
Admission Control for Hard Real-Time Connections in ATM LANs

Amitava Raha Sanjay Kamat Wei Zhao

Department of Computer Science
Texas A & M University

College Station, TX 77843-3112 *

Abstract
A C A C algorithm must efficiently determine i f a

new connection can be admitted b y verifying that its
QoS requirements can be met without violating those
of previously admitted connections. In hard real-time
systems, the QoS requirements are specified in terms
of end-to-end cell deadlines and no cell loss due to
buffer overflow. A CAC algorithm must account f o r
interdependencies among connections caused b y sta-
tzstical multiplexing of cells in A T M networks. Arbi-
trarity of network topology may lead to cyclic depen-
dencies among various connections. We present an
eficient CAC algorithm that addresses the above is-
sues. The algorithm uses a traffic descriptor called
the maximum traffic rate function to effectively com-
pute bounds on end-to-end delays of connections and
buffer requirements within the network. Our work di f -
fers from most previous work in that it does not require
traffic restoration inside the network.

1 Introduction
We address the problem of admitting hard real-time

(HRT) connections in an ATM local area network. A
hard real-time connection specifies its Quality of Ser-
vice QoS) in terms of a hard cell-transfer deadline

flow. Connections supporting distributed hard real-
time applications such as supervisory command and
control systems used in manufacturing, chemical pro-
cessing, nuclear plants, telemedicine, warships, etc.,
can be characterized as HRT connections.

The problem of admitting a hard real-time connec-
tion in an ATM network is as follows. Consider a net-
work that has already admitted a set of N hard real-
time connections { M I , M2, . . . , M N } with each con-
nection receiving its requested Quality of Service. Let
a request for a new hard real-time connection MN+1
arrive. Now the network must efficiently determine
if MN+I can receive its requested Quality of Service
without violating the guarantees already provided to
connections { M I , M2, . . . , M N } .

Thus, a key issue in admission of hard real-time
connections in an ATM LAN is derivation of de-
lay bounds of connections. This is a challenging

and t h e requirement of no cell loss due to buffer over-

*The work reported in this paper was supported in part by
the Office of Naval Research under Grant N00014-95-J-0238 and
Texas Advanced Technology program under grant 999903-204.

task. Determining delay bounds has been the piv-
otal issue in the development of real-time technology
[12, 20, 21, 241. Much work has been concentrated on
centralized systems [13]. In general, obtaining delay
bounds in a LAN has been difficult due to the dis-
tributed nature of the problem. There are generally
two approaches for doing so: synthesis and decompo-
sition.

With the synthesis approach, the entire network is
considered to be a single server. Such an approach
gives reasonable bounds only if one or few applica-
tions access the network a t a time. Therefore, this
approach has been adopted only for small and simple
networks such as 802.5 token ring [ll, 221, DQDB [19],
and FDDI [l , 111.

With the decomposition approach, the network is
decomposed into servers. Each connection is viewed
as being served by a sequence of servers. The worst
case end-to-end delays is obtained by summing the up-
per bounds of the delays suffered by a connection at
each of the servers [5, 15, 171. The advantage of the
decomposition approach is that it provides the basis
for a general and modular analysis of the network, sim-
ilar to the analysis of electrical circuits. We adopt the
network decomposition approach for the computation
of the end-to-end cell delays.

To analyze the delay bounds at each server it is nec-
essary to have a description of a connection’s traffic a t
the input of the server. Many traffic descriptors have
been proposed in the literature [2, 5, 171. In order to
explicitly model the traffic characteristics of connec-
tions, we adopt a maximum rate function introduced
in [17 and used in [18]. While much of the previous
work I 7, 8, 9, 10, 23, 251 assume the existence of ad-
ditional mechanisms within the network to tailor the
connection traffic so that the traffic at the input of
each server adheres to a specific traffic characteriza-
tion. The use of the maximum function frees us from
this assumption.

Much of the previous studies on meeting end-to-
end deadlines in ATM networks have concentrated on
designing and analyzing scheduling policies for ATM
switches [4, 7, 8, 9, 10, 15, 23, 25, 261. In this work,
we assume that FCFS scheduling discipline is used at
ATM switches. Because of its simplicity the FCFS
scheduling policy has been used in existing commer-
cial ATM switches. Consequently, the analysis and
results presented in this work are directly applicable

180
2b.2.1

0743-166W96 $5.00 0 1996 IEEE

to most existing networks. However, the methodology
used in designing our CAC algorithm is general and
the approach can be extended to systems using other
scheduling policies.

Point-to-point topology of ATM networks and sta-
tistical multiplexing of cells makes the derivation of
delay bounds complicated in comparison with other
local area networks. Specifically, admitting a new con-
nection perturbs the traffic of some of the existing con-
nections, necessitating a re-evaluation of the end-to-
end cell delays of these connections. Furthermore, be-
cause of the arbitrariness of network topology it is pos-
sible that the connections form a feedback loop, creat-
ing a cyclic dependency among the connections. These
cyclic dependencies among the connections compli-
cates the delay analysis [5, 151. Most previous work
assumes that either the cyclic dependencies do not ex-
ist or are eliminated by some internal network control
mechanism (e.g., traffic regulation, reshaping by ded-
icated hardware and framing) [5, 9, 3 , 61. A major
contribution of this study is that we develop a CAC
algorithm that explicitly takes into account the pos-
sible cyclic dependencies among connections without
using any special network control mechanisms.

The rest of this paper is organized as follows. In
Section 2, we give an overview of our methodology.
In Section 3 , we present and discuss our CAC algo-
rithm. In Section 4, we show that our algorithm is
effective and efficient by demonstrating that there is
a high probability that a new connection is admitted
in a normally loaded system. Section 5 concludes the
paper with a discussion of our approach and future
work.

2 Preliminaries
In this section, we present the preliminary con-

cepts and 1,echniques which we employ for deriving
an upper-bound for the end-end cell delays of a con-
nection. We will also introduce some of the notations
and terminology we use in the rest of this paper.

An upper bound on the end-to-end delay of a cell is
obtained by summing the worst case delays a cell may
experience at every network component it traverses.
The methodology to compute these delays is based on
the following three steps:

Network decompositaon. The idea behind this step
is to model the network as a set of servers that serve
individual connections [5, 171. Those servers that of-
fer only constant delays to a connection's cells and do
not change the cell traffic characteristics of a connec-
tion are considered separately from those which offer
variable delays to cells and hence affect a connection's
traffic.

Connect.eon-Server graph constructnon. As a con-
sequence of the above step, each connection is repre-
sented as a path in a graph whose nodes are servers
which potentially affect the connection's traffic.

Indnvadual Server analysts. The objective in this
step is to compute the worst case delay suffered by a
connection at each of the servers that offer a variable
amount of delay to cellls.

In the next three subsections we examine these
steps in sorne detail.

2.1 Network decomposition

Figure 1: An ATM LAN with 5 switches

This step involves modeling the network as a col-
lection of servers. A server is an abstraction of a net-
work component that is traversed by a connection's
cells. In an ATM LAN, hosts are connected to ATM
switches and various ATM switches are connected to
each other using physical links. Figure 1 shows an
ATM LAN consisting of 5 switches. Thus, switches
and communication links are two key components in
an ATM LAN. As shown in Figure 1, the switch itself
consists of input ports, a switching fabric, and out-
put ports. An ATM cell arrives at an input port of a
switch, is switched by the switching fabric to an out-
put port, and is transmitted along the physical link as-
sociated with the output port. In the network decom-
position step, we model the input ports, the switch-
ing fabric, the output ports, and the physical links as
servers serving ATM connections.

The servers are classified into two categories: con-
stant servers and variable servers. A constant server
is one that offers a constant amount of delay to each
cell that uses it and does not by itself change the traf-
fic flow characteristics of a connection. For example,
physical links and the switching fabric are constant
delay line servers. The function of an input port is to
demultiplex the arriving cells based on the informa-
tion in the cell header. This is achieved in constant
time by the hardware associated with the input port.
Thus, we can also model the input port of an ATM
switch as a constant demultiplexor server.

The functionality of an output port of a switch is
more complex. An output port may simultaneously
receive cells belonging to different connections com-
peting for transmission on the link associated with
the output port. Thus, cells may be buffered at an
output port and transmitted in an order that is deter-
mined by the scheduling discipline employed by the
switch hardware.' First Come First Serve (FCFS) is
the most commonly used discipline. Hence, we model
output ports of switches as FCFS multiplexor servers.

lIn most ATM switches cells of HRT connections are as-
signed high priority and cells from low priority (non-time-
constrained) connections are transmitted when the queue of
high priority cells is empty.

2b.2.2
18 1

Note that an FCFS multiplexor server must be con-
sidered as a variable server since the delay suffered by
a cell in this server varies depending upon the queue
length in the buffer. Consequently, the traffic charac-
teristics of a connection at the output of this server
may differ from those at the input.

As an example of network decomposition, consider
the ATM LAN shown in Figure 1. Figure 2 shows the
same network modeled as a collection of servers serv-
ing four connections M I , M2, M3, and M4. Although
this example may not be representative of a typical
ATM LAN, it is used to illustrate important concepts
discussed in this paper. We shall use this example
throughout the paper.

I 1 I

swkh E li A Connection MI -
Connection M2 ~-
Cannechon M3 -
Con"srtionM* - - - - -

C-a M9
,mm h s "4 conrtsn, oe1.y Line server 0

Figure 2: Example of network decomposition

2.2 Connection-Server graph construc-

As mentioned earlier, introduction of a new connec-
tion in an ATM LAN may affect the delays suffered
by some of the previously admitted connections. The
purpose of Connection-Server graph construction is to
identify such interdependencies.

First, note that network decomposition into servers
allows us to view each connection as a stream of cells
served by a sequence of constant and variable servers.
For example, consider connection M I from Host H2 to
Host H8 shown in Figure 2. M I traverses 7 delay line
servers (4 physical links and 3 switching fabrics) and 3
demultiplexor servers (input ports of 3 switches) all of
which are constant servers. M I also traverses 3 multi-
plexor servers (output ports of 3 switches) which are
variable servers. Recall that the constant servers serv-
ing MI only add a fixed amount of delay to M I ' S cells
and do not change M I ' S traffic characteristics. Hence,
their impact on M I can be accounted for by simply
subtracting the total delay suffered by M1 at these
servers from M I ' S end-to-end deadline. The same
holds for other connections. In the rest of the paper,
we assume that the deadlines of connections are mod-
ified in such a way. Consequently, we eliminate all the
constant servers from further consideration and focus
only on the variable servers in the remainder of the
paper. We will often omit the prefix 'variable' when
referring to variable servers to avoid repetitiousness.

Now we can view a connection as being served by
a sequence of variable servers only. Let I(be the to-
tal number of network components modeled as vari-

tion

\

1
1
I
I
I
I

sounror
C m MI

Figure 3 : Connection-Server graph construction

able servers. In the example shown in Figure 2, li'
equals 9. Each of these servers is given a unique
server-id which is an integer in the range of 1 . . . K . A
Connection-Server graph is constructed as a labeled,
directed graph with the servers as its nodes. A di-
rected edge is introduced from server m to server n if
there is a connection that is served by server m fol-
lowed by server n. The edge is labeled by all the con-
nections that use the servers in immediate sequence.
Figure 3 shows Connection-Server graph correspond-
ing to the set of connections shown in Figure 2. The
sources and destinations of connections are also shown
in the Connection-Server graph to facilitate the discus-
sion of our CAC algorithm later.

We denote the sequence of servers serving connec-
tion Mi by

Hi = < s (i , l), s (i , 2) , . . . , S (i , j) , . . . , s (i , Ki) >, (1)

where Ki is the total number of servers serving con-
nection Mi and s (i , j) denotes the server-id of the j t h
server in the connection's path. For example, from
Figure 3 , we see that HI, the sequence of servers for
connection M I , is < 3 , 5 , 6 >. Clearly, Hi, the se-
quence of servers serving Mi, must be a valid directed
path in the Connection-Server graph. If server s is
one of the servers in H i , such that s = s(i , IC), k # ICi,
then function nezti(s) is defined as

nezti(s) = s(i , IC + 1). (2)

nezti(s) will be used in our CAC algorithm.
2.3 Individual server analysis

As stated before, the objective of the network de-
composition step is to be able to compute the worst
case end-to-end delays of a connection as sum of the
worst case delays encountered a t individual servers.
The construction of the Connection-Server graph cap-
tured the dependencies among the servers. Next we
need to examine how delays at individual servers can
be computed. This is the main objective of the server
analysis step. In this paper, we assume that time is
normalized in terms of the cell transmission time in
the ATM network. That is, time is considered a dis-
crete quantity with the cell transmission time being
taken as one time unit.

We will need some notations to facilitate the discus-
sion of server analysis. Let di,s be the upper bound
on the delay experienced by a cell of Mi a t server s.

182
2b.2.3

We let di,s = 0 i f s does not belong to Mi's connection
path specified by Hi. Let a(,) be a vector; that is,

where di is an upper bound on the end-to-end delay
experienced by a cell of connection Mi. We will com-
pute di as

(4)

2.3.1 Traffic descriptor

From the Connection-Server graph we can determine
all the connections that share a network server. Hence,
the delay at every server can be obtained if the in-
put traffic pattern of all the connections sharing the
server is known. The traffic pattern of a connection at
a point in the network is charac.terized by a trafic de-
scriptor [a] . It must be noted that due to multiplexing
at ATM switches the traffic pattern of a connection at
any point i n the network need not be the same as that
at its source [2, 5 , 171. In this paper, we consider the
following traffic descriptor:

Maximum rate function descriptor: This descriptor
uses the notation r (I) to specify the maximum arrival
rate of cells in an interval of length I . Equivalently, a
maximum of I . I'(1) cells belonging to the connection
may arrive in an interval of length I .

The reader may note that a connection's actual
traffic pattern may difler from that implied by the traf-
fic descriptor used to describe the connection's traffic.
We need the maximum rate function descriptor be-
cause it specifies the worst case behavior of the traffic
and helps us to derive bounds on the delays suffered
by a connection's cells and on the queue lengths a t
servers.

For connection Mi, we denote the maximum rate
function at, the input of server s (s = 1 , 2 , . . ., IC),
by I'i,,(I). However, if server s is not part of H i ,
Mi's connection path, then V I , r i , s (I) = 0. At
Mi's source, its maximum rate function is given by
I'i,s(i,l)(I) which is assumed to be specified by the re-
questing application during the connection set-up pro-
cedure. Note that l ? i , , ~ i , j + 1 ~ (1) , the maximum rate
function for Mi a t th.e input of server s (i , j + 1) is
same as th'e one a t the output of the server s (i , j) . In
Section 2.3.3, we will present the result for comput-
ing the maximum rate function of a connection at the
output of a server.

2.3.2 Delay and queue length bounds

Now consider an FCFS server s. Consider the case
where the maximum rate function traffic descriptors of
all the connections a t the input to server s are known.
Then, the following result [5 , 161 can be used to find
an upper bound on the delay experienced by a cell and
the maximum queue length at server s.

THEOREM 2.1 Consider the connection Mi that
traverses server s. I f di,$ is the upper bound on the
delay experienced b y connection Mi (measured in cell
transmission time units) and q, is the maximum queue
length a t server s then

where L, is the length of the longest busy interval ai!
servers and is given b y

m

Theorem 2.1 can be proved by applying Theorem 4.1
given in [5] .

2.3.3 Derivation of internal traffic descriptor
Recall that connection Ma passes through a sequence
of servers that is given by Hi in (1).

which are upper bounds on the delays suffered by Mi
a t the first k (k < IC%.) servers in its connection path,
are known. Then upper bounds on ri , , (i ,k+l)(I) , the
maximum rate function values for connection Mi at,
the output of server s(i , k) are given by the following
theorem.
THEOREM 2.2

Let assume that di,s(i,l), di,.$(i,Z), . . * , di,S(i,k),

where cf is the sum of the upper bounds on the delays
experienced by Mi's cells at all the upstream servers
from s (i , 1) t o s (i , k) and is given b y

l < l < k

Theorem 2.2 is a generalization of Theorem 2.1
in [5] , where the maximum rate function at the output,
of an FCFS server was obtained in terms of that at the
input to the server. Theorem 2.2 gives an upper bound
on a connection's traffic rate inside the network in
terms of that at the source. This is useful in practice.
Most often, sources in hard real-time systems gener-
ate regular traffic (eg. periodic) for which r (I) can be
described by a closed form expression. Thus, Theo-
rem 2.2 facilitates efficient computation of maximum
traffic rate functions inside the network, making a fast,
CAC algorithm feasible. Our performance results will
also demonstrate that the delay upper bounds com-
puted using (7) with 5) are reasonable in that the
CAC algorithm has a h igh probability of connection
admission for normal loads.

3 The CAC algorithm
In this section, we will first elucidate some funda-

mental requirements of a connection admission control
(CAC) algorithm for hard real-time (HRT) systems.
Then, we present an efficient CAC algorithm for HRT
systems and establish its properties.

2 b. 21.4
1113

3.1 Requirements
Recall from the previous section that admission of a

new connection can perturb the traffic of existing con-
nections. This perturbation is not limited to the con-
nections that share a server with the new connection
and may spread to other connections in the system.
Thus, a CAC algorithm must take into account the
extent of such perturbation and re-evaluate the delays
and queue lengths affected by the perturbation.

In general, any connection admission control algo-
rithm has to satisfy the following two required prop-
erties.
Property 1. First, the algorithm must termanate. In
other words, the connection admission algorithm must
either admit the new connection or reject it within a
bounded time. Furthermore, the time taken by the
CAC algorithm has a direct impact on the time re-
quired for connection establishment. Therefore, it is
desirable to have an eficaent CAC algorithm which
takes a short time to admit or reject a connection.
Property 2. A CAC algorithm must be correct in
the sense that if the new HRT connection is admitted
then the end-to-end cells delays of all connections (the
existing and the newly admitted) must be less than or
equal to their deadlines and there must be no buffer
overflow.

To formalize the second property, we introduce the
following notations and conventions:

Let a*(n) be a vector of size n.2 It represents the
end-to-end delays associated with n connections, that
is,

4*

d (n) = (d ; ,dz, . . . , d f , . . . , d i) , (9)
where df is a random variable that denotes the end-
to-end delay of a cell belonging to M;.

Let 6 (n) be a vector of size n. It represents the
end-to-end deadlines associated with n connections,
that is,

5 (n) = (01, ~ 2 , . . . , Di, . . . , O n > , (10)

where Di is the deadline associated with Mi.

queue lengths, that is
Let q""(K) be a vector of size I<. It represents the

where q: is a random variable that denotes the queue
length at server s.

Let s (K) be a vector of size I (. It represents the
buffer capacities of the servers, that is,

& K) = (B1,Bz , ' ") B,) * . . , B K) , (12)

where B, denotes the buffer capacity a t server s.

'The reader may notice that we explicitly specify the size
of the vector. This is to avoid the confusing of the number of
connections being taking into consideration. However, when the
context is clear we shall omit the specification of the size.

-I

Given two vectors X (n) = (X l , X a , . . . ,Xn) and
f (n) = (Y1, Y2,. . . , Yn) of size n , we say that

x ' s9 if (V i , 1 5 i 5 n , X i 5 yi) (13)

and

In terms of the above notations, the correctness
property can be stated as follows: if the new connec-
tion M N + ~ is admitted then

and
5 m), (16)

where N is the number of connections previously ad-
mitted into the system.

Our objective is to develop an efficient CAC algo-
rithm that is efficient (Property 1) and that satisfies
(15) and (16) (Property 2).
3.2 Motivation

Given the network decomposition methodology, a
straight forward approach to solving the CAC prob-
lem is to identify all the servers impacted by the new
connection. Then all the servers impacted by admit-
ting the new connection can be re-analyzed.

However, there is an inherent problem in such an
approach. Consider the system presented in Figure
2. Let { M I , M2, M3) be the connections that already
exist in the system and M4 be the new request. The
Connection-Server graph in Figure 3 shows the situa-
tion if M4 were to be admitted.

The reader may note that there is a cyclic depen-
dency in the connection-server graph. For example,
M4 shares server 3 with M I affecting M I ' S traffic.
Since M I later shares server 5 with M2, the behavior
of server 5 and connection M2 may be impacted by
introduction of M4. Furthermore, M2 shares server 7
with M3 and M3 shares server 1 with M4 itself, form-
ing a dependency loop!

With such a dependency loop one cannot analyze
the impacted servers in a straight forward sequential
manner. Our CAC algorithm is an iterative procedure.
During the iterations it explicitly and cyclically traces
and analyzes those servers being impacted.

In general, a system with this kind of cyclic depen-
dency may not be stable in the sense that the delays
and queue lengths may not be bounded. This has cre-
ated a great deal of difficulty in analysis [5, 151. Par-
ticularly, when an iterative method is used to analyze
the system, one may run into the risk that the pro-
cedure may not converge. We are dealing with hard
real-time systems which have stringent deadline and
buffer requirements. Our CAC algorithm exploits the
restrictions imposed by hard real-time systems to solve
the convergence problem in a potentially unstable sys-
tem.

184
2b.2.5

3.3 Important data structures
Before we present the CAC algorithm, we discuss

some important data structures that are used in the
algorithm. We assume that the network management
system, which invokes the CAC algorithm maintains
the following data structures.

d M , a matrix used by the network to store the cur-
rent value of upper bounds of the cell delays expe-
rienced by connections at servers in the ATM LAN.
That is, foir 1 5 s 5 K ,

where di,s is defined in (5).
q(K) = (q 1 , QZ, . . . ,ax), a vector used by the net-

work to store the upper bound on the queue size at
every server in the network. The default initial value
of an element of G (K) is 0.

5 (N) (01 , D z , . . ., D N) , which is defined in

B(K) =: (B1, Bz, . . . , B K) , which is defined in (12).
QN) = (r l , s (l , l) (~) , r z , s (2 , 1) (1) , . . . , r N , s (~ , i) (~)) ,

the input traffic vector, where I'i,s(i,l)(I) presents
the maximum rate function of connection Mi at the
source.

Once a new connection admission request arrives,
the new coinnection (say M N + ~) presents the following
information to the system:

H N + ~ =:.< s(N + 1, I) , . . . , s (N + 1 , K ~ + 1) >, i.e.,
the connection path of M N + ~ .

D N + ~ , the cell transfer deadline of connection

rN+l,s(lv+l,l)(l) , the maximum rate function of
connection M N + ~ at the source.

The network management system passes
dM, a (I () , a (N) , q N) , HN+l, DNt1 , rN+l,s(N+l,l)
and z(K) to the CAC algorithm. In addition to the
above input data structures, the CAC algorithm uses
the followiing internal data structures.

dMinterna', a matrix internally used by the CAC
algorithm.

a (N + l:), a vector of size N + 1 . It is internally used
by the CAC algorithm to store the computed upper
bounds on the end-to-end cell delays.

ifnternar(K), a vector internally used by the CAC
algorithm to store the computed upper bounds on the
queue length at the servers.

Impact-.server-list is an ordered list of the server-
ids. When the CAC algorithm detects that a server
would be affected by admission of the new connec-
tion, it appends the corresponding server-id at the
end of Impact-server-list. The CAC algorithm uses
Impact-server-list to determine the order in which
the servers affected by the new connection are to be
analyzed.

=
(10k

MN+1.

3.4 The Algorithm
The pseudocode for the CAC algorithm is given in

Figure 3. It is an iterative procedure which efficiently
determines the servers that would be affected if the

new connection M N + ~ were to be admitted and re-
analyzes them. The algorithm has three major phases.
Initialization phase (Lines 1 - 12)
In this phase, the algorithm copies the system data,
structures dM and a(K) into its internal working
space. The matrix dMinternar of the algorithm is ini-
tialized as follows. For (1 5 s 5 I() ,

Also, 6 (N + 1) and a (N + 1) are constructed for the
set of connections under consideration which includes;
the new connection and the existing ones.

Since all the servers in the connection path of M N + ~
are directly impacted if M N + ~ were to be admitted,
the algorithm initializes Impact-server-list with the
server-ids of all the servers in M N + ~ ' s path, i.e., with,
elements of H N + ~ .
Iteration phase (Lines 13 - 30)
This is the main body of the algorithm and consists
of a while loop. The iterative procedure begins with1
the current status of the network being the existing
set of connections. Then, it systematically traces the
impact of the new connection request, M N + ~ . In each
iteration, there are three major operations :

First, the algorithm removes the first server in
Impact-server-list for analysis.

Next, the algorithm computes an upper bound1
on the queue length and delay at the server being
analyzed. The results presented in Section 2.3 are
used to achieve this.

Because an increase in delay at, this server may
change the input traffic characteristics of the SUC-.
ceeding servers, the succeeding servers are also
appended to Impact-server-list. The next;(s)i
function defined in Section 2.2 facilitates this pro-
cess. Thus, the algorithm systematically traces
the perturbation caused in the network due to
connection M N + ~ .

The iteration process terminates if the current,
value of J (N + 1) or G (K) violates the &OS re-
quirements of the N + 1 connections. The iteration
also stops if Impactserver-list is empty. An empty
Impact-server-list implies that the queue lengths andl
the delays at every server have reached a stable value.
Verification phase (Lines 31 - 33)
In this phase, the algorithm examines the cause off
the termination of the while loop. The algorithm ac-
cepts the new connection if the deadline and buffer
requirements of all the connections can be met, i.e., iif
a (N + 1) 5 6 (N + 1) and ?(K) a (K) . If the new
connection is accepted, the algorithm also returns the
updated valuesof dM, Cj(K), 6(N+l) , and f (N f l) ~
to the network management system.

2b.2.6
185

1.
2.
3.
4.
5.
7.
8.
9.
10.
11.
12.

13.

14.
15.
16.
17.
18.
19.
20.

Connection Admission-Control (d M , q(K) , 6(N) ,
n N) , H N + I , D N i . 1 , r N + l , s (N + I , l) s j (K))

(K) = (471, 472,. . . I w c) ; *nternal
'I,
D(N+l) = (01, D z , . . . , D N , D N t i) ;

for all s do

end for all
for i = 1 to N + 1 do

d, = d M ? n t e r n a l .

end for
q N + 1) = (d i , d z , . . . , d N , d N + 1) ;
Impactserver- l i s t = < s (N + 1, I) , s (N + 1 , 2) ,

while((Impact-server-list # 0)

d M i n t e r n a 1 - - d M ;

d M ~ ~ ~ : ~ a l = 0;

s E H , I j 3 ,

. . . , S (N + 1, K N + I) > ;

and (4 N + 1) 5 b (N + 1)) and

s = first-element(Impact-3erver-list);
Impact-server-list = Impact-server-list - (s) ;
old-47 = q F f e r n a l . ,
47dnterna1 = compute-queue-length(s);
for (i = 1 t o N + 1) do

(Pternal (K) I W))) do

i f s E H i then
dM,',zternal = q c ;

/* If delay or queue length at server s changes, add the
succeeding server to Impact-server-lzst */
21.

22. append-to-list(Impact-server_last,

23. end if
24. endif
25. end for
26. for z = 1 to N + 1 do

28. end for

30. end while

if ((old-q # qinternal) and
(n e z t , (s) @ Impact-server-lzst)) then

n e z t , (9));

in ternal .
27. d , = s E H , d M , * s ,

29. q N + 1) = (dl I . , d N , d N t 1) ;

31.

32.

33. else return(Reject).

if ((4 N + 1) 5 b (N + 1)) and (<('(K) 5
l?(K))) then
return(Accept, 6 (N + l), dMinternar,

pinterna1 (K) , mJ + 1));

Figure 3: Pseudocode for the CAC algorithm

In this section, we establish properties of the CAC
algorithm. For the proofs please refer to [16].

Let Jk be vector J (N + 1) at the end of the k th
iteration. Let 2' be the vector z (N + 1) which is
computed at the initialization phase in the algorithm.

LEMMA 3.1 During an execution of the algorithm,
before its termination there is a sub-sequence of itera-
tions (iterations IO, Ill I z , . . . I j , . . .) where IO < I1 <

3.5 Properties of the algorithm

I2 < . , . Ij-1 < Ij . . . such that f o r j > 1,

and
2Ij-l < zrj. (19)

LEMMA 3.2 I f the CAC alqorithm accepts a con-
nection after G- iterations thin 1 < i 3 N + 1,
15 s 5 K,

9; 5 Q S , (20)
and

where df is the end-to-end delay experienced b y a cell
of connection Mi and q: is the queue length a t seruer

THEOREM 3.1 The CAC algorithm terminates
and is correct.

Furthermore] the CAC algorithm is quite efficient.
For example, for a link utilization of SO% and 120 con-
nections, the average time to admit a new connection
for an implementation of the CAC algorithm executing
in a Sun/Solaris environment was 200 milliseconds.

4 Performance Evaluation
In this section, we evaluate the performance of the

CAC algorithm discussed in the previous sections. We
will first define performance metrics, then describe the
system architecture considered and present the perfor-
mance results.

We use Admission Probability (AP(U)) for evaluat-
ing a CAC algorithm for hard real time connections.

A P (U) is defined as the probability that HRT con-
nections are admissible conditioned on the average uti-
lization of the inter-switch physical links in the net-
work being U.

df 5 da, (21)

S.

hh.4.0

i . r . 9

y 3 . I . O

y3.2.0

M l . 1 9

M I 1 9
SWIIFh4 SWI1Ch 3

Conn.slia M#,I,k en1.r. the nelwork a1 w i t c h I and exit. e l w i l s h j,

Figure 4: The network system evaluated
The network we consider in this paper consists of

four 32 x 32 ATM switches. That is, each switch has
32 input lines and 32 output lines. As shown in Fig-
ure 4, there are 120 connections in the system. Con-
nection Mi,j,k is the kth connection that enters the

186
2b.2.7

network at switch i and leaves the network at switch
j. The connections in the network form a symmetric
pattern. The system is arranged in such a way that 60
connections share one inter-switch link a t each stage.
Several systems with different architectures have also
been evaluated. The results are similar and are not
presented hlere due to the space limitation.

Since our target applications are hard real-time sys-
tems, we consider the Source Traffic Descriptor (STD
[a]) for the HRT connections to be the traditional HRT
source traflic model. That is, the source traffic is as-
sumed to be periodic and the STD is described by
the parameters (C ,P) , where P is the period of the
message and C is the number of cells in a message. Al-
though the source traffic of a connection is periodic,
due to multiplexing in the network the periodicity of
the connection traffic may no longer be maintained
within the network. As mentioned earlier, we use the
maximum rate function to characterize the traffic of
connections inside the network.

To obtain the performance data, we developed a
program to simulate the network system. The pro-
gram was written in the C programming language and
run in a Sun/Solaris environment. In each run of the
program 1000 connection sets were randomly gener-
ated. For each connection, the total number of cells
per period were chosen from a geometric distribution
with mean 10. Similar results have been obtained with
different settings of parameters. We do not present
them here due to space limitations.

U

Figure 5: Admission Probability vs. Link Utilization:
unregulated source.

Figure 5 shows the admission probability results
for our sample network. The performance figures are
corresponding to two values of Di, (Pi and 2Pi). It
is common practice in a hard real-time system that
deadlines are associated with periods [13, 141. From
Figure 5, we can make the following observations:

1. In general, we found that the admission proba-
bility is sensitive to the average link utilization.
As the utilization increases the admission proba-
bility decreases. This is expected because higher
the network utilization, the more difficult it is for
the system to admit a set of connections.

2. When the end-to-end cell deadlines of the con-
nections are increased, the admission probabil-
ity shows an obvious improvement. For exam-
ple, when U = 0.4, the admission probability in-
creases from about 40% to 80% when the average
deadline increases from P to 2P.

\ \ I

"

Figure 6: Admission probability vs. Link utilization:
regulated source.

So far, we have considered a network management
system which uses the CAC algorithm to control con-
nection admission without modifying the input traffic
of the connections. There has been increased interest
in controlling the delays of connections by appropri-
ately regulating the connection traffic at the entrance
of the network. By regulating the input traffic, its
burstiness can be controlled. This tends to reduce the
adverse impact of burstiness on the end-to-end delays
of other connections. We now consider the system
with traffic regulation at the source. We adopt the
method proposed in [18] to select parameters of the
traffic regulation mechanism (e.g., leaky bucket) so
that an appropriate level of regulation is maintained.

Figure 6 shows the admission probability results for
the regulated system. In comparison with the data in
Figure 5, we see that by using input traffic regula-
tion method of [18] in conjunction with our CAC al-
gorithm, the admission probability can be improved.
The AP(U) is almost 100% for values of U as high as
30%.

5 Final Remarks
In this paper we addressed the connection admis-

sion control problem in an ATM LAN supporting hard
real-time applications. The key issue in solving this
problem was obtaining reasonable upper bounds on
the end-to-end delays of connections. We took a net-
work decomposition approach, in which the network
is modeied as a collection of servers. This approach
has been used by several researchers before. However,
our work significantly differs from the previous work
by making the following contributions:

We use the maximumrate function F(1) to describe
a connection's traffic at any point in the network. The
use of this traffic descriptor frees us from several re-
strictive assumptions often made in previous analysis.
For example, the use of a single value to define the
overall worst case rate of a connection leads to over
allocation of resources to connections lowering the net-
work resource utilization. Some of the previous work
assumes reconstruction of a connection's source traffic
within the network using traffic shaping. Such traffic
shaping mechanisms within the network also introduce
additional delays and are not easy to implement on a
per-connection basis. Our approach based on the max-
imum rate function does not require reconstruction of'
a connection's original traffic inside the network.

A potential concern one may have on the use of the
maximum rate function is the need for computational

2b.2,.8
18'7

resources (time or space) to obtain values of r I) for

method of computing r(I) values for a connection a t
any point in the network in terms of the corresponding
values a t the connection’s source.

When a new connection is admitted, not only is the
status of servers traversed by the new connection af-
fected but also the perturbation may spread to other
servers in the system. More seriously, it has been rec-
ognized that the arbitrary topology of the network
may cause a cyclic relationship among the connections
that impact each other. Our CAC algorithm explicitly
accounts for the extent of the perturbation caused by
admitting a new connection and also deals with the
possible cyclic dependencies.

We formally established the desired properties of
our CAC algorithm. Specifically, we showed that the
algorithm always terminates, regardless of the exis-
tence of cyclic dependencies among the connections
and servers. Our algorithm is correct in the sense that
it accepts a connection only if the QoS requirements
of the new connection together with the existing ones
can be met.

We evaluated the performance of our algorithm in
terms of the connection admission probability. We
found that with our CAC algorithm, a connection has
a high probability of being admitted under light or
medium load conditions, which are typical of most
hard real-time systems.

This work can be extended in several ways. It
would be interesting to consider scheduling disciplines
other than FCFS. Another important issue in hard
real-time systems is to consider good approximations
[17] of the explicit traffic descriptor so as to improve
the execution overheads of the algorithm, although
this will result in a corresponding decrease in the ad-
mission probability.

References

different values of I . We provide a simple and e hf, cient

G . Agrawal, B. Chen, W . Zhao, and S. Davari.
Guaranteeing synchronous message deadlines in
high speed token ring networks with timed to-
ken protocol. Proc. of IEEE ICDCS, pg 468-475,
June 1992.
ATM Forum. ATM Forum- ATM User-Network
Interface Specification Version 3.i, 1995.
P. Boyer, F. Guillemin, M. Servel, and
J . Coudreuse. Spacing cells protects and enhances
utilization of ATM network links. IEEE Network,
6(5 :38-49, Sept. 1992.

ing real-time applications in an integrated ser-
vices packet network: Architecture and mecha-
nism. Proc. of ACM SIGCOMM’92, pg 14-26,
Aug. 1992.
R. L. Cruz. A calculus for network delay. IEEE
Tran. on Inf. Th., 37(1):114-141, Jan. 1991.
A. Dailianas and A. Bovopoulis. Real-time admis-
sion control algorithms with delay and loss guar-
antees in ATM networks. Proc. of INFOCOM’94,

A. Demers, S. Keshav, and S. Shenker. Analysis
and simulation of a fair queueing algorithm. Proc.
of ACM SIGCOMM’89, pg 1-12, Sept. 1989.

D. b . Clark, S. Shenker, and L. Zhang. Support-

pg 1065-1072, 1994.

[8] D. Ferrari and D. C. Verma. A scheme for
real-time channel establishment in wide-area net-
works. JSAC, SAC-8(3):368-379, Apr. 1990.

[9] S. J. Golestani. A framing strategy for congestion
management. JSAC, 9(7):1064-1077, Sept. 1991.

[lo] C. R. Kalmanek, H. Kanakia, and S. Keshav.
Rate controlled servers for very high-speed net-
works. Proc. of IEEE Global Telecommzlnications
Conf., pg 300.3.1-300.3.9, Dec. 1990.

[Ill S. Kamat and W. Zhao. Real-time schedulabil-
ity of two token ring protocols. Proc. of IEEE
ICDCS, pg 347-354, May 1993.

[12] S. Kamat and W . Zhao. Performance comparison
of two token ring protocols for real-time commu-
nication. S. Son, editor, Principles of Real-Time
Sys.. Prentice Hall, 1994.

[13] C. L. Liu and J . W. Layland. Scheduling algo-
rithms for multiprogramming in a hard-real-time
environment. JACM, 20(1):46-61, Jan. 1973.

[14] N . Malcolm and W. Zhao. Hard real-time com-
munication in multiple-access networks. Journal
of Real-Time Sys., Jan. 1995.

[15] A. K. J . Parekh. A Generalized Processor Sharing
Approach to Flow Control an Integrated Services
Networks. PhD thesis, EECS, MIT, 1992.

[16] A. Raha. Real Time Communication in ATM
Networks. PhD thesis, Dept. of CS, Texas A&M
Univ.,l996. In preparation.

[17] A. Raha, S. Kamat, and W. Zhao. Guaranteeing
end-to-end deadlines in ATM networks. Proc. of
IEEE ICDCS, June 1995.

[18] A. Raha, S. Kamat, and W. Zhao. Using traffic
regulation to meet end-to-end deadlines in ATM
networks. Proc. of IEEE ICNP-95, 1995.

[19] L. Sha, S. S. Sathaye, and J . K. Strosnider.
Scheduling real-time communication on dual-link
networks. Proc. of IEEE RTSS, pg 188-197, Dec.
1992.

[20] J . A. Stankovic. Misconceptions about real-time
comDutina: A serious Droblem for next eener-
atio; sysFems. IEEE komputer, 21(10):y0-19,
Oct. 1988.

[all J . A. Stankovic and K. Ramamritham, editors.
Hard Real- Time Sys.. IEEE Computer Society
Press, 1988.

[22] J . K. Strosnider, T. Marchok, and J . Lehoczky.
Advanced real-time scheduling using the IEEE
802.5 token ring. Proc. of IEXE RTSS, pg 42-
52. Dec. 1988.

[23] L . ’ Trajkovic and S. J . Golestani. Congestion
control for multimedia services. IEEE Network,
6(5):20-26, Sept. 1992.

[24] A. M. van Tilborg and G. M. Koob. Foundations
of Reai-Time Comp.: Scheduling and Resource
Management. Kluwer Academic Publishers, 1991.

[25] H. Zhang and S. Keshav. Comparison of rate-
based service disciplines. Proc. of ACM SIG-
COMM’Si, pg 113-121, Sept. 1991.

I261 L. Zhang. Virtual clock: A new traffic control
algorithm for packet switching networks. Proc.
of ACM SIGCOMM’90, pg 19-29, Sept. 1990.

2b.2.9

