enabled us to manage risk more effectively by
making it easier to quantify the risk of taping out the
processor before the retirement criteria were met. The
submission tool created and sent jobs to a batch system
which dispatched the jobs to the sim farm.

Results database
An internal database collected the results of failures and
passes. Handling the results from the large sim farm
required that the database process updates approximately
once a second. An update consists of replicating and
distributing the results in several predefined categories
and immediately updating summarized views of the data
to provide very fast queries.

Failure and bug management
Running this number of tests was straightforward when all
tests were passing, but if a bug existed in some heavily
exercised logic, tens of thousands of failures could be
generated within hours. In addition to a record of the
failure, other debug information, such as the simulator
output, the RTX output, the parameter file, and the test
case, was sent to a distributed-results processor. An
internal failure-tracking tool provided an API and a GUI
for the simulation and logic designers to view the failures.
The GUI allowed sorting and collapsing on any field,
which was useful when a common bug caused thousands of
instances of the same failure. The user then selected and
checked out the failures for debugging, preventing others
from duplicating effort by debugging the same failure. If
the failure was a design bug, the tool saved the test case
in a regression bucket.

A separate internal bug database was used to track
individual bugs. Every step in the bug discovery, debug,
and fix validation was logged by the verification engineer

and logic designer working to fix that particular bug.
Similar bugs across different versions of the chip could be
grouped together to follow the progress of related bugs
and to note trends that might require a refocusing of
effort.

Model build
When a design change was made, we decided in daily
debug meetings which ones we wanted to incorporate in a
new unit, multi-unit, or system model. On normal drops,
the unit would build first and regress the change. The
multi-unit core and/or GPS would build and regress next.
The process was automated such that given a bill of
materials, the code would assemble the correct VHDL
revision levels, check to make sure promotion criteria
were in place, compile the corresponding checkers in
the RTX, and run a short regression test. Assuming
that the test was successful, the code would promote the
model and load it on a model server which automatically
replicated the data across several RS/6000 servers. In this
way, numerous requests for the RTL models and RTX
could be met in a timely fashion. The chip model build
followed a similar process, but many more models were
built to handle the different types of simulation at the
chip level. This investment in model-build automation paid
huge dividends in reducing mistakes which were prone to
happen during manual combining of the thousands of
VHDL files, the correct version of initialization and
parameter files, and the hundreds of C�� checker,
driver, and monitor files that make up the RTX.

Controlling the verification process
Critical aspects in controlling the overall verification
process were management of the hierarchical approach,
bug analysis, effective communication, and the hardware
readiness assessment. The hierarchical approach was
managed with significant overlap to meet the aggressive
development schedules. While bug discovery and removal
are fastest at the lower levels, small teams were charged
with “trailblazing” the next level of the hierarchy to
ensure that the environment was stable.

Special attention was paid to bugs that were found in
the larger verification models, and in most cases these
discoveries fed improvements back into the lower-level
test plans. For example, if a problem was found on the
chip model in the FXU logic, the FXU unit environment
was analyzed and improved. This feedback mechanism
extended to the learning acquired from parts in the
bringup laboratory. When a bug escaped the complete
verification cycle and survived into hardware, the
verification team not only worked to reproduce and debug
the problem, but sought ways to enhance the verification
environment so that future releases of the hardware would
not be exposed to similar bugs.
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In order to be successful in a program of this size,
communication and status tracking were essential parts of
our process. It was clear very early in the program that a
daily meeting was appropriate and necessary to discuss
technical problems, issues, daily direction, and focus items
for the team. During the front end of the development
cycle, this meeting was used primarily to focus the failure-
debug team. As the development cycle progressed, the
meeting turned into more of a daily verification tactical
meeting. Issues were discussed such as bug escapes to the
next level of the verification model hierarchy, utilizing
coverage data to improve the test plans, and tracking
project checkpoints. As the tape-out date approached,
there was an additional daily meeting which served as
a forum for discussing late changes that were being
introduced into the design. This gave the development
team an opportunity to discuss verification, timing,
physical design, and other risks associated with the
change, and led to a more informed choice as to whether
or not to include the change.

With a program of this size, the verification team faced
a challenge in assessing when the design was ready to
commit to hardware. Readiness to build parts was based
on the following criteria:

● Execution of a static test plan.
● Exercising a random test plan for a sufficient number

of cycles.
● Architectural coverage metrics.
● Microarchitectural coverage metrics.
● Bug curve characteristics.

These criteria were not only used before tape-out
but were continually monitored throughout the entire
verification cycle and used to dynamically alter areas of
the test plan. In some cases, the bug curve and escape rate
pointed to inefficiencies in the verification techniques
applied to a particular area of the design. In such cases,
different approaches or techniques were adopted to
increase the robustness of the overall verification effort.
Other tape-out criteria, such as the need to physically
test circuits and technology, were also applied.

Hardware results for POWER4
The results of the simulation investment and effort were
apparent when the POWER4 hardware arrived in the
laboratory in the first quarter of 2000. The first-pass chip
successfully booted AIX and Linux** on multiple system
configurations, including a 32-way system—an incredible
accomplishment given the size and complexity of this
completely new design effort. Some simulation escapes
were found, but these were effectively handled with
software workarounds or degraded performance modes.

The resulting functionality of the chip enabled progress on
the rigorous hardware-verification phase of the project,
enabling the POWER4 system to track to the original
aggressive schedule that had been set more than four
years before.

POWER4 results—Methodology analysis
The POWER4 simulation effort caught more than 96% of
the bugs before the chip was committed to hardware. The
result exceeded our initial goal of fewer than 6% escapes
to the laboratory, which we believed was necessary to
meet the aggressive hardware-testing functionality
requirements and schedule.

An analysis of simulation bug discovery demonstrates
that the hierarchical methodology and tools were very
effective. For all functional bugs found in the logic
contained in the core, 92% were found in block, unit, and
multi-unit sim. The chip-level simulation found roughly
5.6%. Fewer than 3% were found in the system simulation
and in laboratory hardware, where the debug cycle requires
significantly more time than at the lower hierarchical levels
of simulation.

Similar results were found in the logic contained within
the GPS. Block, unit, and multi-unit simulation accounted
for 91% of the bugs. System-level simulation found 6.3%,
which was expected since the GPS contains the interfaces
to the I/O and memory controller chips. Fewer than 3%
escaped to laboratory hardware.

Since the investment in rigorous checkers resulted in
such a high discovery rate at the block, unit, and multi-
unit levels, it proved critical to reuse the checkers at the
chip and system levels of simulation. In particular, the
instruction-by-instruction-level checking developed for
the core model, the GPS RTX checkers developed for the
multi-unit model, and the CML checkers proved to be the
most valuable, since they effectively discovered bugs across
several hierarchies of simulation. In addition to detecting
problems at or near the point of failure, these checkers
allowed for rapid isolation down to a single unit for most
failing test cases without the need for creating a costly
AET (a signal trace file). The productivity gained by these
checking/tracing mechanisms was invaluable throughout
the course of the program at multiple levels of verification.

The POWER4 project invested a great deal of design
and verification effort in RAS functionality. The benefits
of such a heavy investment in RAS and debug facility
design and verification resulted in the smooth bring-up
of hardware upon initial delivery from fabrication and
packaging. Furthermore, it allowed for substantial
improvements in the efficiency of debugging for mainline
hardware and software functions in the laboratory over
prior PowerPC designs. These improvements occurred in
spite of the fact that RAS bugs actually accounted for
nearly 20% of the overall bugs found on POWER4. This
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high bug rate is due to the vast number of functions
supported by RAS.

POWER4 results—Laboratory escape analysis
The “postmortem” analysis of the bugs that escaped to the
hardware laboratory was a critical piece of work necessary
for improving the quality and time-to-market for each new
product. The POWER3 microprocessor team provided a
detailed escape analysis. As a result of this effort, many of
these types of bugs were avoided completely in POWER4
because of improved verification environments, test cases,
and checking.

Simulation escapes for POWER4 were carefully
reviewed not only by POWER4 team members, but also by
IBM developers from other projects. The results of the
POWER4 escape analysis have resulted in architectural
changes, logic redesigns, new test-case development, new
simulation environments, and new checkers. Some specific
examples include the following:

● Some instruction corruption problems related to changes
introduced to meet timing objectives. These bugs were
seen in the laboratory and recreated, primarily using
formal verification.
● Analysis: These bugs placed a greater emphasis on the

importance of designing for verification. Certain areas
were redesigned to simplify the verification process.

● Action: This led to increased formal verification,
enhanced coverage analysis, a dynamic “command-
driven random” simulation environment (Dtf) for that
unit, and a logic redesign of that portion of the chip.

● A move to machine state register (MTMSRD)
instruction that caused a processor checkstop.
● Analysis: This instruction has historically proven to

be difficult to verify because of synchronization
requirements imposed on some instances of the
instruction.

● Action: A change to the PowerPC architecture was
made to define a new version of this instruction
that allows it to be context-synchronizing in less
performance-critical sections of code. This eliminated
the need for a subsequent context-synchronizing
instruction, which made verification of the MTMSRD
more deterministic. This demonstrated not only the
idea of designing for verification but also that ease
of verification is an important consideration at the
architectural level. This change maintained binary
compatibility with previous PowerPC designs while
greatly simplifying the verification task.

● One bug that resulted in a dropped store or a load hang
in the laboratory. This was not seen until performance
improvements allowed the bug to surface more easily.

The root cause was the core’s completing a “no-op”
instruction too quickly.
● Analysis: This example demonstrates that no cases

should be taken for granted in verification. While
early completion of the no-op was harmless in the
overwhelming majority of cases, adding a checker
specifically for this simple situation detected the
resulting rare error much more easily.

● Action: A checker was implemented that checks for
completion of instructions earlier than considered
possible.

● Some bugs involving moving cache lines between
processors across different levels of the cache hierarchy
that resulted in either a system hang or stale data. The
problems resulted from the multiple-level cache
hierarchy.
● Analysis: In verifying a system this complex, designing

for verification can help by adding specific modes used
only for verification that stress areas of the design
beyond normal usage. In this case, a direct-mapped
mode of the caches was utilized during verification to
produce inter-cache traffic more rapidly. While at first
glance adding these extra modes can be seen as
adding extra complexity to the design, they were
extremely beneficial for locating hard-to-find bugs.

● Action: Simulation was biased to use the direct-
mapped mode setting, and the cache preloader was
enhanced to make it easier to produce these kinds of
situations in simulation.

As these examples show, one cannot take any part for
granted in validating a design. Designing for verification,
though requiring an investiment up front, pays dividends
in a shortened and more thorough overall verification
effort.

Summary
Overall, the POWER4 team believes that these simulation
results were exemplary in light of the many technical and
schedule challenges presented. While verification is an ever-
evolving “art,” the methodologies employed in POWER4
verification have demonstrated their effectiveness at
removing functional problems from what may be
the most complex microprocessor and SMP system
ever designed.

The initial step to success was recognizing the
architectural, implementation, and new design challenges.
The fundamental choice of cycle-based simulation and the
capital investment in the sim farm infrastructure provided
the foundation to simulate more than a billion processor
cycles per day across a size range from small to extremely
large models. The hierarchical approach to verification
enabled us to effectively use numerous test-case
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generators, simulators, checkers, formal methods, coverage
models, and tests at the appropriate levels. This approach
was validated by finding more than 90% of the bugs at the
block, unit, and multi-unit levels. Checkers designed for
reuse enabled more effective chip- and system-level
simulation, where isolation of failures improved debug
time. While most bugs were found at the lower
hierarchical levels, it is currently not feasible to remove
100% of the bugs at these levels. Continued investment
is needed to improve chip- and system-level simulation,
simulation accelerators, and hardware test tools while
developing new verification technologies to improve
effectiveness at the block, unit, and multi-unit levels.

In addition to the tools and methodology, the
magnitude of the project presented management and
control challenges. Key factors to success were managing
the overlap of each hierarchical simulation effort, effective
communication, and analyzing bugs and bug trends and
taking action based on the findings.

By extending their experience from prior machines such
as the POWER3 system, the verification team successfully
utilized and integrated their methods in verifying the
POWER4 system. The methodologies used on POWER4
and the Regatta system will be extended and enhanced
on subsequent products.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds.
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