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Abstract 
A C A C  algorithm must efficiently determine i f  a 

new connection can be admitted b y  verifying that its 
QoS requirements can be met without violating those 
of previously admitted connections. In hard real-time 
systems, the QoS requirements are specified in terms 
of end-to-end cell deadlines and no cell loss due to 
buffer overflow. A CAC algorithm must account f o r  
interdependencies among connections caused b y  sta- 
tzstical multiplexing of cells in  A T M  networks. Arbi- 
trarity of network topology may lead to  cyclic depen- 
dencies among various connections. We  present an 
eficient CAC algorithm that addresses the above is- 
sues. The algorithm uses a traffic descriptor called 
the maximum traffic rate function to  effectively com- 
pute bounds on end-to-end delays of connections and 
buffer requirements within the network. Our work di f -  
fers from most previous work in  that it does not require 
traffic restoration inside the network. 

1 Introduction 
We address the problem of admitting hard real-time 

(HRT) connections in an ATM local area network. A 
hard real-time connection specifies its Quality of Ser- 
vice QoS) in terms of a hard cell-transfer deadline 

flow. Connections supporting distributed hard real- 
time applications such as supervisory command and 
control systems used in manufacturing, chemical pro- 
cessing, nuclear plants, telemedicine, warships, etc., 
can be characterized as HRT connections. 

The problem of admitting a hard real-time connec- 
tion in an ATM network is as follows. Consider a net- 
work that has already admitted a set of N hard real- 
time connections { M I ,  M2, .  . . , M N }  with each con- 
nection receiving its requested Quality of Service. Let 
a request for a new hard real-time connection MN+1 
arrive. Now the network must efficiently determine 
if MN+I can receive its requested Quality of Service 
without violating the guarantees already provided to 
connections { M I ,  M2, .  . . , M N } .  

Thus, a key issue in admission of hard real-time 
connections in an ATM LAN is derivation of de- 
lay bounds of connections. This is a challenging 

and t h e requirement of no cell loss due to buffer over- 
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task. Determining delay bounds has been the piv- 
otal issue in the development of real-time technology 
[12, 20, 21, 241. Much work has been concentrated on 
centralized systems [13]. In general, obtaining delay 
bounds in a LAN has been difficult due to the dis- 
tributed nature of the problem. There are generally 
two approaches for doing so: synthesis and decompo- 
sition. 

With the synthesis approach, the entire network is 
considered to be a single server. Such an approach 
gives reasonable bounds only if one or few applica- 
tions access the network a t  a time. Therefore, this 
approach has been adopted only for small and simple 
networks such as 802.5 token ring [ll, 221, DQDB [19], 
and FDDI [ l ,  111. 

With the decomposition approach, the network is 
decomposed into servers. Each connection is viewed 
as being served by a sequence of servers. The worst 
case end-to-end delays is obtained by summing the up- 
per bounds of the delays suffered by a connection at 
each of the servers [5, 15, 171. The advantage of the 
decomposition approach is that it provides the basis 
for a general and modular analysis of the network, sim- 
ilar to the analysis of electrical circuits. We adopt the 
network decomposition approach for the computation 
of the end-to-end cell delays. 

To analyze the delay bounds at each server it is nec- 
essary to have a description of a connection’s traffic a t  
the input of the server. Many traffic descriptors have 
been proposed in the literature [2, 5, 171. In order to 
explicitly model the traffic characteristics of connec- 
tions, we adopt a maximum rate function introduced 
in [17 and used in [18]. While much of the previous 
work I 7, 8, 9, 10, 23, 251 assume the existence of ad- 
ditional mechanisms within the network to tailor the 
connection traffic so that the traffic at the input of 
each server adheres to a specific traffic characteriza- 
tion. The use of the maximum function frees us from 
this assumption. 

Much of the previous studies on meeting end-to- 
end deadlines in ATM networks have concentrated on 
designing and analyzing scheduling policies for ATM 
switches [4, 7, 8, 9, 10, 15, 23, 25, 261. In this work, 
we assume that FCFS scheduling discipline is used at 
ATM switches. Because of its simplicity the FCFS 
scheduling policy has been used in existing commer- 
cial ATM switches. Consequently, the analysis and 
results presented in this work are directly applicable 
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to most existing networks. However, the methodology 
used in designing our CAC algorithm is general and 
the approach can be extended to  systems using other 
scheduling policies. 

Point-to-point topology of ATM networks and sta- 
tistical multiplexing of cells makes the derivation of 
delay bounds complicated in comparison with other 
local area networks. Specifically, admitting a new con- 
nection perturbs the traffic of some of the existing con- 
nections, necessitating a re-evaluation of the end-to- 
end cell delays of these connections. Furthermore, be- 
cause of the arbitrariness of network topology it is pos- 
sible that the connections form a feedback loop, creat- 
ing a cyclic dependency among the connections. These 
cyclic dependencies among the connections compli- 
cates the delay analysis [5, 151. Most previous work 
assumes that either the cyclic dependencies do not ex- 
ist or are eliminated by some internal network control 
mechanism (e.g., traffic regulation, reshaping by ded- 
icated hardware and framing) [5, 9,  3 ,  61. A major 
contribution of this study is that we develop a CAC 
algorithm that explicitly takes into account the pos- 
sible cyclic dependencies among connections without 
using any special network control mechanisms. 

The rest of this paper is organized as follows. In 
Section 2, we give an overview of our methodology. 
In Section 3 ,  we present and discuss our CAC algo- 
rithm. In Section 4, we show that our algorithm is 
effective and efficient by demonstrating that there is 
a high probability that a new connection is admitted 
in a normally loaded system. Section 5 concludes the 
paper with a discussion of our approach and future 
work. 

2 Preliminaries 
In this section, we present the preliminary con- 

cepts and 1,echniques which we employ for deriving 
an upper-bound for the end-end cell delays of a con- 
nection. We will also introduce some of the notations 
and terminology we use in the rest of this paper. 

An upper bound on the end-to-end delay of a cell is 
obtained by summing the worst case delays a cell may 
experience at every network component it traverses. 
The methodology to  compute these delays is based on 
the following three steps: 

Network decompositaon. The idea behind this step 
is to model the network as a set of servers that serve 
individual connections [5, 171. Those servers that of- 
fer only constant delays to  a connection's cells and do 
not change the cell traffic characteristics of a connec- 
tion are considered separately from those which offer 
variable delays to cells and hence affect a connection's 
traffic. 

Connect.eon-Server graph constructnon. As a con- 
sequence of the above step, each connection is repre- 
sented as a path in a graph whose nodes are servers 
which potentially affect the connection's traffic. 

Indnvadual Server analysts. The objective in this 
step is to compute the worst case delay suffered by a 
connection at each of the servers that offer a variable 
amount of delay to  cellls. 

In the next three subsections we examine these 
steps in sorne detail. 

2.1 Network decomposition 

Figure 1: An ATM LAN with 5 switches 

This step involves modeling the network as a col- 
lection of servers. A server is an abstraction of a net- 
work component that is traversed by a connection's 
cells. In an ATM LAN, hosts are connected to ATM 
switches and various ATM switches are connected to 
each other using physical links. Figure 1 shows an 
ATM LAN consisting of 5 switches. Thus, switches 
and communication links are two key components in 
an ATM LAN. As shown in Figure 1, the switch itself 
consists of input ports, a switching fabric, and out- 
put ports. An ATM cell arrives at an input port of a 
switch, is switched by the switching fabric to an out- 
put port, and is transmitted along the physical link as- 
sociated with the output port. In the network decom- 
position step, we model the input ports, the switch- 
ing fabric, the output ports, and the physical links as 
servers serving ATM connections. 

The servers are classified into two categories: con- 
stant servers and variable servers. A constant server 
is one that offers a constant amount of delay to each 
cell that uses it and does not by itself change the traf- 
fic flow characteristics of a connection. For example, 
physical links and the switching fabric are constant 
delay line servers. The function of an input port is to 
demultiplex the arriving cells based on the informa- 
tion in the cell header. This is achieved in constant 
time by the hardware associated with the input port. 
Thus, we can also model the input port of an ATM 
switch as a constant demultiplexor server. 

The functionality of an output port of a switch is 
more complex. An output port may simultaneously 
receive cells belonging to  different connections com- 
peting for transmission on the link associated with 
the output port. Thus, cells may be buffered at an 
output port and transmitted in an order that is deter- 
mined by the scheduling discipline employed by the 
switch hardware.' First Come First Serve (FCFS) is 
the most commonly used discipline. Hence, we model 
output ports of switches as FCFS multiplexor servers. 

lIn most ATM switches cells of HRT connections are as- 
signed high priority and cells from low priority (non-time- 
constrained) connections are transmitted when the queue of 
high priority cells is empty. 
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Note that an FCFS multiplexor server must be con- 
sidered as a variable server since the delay suffered by 
a cell in this server varies depending upon the queue 
length in the buffer. Consequently, the traffic charac- 
teristics of a connection at the output of this server 
may differ from those at the input. 

As an example of network decomposition, consider 
the ATM LAN shown in Figure 1. Figure 2 shows the 
same network modeled as a collection of servers serv- 
ing four connections M I ,  M2, M3, and M4. Although 
this example may not be representative of a typical 
ATM LAN, it is used to  illustrate important concepts 
discussed in this paper. We shall use this example 
throughout the paper. 

I 1  I 

swkh E li A Connection MI - 
Connection M2 ~- 
Cannechon M3 - 
Con"srtionM* - - - - - 

C-a M9 
,mm h s  "4 conrtsn, oe1.y Line server 0 

Figure 2: Example of network decomposition 

2.2 Connection-Server graph construc- 

As mentioned earlier, introduction of a new connec- 
tion in an ATM LAN may affect the delays suffered 
by some of the previously admitted connections. The 
purpose of Connection-Server graph construction is to 
identify such interdependencies. 

First, note that network decomposition into servers 
allows us to view each connection as a stream of cells 
served by a sequence of constant and variable servers. 
For example, consider connection M I  from Host H2 to  
Host H8 shown in Figure 2. M I  traverses 7 delay line 
servers (4 physical links and 3 switching fabrics) and 3 
demultiplexor servers (input ports of 3 switches) all of 
which are constant servers. M I  also traverses 3 multi- 
plexor servers (output ports of 3 switches) which are 
variable servers. Recall that the constant servers serv- 
ing MI only add a fixed amount of delay to  M I ' S  cells 
and do not change M I ' S  traffic characteristics. Hence, 
their impact on M I  can be accounted for by simply 
subtracting the total delay suffered by M1 at these 
servers from M I ' S  end-to-end deadline. The same 
holds for other connections. In the rest of the paper, 
we assume that the deadlines of connections are mod- 
ified in such a way. Consequently, we eliminate all the 
constant servers from further consideration and focus 
only on the variable servers in the remainder of the 
paper. We will often omit the prefix 'variable' when 
referring to variable servers to avoid repetitiousness. 

Now we can view a connection as being served by 
a sequence of variable servers only. Let I( be the to- 
tal number of network components modeled as vari- 

tion 
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Figure 3 :  Connection-Server graph construction 

able servers. In the example shown in Figure 2, li' 
equals 9. Each of these servers is given a unique 
server-id which is an integer in the range of 1 . . . K .  A 
Connection-Server graph is constructed as a labeled, 
directed graph with the servers as its nodes. A di- 
rected edge is introduced from server m to server n if 
there is a connection that is served by server m fol- 
lowed by server n. The edge is labeled by all the con- 
nections that use the servers in immediate sequence. 
Figure 3 shows Connection-Server graph correspond- 
ing to the set of connections shown in Figure 2. The 
sources and destinations of connections are also shown 
in the Connection-Server graph to facilitate the discus- 
sion of our CAC algorithm later. 

We denote the sequence of servers serving connec- 
tion Mi by 

Hi = < s ( i ,  l), s ( i ,  2 ) , . .  . , S ( i , j ) , . .  . , s ( i ,  Ki) >, (1) 

where Ki is the total number of servers serving con- 
nection Mi and s ( i , j )  denotes the server-id of the j t h  
server in the connection's path. For example, from 
Figure 3 ,  we see that HI, the sequence of servers for 
connection M I ,  is < 3 , 5 , 6  >. Clearly, Hi, the se- 
quence of servers serving Mi, must be a valid directed 
path in the Connection-Server graph. If server s is 
one of the servers in H i ,  such that s = s(i ,  IC), k # ICi, 
then function nezti(s) is defined as 

nezti(s)  = s(i ,  IC + 1). (2) 

nezti(s)  will be used in our CAC algorithm. 
2.3 Individual server analysis 

As stated before, the objective of the network de- 
composition step is to be able to compute the worst 
case end-to-end delays of a connection as sum of the 
worst case delays encountered a t  individual servers. 
The construction of the Connection-Server graph cap- 
tured the dependencies among the servers. Next we 
need to examine how delays at individual servers can 
be computed. This is the main objective of the server 
analysis step. In this paper, we assume that time is 
normalized in terms of the cell transmission time in 
the ATM network. That  is, time is considered a dis- 
crete quantity with the cell transmission time being 
taken as one time unit. 

We will need some notations to facilitate the discus- 
sion of server analysis. Let di,s be the upper bound 
on the delay experienced by a cell of Mi a t  server s. 
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We let di,s = 0 i f s  does not belong to Mi's connection 
path specified by Hi.  Let a(,) be a vector; that is, 

where di is an upper bound on the end-to-end delay 
experienced by a cell of connection Mi.  We will com- 
pute di as 

(4) 

2.3.1 Traffic descriptor 

From the Connection-Server graph we can determine 
all the connections that share a network server. Hence, 
the delay at every server can be obtained if the in- 
put traffic pattern of all the connections sharing the 
server is known. The traffic pattern of a connection at 
a point in the network is charac.terized by a trafic de- 
scriptor [a ] .  It must be noted that due to multiplexing 
at ATM switches the traffic pattern of a connection at 
any point i n  the network need not be the same as that 
at its source [2, 5 ,  171. In this paper, we consider the 
following traffic descriptor: 

Maximum rate function descriptor: This descriptor 
uses the notation r ( I )  to  specify the maximum arrival 
rate of cells in an interval of length I .  Equivalently, a 
maximum of I .  I'(1) cells belonging to the connection 
may arrive in an interval of length I .  

The reader may note that a connection's actual 
traffic pattern may difler from that implied by the traf- 
fic descriptor used to describe the connection's traffic. 
We need the maximum rate function descriptor be- 
cause it specifies the worst case behavior of the traffic 
and helps us to derive bounds on the delays suffered 
by a connection's cells and on the queue lengths a t  
servers. 

For connection Mi,  we denote the maximum rate 
function at, the input of server s (s = 1 , 2 , .  . ., IC),  
by I'i,,(I). However, if server s is not part of H i ,  
Mi's connection path, then V I ,  r i , s ( I )  = 0. At 
Mi's source, its maximum rate function is given by 
I'i,s(i,l)(I) which is assumed to  be specified by the re- 
questing application during the connection set-up pro- 
cedure. Note that l ? i , , ~ i , j + 1 ~ ( 1 ) ,  the maximum rate 
function for Mi a t  th.e input of server s ( i , j  + 1) is 
same as th'e one a t  the output of the server s ( i , j ) .  In 
Section 2.3.3, we will present the result for comput- 
ing the maximum rate function of a connection at the 
output of a server. 

2.3.2 Delay and queue length bounds 

Now consider an FCFS server s. Consider the case 
where the maximum rate function traffic descriptors of 
all the connections a t  the input to server s are known. 
Then, the following result [5 ,  161 can be used to find 
an upper bound on the delay experienced by a cell and 
the maximum queue length at server s. 

THEOREM 2.1 Consider the connection Mi that 
traverses server s. I f  di,$ is the upper bound on the 
delay experienced b y  connection Mi (measured in cell 
transmission time units) and q, is the maximum queue 
length a t  server s then 

where L,  is the length of the longest busy interval ai! 
servers and is given b y  

m 

Theorem 2.1 can be proved by applying Theorem 4.1 
given in [ 5 ] .  

2.3.3 Derivation of internal traffic descriptor 
Recall that connection Ma passes through a sequence 
of servers that is given by Hi in (1). 

which are upper bounds on the delays suffered by Mi 
a t  the first k (k < IC%.) servers in its connection path, 
are known. Then upper bounds on ri , , ( i ,k+l)(I) ,  the 
maximum rate function values for connection Mi at, 
the output of server s(i ,  k) are given by the following 
theorem. 
THEOREM 2.2 

Let assume that di,s(i,l), di,.$(i,Z), . . * , di,S(i,k), 

where cf is the sum of the upper bounds on the delays 
experienced by Mi's cells at all the upstream servers 
from s ( i ,  1) t o  s ( i ,  k) and is given b y  

l < l < k  

Theorem 2.2 is a generalization of Theorem 2.1 
in [ 5 ] ,  where the maximum rate function at the output, 
of an FCFS server was obtained in terms of that at the 
input to the server. Theorem 2.2 gives an upper bound 
on a connection's traffic rate inside the network in 
terms of that at the source. This is useful in practice. 
Most often, sources in hard real-time systems gener- 
ate regular traffic (eg. periodic) for which r ( I )  can be 
described by a closed form expression. Thus, Theo- 
rem 2.2 facilitates efficient computation of maximum 
traffic rate functions inside the network, making a fast, 
CAC algorithm feasible. Our performance results will 
also demonstrate that the delay upper bounds com- 
puted using (7) with 5) are reasonable in that the 
CAC algorithm has a h igh probability of connection 
admission for normal loads. 

3 The CAC algorithm 
In this section, we will first elucidate some funda- 

mental requirements of a connection admission control 
(CAC) algorithm for hard real-time (HRT) systems. 
Then, we present an efficient CAC algorithm for HRT 
systems and establish its properties. 
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3.1 Requirements 
Recall from the previous section that admission of a 

new connection can perturb the traffic of existing con- 
nections. This perturbation is not limited to the con- 
nections that share a server with the new connection 
and may spread to  other connections in the system. 
Thus, a CAC algorithm must take into account the 
extent of such perturbation and re-evaluate the delays 
and queue lengths affected by the perturbation. 

In general, any connection admission control algo- 
rithm has to satisfy the following two required prop- 
erties. 
Property 1. First, the algorithm must termanate. In 
other words, the connection admission algorithm must 
either admit the new connection or reject it within a 
bounded time. Furthermore, the time taken by the 
CAC algorithm has a direct impact on the time re- 
quired for connection establishment. Therefore, it is 
desirable to have an eficaent CAC algorithm which 
takes a short time to admit or reject a connection. 
Property 2. A CAC algorithm must be correct in 
the sense that if the new HRT connection is admitted 
then the end-to-end cells delays of all connections (the 
existing and the newly admitted) must be less than or 
equal to their deadlines and there must be no buffer 
overflow. 

To formalize the second property, we introduce the 
following notations and conventions: 

Let a*(n) be a vector of size n.2 It represents the 
end-to-end delays associated with n connections, that 
is, 

4* 

d ( n )  = (d ; ,dz,  . . . , d f , .  . . , d i ) ,  (9) 
where df is a random variable that denotes the end- 
to-end delay of a cell belonging to M;.  

Let 6 ( n )  be a vector of size n. It represents the 
end-to-end deadlines associated with n connections, 
that is, 

5 ( n )  = (01, ~ 2 , .  . . , Di, . . . , O n > ,  (10) 

where Di is the deadline associated with Mi. 

queue lengths, that is 
Let q""(K) be a vector of size I<. It represents the 

where q: is a random variable that denotes the queue 
length at server s. 

Let s ( K )  be a vector of size I ( .  It represents the 
buffer capacities of the servers, that is, 

& K )  = (B1,Bz , ' " )  B, ) * . . ,  B K ) ,  (12) 

where B, denotes the buffer capacity a t  server s. 

'The reader may notice that we explicitly specify the size 
of the vector. This is to avoid the confusing of the number of 
connections being taking into consideration. However, when the 
context is clear we shall omit the specification of the size. 

-I 

Given two vectors X ( n )  = ( X l , X a , .  . . ,Xn) and 
f ( n )  = (Y1, Y2,. . . , Yn) of size n ,  we say that 

x ' s9  if (V i ,  1 5  i 5 n ,  X i  5 yi) (13) 

and 

In terms of the above notations, the correctness 
property can be stated as follows: if the new connec- 
tion M N + ~  is admitted then 

and 
5 m), (16) 

where N is the number of connections previously ad- 
mitted into the system. 

Our objective is to develop an efficient CAC algo- 
rithm that is efficient (Property 1) and that satisfies 
(15) and (16) (Property 2). 
3.2 Motivation 

Given the network decomposition methodology, a 
straight forward approach to solving the CAC prob- 
lem is to identify all the servers impacted by the new 
connection. Then all the servers impacted by admit- 
ting the new connection can be re-analyzed. 

However, there is an inherent problem in such an 
approach. Consider the system presented in Figure 
2. Let { M I ,  M2, M3) be the connections that already 
exist in the system and M4 be the new request. The 
Connection-Server graph in Figure 3 shows the situa- 
tion if M4 were to be admitted. 

The reader may note that there is a cyclic depen- 
dency in the connection-server graph. For example, 
M4 shares server 3 with M I  affecting M I ' S  traffic. 
Since M I  later shares server 5 with M2, the behavior 
of server 5 and connection M2 may be impacted by 
introduction of M4. Furthermore, M2 shares server 7 
with M3 and M3 shares server 1 with M4 itself, form- 
ing a dependency loop! 

With such a dependency loop one cannot analyze 
the impacted servers in a straight forward sequential 
manner. Our CAC algorithm is an iterative procedure. 
During the iterations it explicitly and cyclically traces 
and analyzes those servers being impacted. 

In general, a system with this kind of cyclic depen- 
dency may not be stable in the sense that the delays 
and queue lengths may not be bounded. This has cre- 
ated a great deal of difficulty in analysis [5, 151. Par- 
ticularly, when an iterative method is used to analyze 
the system, one may run into the risk that the pro- 
cedure may not converge. We are dealing with hard 
real-time systems which have stringent deadline and 
buffer requirements. Our CAC algorithm exploits the 
restrictions imposed by hard real-time systems to  solve 
the convergence problem in a potentially unstable sys- 
tem. 
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3.3 Important data structures 
Before we present the CAC algorithm, we discuss 

some important data structures that are used in the 
algorithm. We assume that the network management 
system, which invokes the CAC algorithm maintains 
the following data structures. 

d M ,  a matrix used by the network to  store the cur- 
rent value of upper bounds of the cell delays expe- 
rienced by connections at servers in the ATM LAN. 
That is, foir 1 5  s 5 K ,  

where di,s is defined in (5). 
q(K) = ( q 1 ,  QZ, . . . ,ax), a vector used by the net- 

work to store the upper bound on the queue size at 
every server in the network. The default initial value 
of an element of G ( K )  is 0. 

5 ( N )  (01 ,  D z , .  . ., D N ) ,  which is defined in 

B(K)  =: (B1,  Bz, . . . , B K ) ,  which is defined in (12). 
QN) = ( r l , s ( l , l ) (~) ,  r z , s ( 2 , 1 ) ( 1 ) ,  . . . , r N , s ( ~ , i ) ( ~ ) ) ,  

the input traffic vector, where I'i,s(i,l)(I) presents 
the maximum rate function of connection Mi at the 
source. 

Once a new connection admission request arrives, 
the new coinnection (say M N + ~ )  presents the following 
information to the system: 

H N + ~  =:.< s(N + 1, I ) ,  . . . , s (N + 1 , K ~ + 1 )  >, i.e., 
the connection path of M N + ~ .  

D N + ~ ,  the cell transfer deadline of connection 

rN+l,s(lv+l,l)(l) ,  the maximum rate function of 
connection M N + ~  at the source. 

The network management system passes 
dM,  a ( I ( ) ,  a ( N ) ,  q N ) ,  HN+l, DNt1 ,  rN+l,s(N+l,l) 
and z(K) to the CAC algorithm. In addition to  the 
above input data structures, the CAC algorithm uses 
the followiing internal data structures. 

dMinterna', a matrix internally used by the CAC 
algorithm. 

a ( N +  l:), a vector of size N + 1 .  It is internally used 
by the CAC algorithm to store the computed upper 
bounds on the end-to-end cell delays. 

ifnternar(K), a vector internally used by the CAC 
algorithm to store the computed upper bounds on the 
queue length at the servers. 

Impact-.server-list is an ordered list of the server- 
ids. When the CAC algorithm detects that a server 
would be affected by admission of the new connec- 
tion, it appends the corresponding server-id at the 
end of Impact-server-list. The CAC algorithm uses 
Impact-server-list to determine the order in which 
the servers affected by the new connection are to be 
analyzed. 

= 
(10k 

MN+1. 

3.4 The Algorithm 
The pseudocode for the CAC algorithm is given in 

Figure 3. It is an iterative procedure which efficiently 
determines the servers that would be affected if the 

new connection M N + ~  were to be admitted and re- 
analyzes them. The algorithm has three major phases. 
Initialization phase (Lines 1 - 12) 
In this phase, the algorithm copies the system data, 
structures dM and a(K) into its internal working 
space. The matrix dMinternar of the algorithm is ini- 
tialized as follows. For (1  5 s 5 I() ,  

Also, 6 ( N  + 1) and a ( N  + 1) are constructed for the 
set of connections under consideration which includes; 
the new connection and the existing ones. 

Since all the servers in the connection path of M N + ~  
are directly impacted if M N + ~  were to be admitted, 
the algorithm initializes Impact-server-list with the 
server-ids of all the servers in M N + ~ ' s  path, i.e., with, 
elements of H N + ~ .  
Iteration phase (Lines 13 - 30) 
This is the main body of the algorithm and consists 
of a while loop. The iterative procedure begins with1 
the current status of the network being the existing 
set of connections. Then, it systematically traces the 
impact of the new connection request, M N + ~ .  In each 
iteration, there are three major operations : 

First, the algorithm removes the first server in 
Impact-server-list for analysis. 

Next, the algorithm computes an upper bound1 
on the queue length and delay at the server being 
analyzed. The results presented in Section 2.3 are 
used to achieve this. 

Because an increase in delay at, this server may 
change the input traffic characteristics of the SUC-. 
ceeding servers, the succeeding servers are also 
appended to  Impact-server-list. The next;(s)i 
function defined in Section 2.2 facilitates this pro- 
cess. Thus, the algorithm systematically traces 
the perturbation caused in the network due to 
connection M N + ~ .  

The iteration process terminates if the current, 
value of J ( N  + 1) or G ( K )  violates the &OS re- 
quirements of the N + 1 connections. The iteration 
also stops if Impactserver-list is empty. An empty 
Impact-server-list implies that the queue lengths andl 
the delays at every server have reached a stable value. 
Verification phase (Lines 31 - 33) 
In this phase, the algorithm examines the cause off 
the termination of the while loop. The algorithm ac- 
cepts the new connection if the deadline and buffer 
requirements of all the connections can be met, i.e., iif 
a ( N  + 1) 5 6 ( N  + 1) and ?(K) a ( K ) .  If the new 
connection is accepted, the algorithm also returns the 
updated valuesof dM,  Cj(K), 6(N+l ) ,  and f ( N f l ) ~  
to  the network management system. 
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Connection Admission-Control ( d M ,  q( K ) ,  6( N ) ,  
n N ) ,  H N + I ,  D N i . 1 ,  r N + l , s ( N + I , l ) s  j ( K )  ) 

( K )  = (471, 472,. . . I w c ) ;  *nternal 
'I, 
D(N+l) = (01, D z , .  . . , D N ,  D N t i ) ;  

for all s do 

end for all 
for i = 1 to N + 1 do 

d, = d M ? n t e r n a l .  

end for 
q N + 1 )  = ( d i ,  d z , .  . . , d N ,  d N + 1 )  ; 
Impactserver- l i s t  = < s ( N  + 1, I) ,  s ( N  + 1 , 2 ) ,  

while( (Impact-server-list  # 0 )  

d M i n t e r n a 1  - - d M ;  

d M ~ ~ ~ : ~ a l  = 0; 

s E H ,  I j 3  , 

. . . , S ( N  + 1, K N + I )  > ; 

and ( 4 N  + 1) 5 b ( N  + 1))  and 

s = first-element(Impact-3erver-list); 
Impact-server-list = Impact-server-list  - (s) ; 
old-47 = q F f e r n a l .  , 
47dnterna1 = compute-queue-length(s); 
for ( i = 1 t o  N + 1) do 

(Pternal ( K )  I W))) do 

i f s  E H i  then 
dM,',zternal = q c ;  

/* If delay or queue length at server s changes, add the 
succeeding server to Impact-server-lzst */ 
21. 

22. append-to-list(Impact-server_last, 

23. end if 
24. endif 
25. end for 
26. for z = 1 to N + 1 do 

28. end for 

30. end while 

if ( (old-q # qinternal) and 
( n e z t , ( s )  @ Impact-server-lzst))  then 

n e z t ,  (9)); 

in ternal .  
27. d ,  = s E H ,  d M , * s  , 

29. q N + 1 )  = (dl I . , d N ,  d N t 1 )  ; 

31. 

32. 

33. else return(Reject). 

if ( ( 4 N  + 1) 5 b ( N  + 1)) and (<('(K) 5 
l?(K)))  then 
return(Accept, 6 ( N  + l), dMinternar,  

pinterna1 ( K ) ,  mJ + 1)); 

Figure 3: Pseudocode for the CAC algorithm 

In this section, we establish properties of the CAC 
algorithm. For the proofs please refer to  [16]. 

Let Jk be vector J ( N  + 1) at the end of the k th  
iteration. Let 2' be the vector z ( N  + 1) which is 
computed at  the initialization phase in the algorithm. 

LEMMA 3.1 During an execution of the algorithm, 
before its termination there is a sub-sequence of itera- 
tions (iterations IO, Ill I z , . .  . I j ,  . . .) where IO < I1 < 

3.5 Properties of the algorithm 

I2 < . , . Ij-1 < Ij . . . such that f o r j  > 1, 

and 
2Ij-l < zrj. (19) 

LEMMA 3.2 I f  the CAC alqorithm accepts a con- 
nection after G- iterations thin 1 < i 3 N + 1, 
15 s 5 K, 

9; 5 Q S ,  (20) 
and 

where df is the end-to-end delay experienced b y  a cell 
of connection Mi and q: is the queue length a t  seruer 

THEOREM 3.1 The CAC algorithm terminates 
and is correct. 

Furthermore] the CAC algorithm is quite efficient. 
For example, for a link utilization of SO% and 120 con- 
nections, the average time to  admit a new connection 
for an implementation of the CAC algorithm executing 
in a Sun/Solaris environment was 200 milliseconds. 

4 Performance Evaluation 
In this section, we evaluate the performance of the 

CAC algorithm discussed in the previous sections. We 
will first define performance metrics, then describe the 
system architecture considered and present the perfor- 
mance results. 

We use Admission Probability (AP(U)) for evaluat- 
ing a CAC algorithm for hard real time connections. 

A P ( U )  is defined as the probability that HRT con- 
nections are admissible conditioned on the average uti- 
lization of the inter-switch physical links in the net- 
work being U.  

df 5 da, (21) 

S. 

hh.4.0 

i . r . 9  

y 3 . I . O  

y3.2.0 

M l . 1 9  

M I 1 9  
SWIIFh4 SWI1Ch 3 

Conn.slia M#,I,k en1.r. the nelwork a1 w i t c h  I and exit. e l  w i l s h  j, 

Figure 4: The network system evaluated 
The network we consider in this paper consists of 

four 32 x 32 ATM switches. That is, each switch has 
32 input lines and 32 output lines. As shown in Fig- 
ure 4, there are 120 connections in the system. Con- 
nection Mi,j,k is the kth connection that enters the 
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network at switch i and leaves the network at switch 
j. The connections in the network form a symmetric 
pattern. The system is arranged in such a way that 60 
connections share one inter-switch link a t  each stage. 
Several systems with different architectures have also 
been evaluated. The results are similar and are not 
presented hlere due to the space limitation. 

Since our target applications are hard real-time sys- 
tems, we consider the Source Traffic Descriptor (STD 
[a]) for the HRT connections to be the traditional HRT 
source traflic model. That  is, the source traffic is as- 
sumed to be periodic and the STD is described by 
the parameters (C ,P) ,  where P is the period of the 
message and C is the number of cells in a message. Al- 
though the source traffic of a connection is periodic, 
due to multiplexing in the network the periodicity of 
the connection traffic may no longer be maintained 
within the network. As mentioned earlier, we use the 
maximum rate function to  characterize the traffic of 
connections inside the network. 

To obtain the performance data,  we developed a 
program to simulate the network system. The pro- 
gram was written in the C programming language and 
run in a Sun/Solaris environment. In each run of the 
program 1000 connection sets were randomly gener- 
ated. For each connection, the total number of cells 
per period were chosen from a geometric distribution 
with mean 10. Similar results have been obtained with 
different settings of parameters. We do not present 
them here due to  space limitations. 

U 

Figure 5: Admission Probability vs. Link Utilization: 
unregulated source. 

Figure 5 shows the admission probability results 
for our sample network. The performance figures are 
corresponding to  two values of Di, (Pi and 2Pi). It 
is common practice in a hard real-time system that 
deadlines are associated with periods [13, 141. From 
Figure 5, we can make the following observations: 

1. In general, we found that the admission proba- 
bility is sensitive to  the average link utilization. 
As the utilization increases the admission proba- 
bility decreases. This is expected because higher 
the network utilization, the more difficult it is for 
the system to admit a set of connections. 

2. When the end-to-end cell deadlines of the con- 
nections are increased, the admission probabil- 
ity shows an obvious improvement. For exam- 
ple, when U = 0.4, the admission probability in- 
creases from about 40% to 80% when the average 
deadline increases from P to 2P. 

\ \  I 

" 

Figure 6: Admission probability vs. Link utilization: 
regulated source. 

So far, we have considered a network management 
system which uses the CAC algorithm to control con- 
nection admission without modifying the input traffic 
of the connections. There has been increased interest 
in controlling the delays of connections by appropri- 
ately regulating the connection traffic at  the entrance 
of the network. By regulating the input traffic, its 
burstiness can be controlled. This tends to reduce the 
adverse impact of burstiness on the end-to-end delays 
of other connections. We now consider the system 
with traffic regulation at the source. We adopt the 
method proposed in [18] to  select parameters of the 
traffic regulation mechanism (e.g., leaky bucket) so 
that an appropriate level of regulation is maintained. 

Figure 6 shows the admission probability results for 
the regulated system. In comparison with the data in 
Figure 5, we see that by using input traffic regula- 
tion method of [18] in conjunction with our CAC al- 
gorithm, the admission probability can be improved. 
The AP(U) is almost 100% for values of U as high as 
30%. 

5 Final Remarks 
In this paper we addressed the connection admis- 

sion control problem in an ATM LAN supporting hard 
real-time applications. The key issue in solving this 
problem was obtaining reasonable upper bounds on 
the end-to-end delays of connections. We took a net- 
work decomposition approach, in which the network 
is modeied as a collection of servers. This approach 
has been used by several researchers before. However, 
our work significantly differs from the previous work 
by making the following contributions: 

We use the maximumrate function F(1) to describe 
a connection's traffic at  any point in the network. The 
use of this traffic descriptor frees us from several re- 
strictive assumptions often made in previous analysis. 
For example, the use of a single value to  define the 
overall worst case rate of a connection leads to over 
allocation of resources to  connections lowering the net- 
work resource utilization. Some of the previous work 
assumes reconstruction of a connection's source traffic 
within the network using traffic shaping. Such traffic 
shaping mechanisms within the network also introduce 
additional delays and are not easy to implement on a 
per-connection basis. Our approach based on the max- 
imum rate function does not require reconstruction of' 
a connection's original traffic inside the network. 

A potential concern one may have on the use of the 
maximum rate function is the need for computational 
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resources (time or space) to obtain values of r I )  for 

method of computing r(I) values for a connection a t  
any point in the network in terms of the corresponding 
values a t  the connection’s source. 

When a new connection is admitted, not only is the 
status of servers traversed by the new connection af- 
fected but also the perturbation may spread to  other 
servers in the system. More seriously, it has been rec- 
ognized that the arbitrary topology of the network 
may cause a cyclic relationship among the connections 
that impact each other. Our CAC algorithm explicitly 
accounts for the extent of the perturbation caused by 
admitting a new connection and also deals with the 
possible cyclic dependencies. 

We formally established the desired properties of 
our CAC algorithm. Specifically, we showed that the 
algorithm always terminates, regardless of the exis- 
tence of cyclic dependencies among the connections 
and servers. Our algorithm is correct in the sense that 
it accepts a connection only if the QoS requirements 
of the new connection together with the existing ones 
can be met. 

We evaluated the performance of our algorithm in 
terms of the connection admission probability. We 
found that with our CAC algorithm, a connection has 
a high probability of being admitted under light or 
medium load conditions, which are typical of most 
hard real-time systems. 

This work can be extended in several ways. It 
would be interesting to consider scheduling disciplines 
other than FCFS. Another important issue in hard 
real-time systems is to  consider good approximations 
[17] of the explicit traffic descriptor so as to improve 
the execution overheads of the algorithm, although 
this will result in a corresponding decrease in the ad- 
mission probability. 
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