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Abstract

Current information and communication technologies provide the infrastructure to transport bits anywhere, but do

not indicate how to easily and precisely access and/or route information at the semantic level. To facilitate intelligent

access to the rich multimedia data over the Internet, we develop an on-line knowledge- and rule-based video

classification system that supports automatic ‘‘indexing’’ and ‘‘filtering’’ based on the semantic concept hierarchy. This

paper investigates the use of video and audio content analysis, feature extraction and clustering techniques for further

video semantic concept classification. A supervised rule-based video classification system is proposed using video

automatic segmentation, annotation and summarization techniques for seamless information browsing and updating.

In the proposed system, a real-time scene-change detection proxy performs an initial video-structuring process by

splitting a video clip into scenes. Motional, visual and audio features are extracted in real-time for every detected scene

by using on-line feature-extraction proxies. Higher semantics are then derived through a joint use of low-level features

along with classification rules in the knowledge base. Classification rules are derived through a supervised learning

process that relies on some representative samples from each semantic category. An indexing and filtering process can

now be built using the semantic concept hierarchy to personalize multimedia data based on users’ interests. In real-time

filtering, multiple video streams are blocked, combined, or sent to certain channels depending on whether or not the

video streams are matched with the user’s profile. We have extensively experimented and evaluated the classification

and filtering techniques using basketball sports video data. In particular, in our experiment, the basketball video

structure is examined and categorized into different classes according to distinct motional, visual and audio

characteristics features by a rule-based classifier. The concept hierarchy describing the motional/visual/audio feature

descriptors and their statistical relationships are reported in this paper along with detailed experimental results using

on-line sports videos. r 2002 Published by Elsevier Science Ltd.
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1. Introduction

New integrated multimedia services are emer-
ging from the rapid technological advances in
networking, multi-agents, media and broadcasting

*Corresponding author. Information Science Laboratory,

HRL Laboratories LLC., Malibu, CA 90265-4799, USA. Tel.:

+1-310-317-5278.

E-mail addresses: wzhou@hrl.com (W. Zhou), skdao@hr.-

com (S. Dao), cckuo@sipi.usc.edu (C.-C. Jay Kuo).

0306-4379/02/$ - see front matter r 2002 Published by Elsevier Science Ltd.

PII: S 0 3 0 6 - 4 3 7 9 ( 0 2 ) 0 0 0 1 8 - 2



technologies. The development allows for large
amounts of multimedia information to be distrib-
uted and shared on the Internet. Current informa-
tion and communication technologies provide the
infrastructure to transport bits anywhere, but the
technologies do not presume to handle informa-
tion at the semantic level due to insufficient
indexing mechanisms and lack of good automated
semantic extraction and interpretation mechan-
isms. Consequently the huge amounts of multi-
media data impose a heavy burden of data
manipulation on people, including searching/
choosing, interpreting, skimming, and integrating
information.
Smart Push and active Pull applications, such as

user agent-driven media selection and filtering,
personalized television services and intelligent
media presentation, follow a paradigm more akin
to broadcasting and thereby influence the emerging
pattern of multicasting over the Internet. Such
applications require the ability to analyze and index
contents on-the-fly rather than by the normal store-
and-analyze-later paradigm. Therefore, a distribu-
ted proxies architecture coupled with real-time
indexing and content analysis techniques needs to
be developed to support the requirements.
Traditional content-based video retrieval devel-

opment focuses on the use of low-level features
such as color, motion and texture to index video.
However, while direct application of generic
similarity metrics techniques to low-level features
can give good results in cases having approxi-
mately similar ‘‘patterns’’, their application to
discerning similar semantic classes is highly aspect.
This is partly because the effective joint combina-
tion of multiple low-level features is a very difficult
problem since it is hard to create generic models
for multiple types or applications of video at once.
Thus, efficient video classification into semanti-
cally meaningful classes will require more super-
vised approaches; besides, a static classification
model is application dependent and as a result, it
may end up not suitable for on-line applications
because real-time life streams tend to be very
versatile. The difference in our work and the
existing accomplishments in the literature is that
while most of them use a static model for video
classification to provide semantic indexing of off-

line multimedia databases, we have taken an
approach using a supervised learning technique
to form a classification system and applied it
specifically to basketball video event indexing as
an experimental example. Moreover, an effective
and real-time multimedia data-sharing, filtering,
and dissemination infrastructure is proposed using
internet multicast protocols.
More specifically, we apply an inductive deci-

sion-tree learning method to arrive at a set of if–
then rules that can be directly applied to a set of
low-level-feature-matching functions. This deci-
sion tree is our trained knowledge and forms the
on-line classifier. This knowledge-based represen-
tation approach is especially useful for on-line
video semantic classification, indexing and filtering
because it provides powerful rules that can be
easily associated directly with the characteristic
features of each class. Moreover, the rules show
the order and priority of each low-level feature in
the classifier when multiple features are present,
which is very important for on-line fast video
understanding and indexing. The proposed system
also includes approximate accuracy and confi-
dence measures for each classification output.
Using this system, we have experimented and
classified basketball video data into different
categories such as left fastbreak, right fastbreak,
left dunk-like events, right dunk-like events, close-
up video sequences and so on. Such classification
of high-level semantics can be used to answer
queries such as ‘‘show all dunk-like shots where
team A scored’’, as well as to support smart
browsing of basketball games.
The rest of the paper is organized as follows.

Section 2 gives a brief description of related work.
The background and motivation of this research
are also discussed in this section. The system
architecture and the video data model are de-
scribed in Section 3, which also details the
classification-rule learning by the decision-tree
learning algorithm and the on-line knowledge-
based classification system. This section also
describes knowledge creation, and video high-level
semantic content analysis and query/filtering
procedures based on the knowledge information
stored in the knowledge base. Section 4 describes
the implementation of on-line content analysis
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agents based on low-level feature-extraction pro-
cesses. Section 5 gives the experimental results for
our classifier and video applications over the
Internet. The proposed system is evaluated with
an application example of on-line basketball event
indexing, and dissemination by filtering. Section 6
concludes the paper.

2. Background and related work

2.1. Background and motivation

Generally, the first step in video analysis is scene
and shot boundary detection, which parses video
into a collection of scenes and shots. Each scene
can be represented by a sequence of shots, and the
shots can be summarized by a couple of key frames
(see Fig. 1(a)). The key frames can be further
summarized according to low-level features such
as color, shape, and motion. Based on this feature-
based analysis, it is possible to perform effective
video parsing to support video summarization,
fast browsing and low-level content indexing.
On the other hand, video programs can be

divided into stories at the semantic level [1], which

are contained at every level of video streams; for
example, video semantic contents are expressed
and represented by video scenes, shots and key
frames (see Fig. 1(b) and (c)). Low-level features,
such as key frames and objects are widely used for
content-based retrieval and are relatively easier to
extract automatically. Indeed, up to the present,
video data are still being annotated manually or
semi-manually with key words in most applica-
tions. Automatic video semantic content analysis
and extraction remains a very challenging research
topic. Effective video classification can automati-
cally group visual/audio multimedia into a certain
level of semantic concepts. In addition, a flexible
knowledge representation scheme coupled with
reasoning and learning capabilities to bridge the
gap between the video low-level features and high-
level semantic concepts would facilitate the
semantic level query and filtering for on-line video
dissemination.

2.2. Issues in on-line and off-line video analysis

We distinguish between on-line and off-line
video content analysis because the issues are
considerably different in the two cases. Automatic

Fig. 1. A framework of video parsing and description: (a) Video parsing and segmentation, (b) Hierarchical video representation (a

description scheme), and (c) Description layers.
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video content analysis and annotation are gener-
ated by processing either directly on the media raw
data or on lower-level annotations of features.
Some examples of video content analysis and
annotation are topic key words summarization or
key frame summarization of videos, video scene-
change tags to break video into visual meaning
units and concept identifiers of a given collabora-
tion session, etc.
There exist some unique characteristics in on-

line video analysis compared with the off-line case.
First, it is necessary to take into account the fact
that video data, by nature, tends to be relatively
larger in size as compared to other types of data.
This means that real-time processing of video data
should consider low-complexity techniques, such
as fast image processing, so as to facilitate efficient
content extraction. In other words, to avoid
generating huge latencies caused by content
analysis, we may need to trade off the complexity
of the content analysis algorithm for increased
speed, e.g. use the simpler binary classification.
Second, semantic extraction directly from

visual data has been traditionally very difficult.
Content-based (or feature-based) video retrieval
is not efficient due to the lack of a comprehen-
sive data model that captures structured ab-
stractions and knowledge needed for video
retrieval based on concepts. On the other hand,
pixel-matching or feature-similarly matching
methods employed by query-by-example techni-
ques are time consuming, and have a limited
practical use since little of video object seman-
tics is explicitly modeled.
Third, not all video content annotations are

generated by directly processing raw data because
the annotations that are directly generated from
raw data are very low level and not directly
capable of aiding high-level decisions. Typically,
further processing has to be on certain metadata
(or annotations) to generate the higher-level
annotations which are better suited for aiding
high-level decisions. For example, video key
frames can be used for fast browsing, but key
frames alone are still very inefficient for semantic
interpretation of video as they are raw images, too.
To get the semantic meaning expressed in each key
frame, visual features should first be analyzed and

then pattern classification conducted, based on
these extracted visual features.
Another unique characteristic is that many

visual and motional features in video are based
on multiple attributes, or based on other feature-
extraction operations, so cooperation and syn-
chronization techniques are necessary. Moreover,
on-line video normally covers a huge range of
topics which complicates the problem, so that we
may need to learn what is of interest to the user
from the user’s profile, and then establish the
knowledge base for that category of video. For
example, if we know s/he is a CNN fan, we may
establish a CNN news knowledge base in off-line
based on the characteristics of CNN news frames,
such as the CNN logo, a model of the spatial
structure of anchor-person shots, the station
background when the anchor-person is talking,
etc. We may then use these characteristics to
differentiate the CNN news video from other
videos. Therefore, we see that in on-line video key
frame and sequence classifications, prior domain
knowledge and learning are very important. And
in general, how to establish the base class and
feature basis for a knowledge base from scratch
within reasonable time duration is one of the most
important research issues for on-line video classi-
fication. We will address some of the above-
mentioned issues in this paper.
Apart from the on-line mode, the video content

analysis and annotations are also utilized in the
off-line mode, primarily as a means to aid access to
the raw data based on sophisticated queries such
as those based on semantic content. There are
some differences in the raw data processing used to
generate these off-line annotations compared to
on-line annotations, and one of the biggest
differences between the two is that the former
one does not have the real-time constraint in
creating the annotations. Thus, the off-line anno-
tations might be more sophisticated than those
generated using on-line processing. The generation
of annotations allows full parsing of a given video
record to generate context, which is not possible in
on-line techniques. Moreover, there is the issue of
indexing records, so as to allow fast access to a set
of records, which is again not a consideration in
on-line processing. In general, on-line processing
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to generate annotations has to consider real-time
aspects, and the annotation is used to aid filtering,
whereas in the off-line mode the annotations are
primarily used to allow retrieval from a database
at a laser stage, and do not have to be concerned
with real-time aspects during metadata extraction.

2.3. Relation work

Today’s video database community widely uses
low-level features, such as color, motion and
texture to index videos. Thus, many existing video
database management systems content-based
queries based on low-level features. To name a
few, Chang et al. [2] used visual cues to facilitate
video retrieval, and Deng et al. [3,4] proposed on
object-based video representation to facilitate
queries on the object. However, the low-level
features are generally high-dimensional data and
do not directly map to semantic classes, so these
methods are still not convenient and efficient
enough to support many applications, such as
on-line video data searching and filtering based on
a user’s requests and profiles.
Besides indexing and retrieval with low-level

features, researchers [5–7] have also studied video
classifications based on low-level features. Efficient
video classification can bridge the gap between the
video’s low-level features and its high-level seman-
tic features, and thus facilitate the indexing of
video databases, video summarization and on-line
video filtering based on the user’s profile. For
example, Jaimes and Chang [7] used an interactive
learning algorithm over a semantic data model. In
this system, they allowed users to specify the
classes and provide examples for learning, and the
learning algorithm was used to train the classifiers.
However, the interactive mode is difficult to apply
to on-line applications. Picard [8,9] discussed in
detail other data models for video and image
libraries, which are mainly based on the classifica-
tion of digital images. This system only applies to
off-line content-based video database retrieval. As
for the other applications such as real-time
Internet video streaming and on-line video index-
ing and filtering, generic models for all these
videos are hard to establish. It generally requires
fast and efficient content analysis and efficient

semantic classification. Besides, a specific data
model is not effective for generic purposes because
of the varied nature of the data. As a result, a
generic, fast and efficient framework for on-line
video classification still needs to be developed.
Many researchers have also worked on various

sports video classification problems. For example,
Saur et al. [10] worked on automated analysis and
annotation of basketball videos, and they mainly
used heuristics of basketball structure to guide the
classification. Gong et al. [11] and Sudhir et al. [12]
both used model-based classification methods.
Similarly, most of these video classification sys-
tems are feature-based for off-line applications,
and few of them study the relationships between
low-level features and high-level conceptual mean-
ings (semantics). In an off-line video classification
environment, classification results can be obtained
based on all available low-level features. However,
this practice is usually not practical for real-time
on-line video classification. Hence a fast video
classification system based on certain simple, easily
extracted low-level features is essential. It would be
even better if they system could guide feature
extraction low-level features is essential. It would
be even better if the system could guide feature
extraction to avoid extracting unnecessary features
and thus save the valuable computing power and
reduce latency for on-line video content analysis.
Knowledge-based techniques [13] are widely

used in the development of vision systems, such
as image and video segmentation [14]. Knowledge-
based systems, which are also known as expert
systems, have been traditionally used for the high-
level interpretation of images. They incorporate
mechanisms for spatial and temporal reasoning
that are characteristic of intermediate and high-
level image understanding. However, the knowl-
edge-based systems are usually developed for
specific applications, to maintain their efficiency.
In our work, we are interested in developing a
knowledge-based system for fast on-line video
classification and filtering applications and a
generic framework and methodology will be
established first. We use supervised learning to
establish any specific knowledge base while main-
taining off-line learning/training as a method to
establish any knowledge-base for new video types.
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Then, we use the basketball video classification
and filtering as a particular example to illustrate
the concepts proposed.
In our system, the knowledge base consists of a

predefined semantic class tree and off-line trained
rules that define the if–then rules for each concept
class with low-level feature descriptors. Once the
rules are learned, on-line fast video classification
becomes possible and efficient. We are not going
to provide a classifier to classify any video’s
semantic meanings; rather for some given type of
video such as the video type specified in a user’s
profile list, we provide a generic method to classify
on-line video sequences into semantic units ac-
cording to supervised learned rules. Some semantic
video sequences might share the same features
with similar features patterns; our goal is to find a
generic way to find the most discernible features
shared between any two ordered semantic mean-
ings in order to distinguish the two, keeping
priority and order in mind.

3. Knowledge-based system for video classification

In this section, we introduce and describe a
layered video analysis model for video semantic
content analysis and conceptual classification. We
will then describe innovative tools for constructing
the knowledge-based system with flexible rules
covering both semantic content extraction using
supervised learning techniques, and ad hoc queries
and filtering based on users’ requests.

3.1. Layers of video analysis model for video

semantic classification

To satisfy both on-line and off-line video
analysis requirements and a remedy the short-
comings of traditional content-based database
management techniques, semantic inference (clas-
sification) and reasoning for conceptual meanings
based on low-level perceptual features should be
explored in detail. An example would be detecting
all video clips containing dunk-like action in a
basketball video by exploiting fast or slow move-
ment patterns. To achieve this goal, we describe a

generic layered video analysis model as depicted in
Fig. 2.
The layered video model consists of: (1) the raw

data layer, (2) the video segmentation layer, (3) the
perceptual feature content layer, (4) the conceptual
content layer and (5) the knowledge layer. Each
layer is mapped to a processing module in the on-
line video analysis and dissemination infrastruc-
ture, which is discussed in Section 5. The function
of each layer is detailed below:

* The raw data layer: This layer contains original
video data, either stored in the video database
or received from on-line media streams such as
video, audio and caption text from servers over
the Internet. It is an abstraction of the coded
media sources, including various formats of
audio, video, and caption information. When
media is queried or matched with a user’s
profile, audio, video and caption data are
multiplexed, and/or synchronized in transmis-
sion and then presented to users.

* The video segmentation layer: Video is a
continuous media and is unconstructed. To
understand any content of a video, or to
analyze any video data, an efficient mechanism
is required to parse the video into smaller units
based on certain criteria and the segmented
units should be either suitable for perceptual
feature analysis or for conceptual abstraction
analysis. For example, a video is decomposed
into a series of small units with similar visual
patterns so that perceptual features, such as
color extractions from a key frame can be
analyzed effectively and efficiently, while mo-
tion patterns need to be extracted from video
shots or scenes. As for the conceptual meaning
of video, we need to decompose the video into
units which correspond to the conceptually
meaningful abstract of the video content based
on the conceptual model. Our system contains
several levels of video content analysis proxies
working on various levels of hierarchical video
decomposition, which will be discussed in detail
in Section 4.

* The perceptual feature content layer: Annota-
tion tags are represented in this layer. The
annotations are generated by processing either
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directly on the raw data or on lower-level
annotations. Thus, the perceptual feature con-
tent layer contains all the low-level video
features extracted from the raw data, including
physical video parsing tags and feature descrip-
tors such as color, texture and motion. The
extraction methods for the generic low-level
features used for system evaluation with the
basketball video will be described in detail in
Section 4. Correspondingly, our system con-
tains several levels of video low-level analysis
and extraction proxies working on various
media source, including video, audio and text.

* The conceptual content layer: Visual data in a
video clip contain rich and unconstructed
information. The video conceptual content
layer is an abstraction of various visual data
semantic types and their structures. In our
system, the video conceptual content is mapped
to the user’s and/or application’s model, which
the query engine and user’s profile will follow.
For example, in the basketball video, most
people may query certain key game events, such

as scores and dunks. The conceptual content
layer for the basketball video is defined to have
nine events as given in Section 5, the conceptual
content of the visual data can be further
expanded as needed, depending upon the user’s
interests and requests.

* The knowledge layer: The knowledge layer
contains rules to map low-level features in the
perceptual feature content layer from each
video clip into classes of the conceptual content
layer. The knowledge rules are automatically
derived from off-line learning algorithms and
constructed as a tree structure. The feature
attributes used for video classification are
general and insensitive to the context. The
build-up of knowledge will be described in
detail in Section 3.2. Visual entities in the
perceptual feature content layer are linked to
the knowledge tree in the knowledge content
layer to provide present values for conceptual
terms. The knowledge content layer to provide
preset values for conceptual terms. The knowl-
edge will be used for concept inferencing to

Fig. 2. Layers in the video analysis model.
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support further data dissemination decision-
making. Moreover, the query engine can use the
inference engine to automatically generate
feature compositions for content-based retrieval
with low-level features. High-level semantic
content analysis proxies, such as the video
feature clustering proxy and the video feature
classification proxy, analyze and identify media
concepts (such as the subject of a news video or
the topic of a story) exhibited by the data
streams.

The above conceptual layers are derived by novel
feature extraction and content analysis techniques,
and are used for on-line media stream filtering and
for ad hoc querying based on user interests.
Archiving and further off-line analysis of the data
can also be performed to provide additional
semantic structures for subsequent retrievals.

3.2. Building the knowledge base

In order to classify incoming video streams into
meaningful semantic classes, we should classify
video with a small number of features that can be
easily extracted. Fig. 3 illustrates the overall
system for knowledge base building and the on-
line video classification process. It consists of two
steps. First, it performs the off-line training.

Sample video clips of different categories are first
identified, and appropriate low-level features are
created. Second, we utilize an entropy-based
inductive tree-learning algorithm [15] to establish
the trained knowledge base. Rules are learned by
training, which includes ways to determined
characteristic features for each class. The classifi-
cation rules for each class contain the functions of
certain feature descriptors and their corresponding
threshold values, order and weight. Off-line
training can also update the existing knowledge,
if necessary. Once we have the knowledge of the
classification rules for each class, they are used to
build and guide on-line feature extraction in
response to filtering specified by users, i.e. choose
the appropriate operators to get target feature
descriptors, and output the binary classification
result (yes/no) to user’s specification. The rules can
specify the order, the value and the priority of each
feature test. The above process will be described in
detail below.

3.2.1. Rules for the knowledge base

Our knowledge base is represented as a decision
tree, as shown in Fig. 4, where each node in the
tree is an if–then rule applied to a similarity metric
based on appropriate low-level features along with
well-derived thresholds. The rule is depicted as

Fig. 3. Knowledge-based video classification system.
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f ¼ /F ; yS; where F denotes the appropriate
feature and y denotes the threshold which is
automatically created during the training process.
Semantic categories form leaves of the decision
tree. Each node in the tree is either a leaf or an
intermediate node with two children. A set of
videos is associated with each node Ni; while a
decision rule fi is associated with each intermediate
node.
An example of a rule-based tree with nine noes

is shown in Fig. 4. The entire set of videos is
associated with the root. Let NI be an intermediate
node, with its children labeled as Ni1 and Ni2: Then
the video subsets VI ; Vi1; Vi2 satisfy

Vi ¼ Vi1,Vi2;Vi1-Vi2 ¼ 0: ð3:1Þ

In other words, the leaves form a partition of the
database into disjoint subsets. In the example
above, sets V3; V5; V6; V7 and V8 are disjoint, and
their union is V0: Without loss of generality, it is
assumed that the decision rule fI is a discriminate
function with the following interpretation. Let x

denote a video clip in Vi: If fiðx;FiÞpyi then
xAVi1: If fiðx;FiÞ > yi then xAVi2: When these
discriminant functions represent important visual
characteristics, a visual-content rule tree partitions
the set of videos into distinct clusters with feature-
similar video clips in each cluster. In the example
above, all images in V7 have the following
properties in common:

F0ðx;F0Þpy0; f1ðx;F1Þ > y1; f4ðx;F4Þpy4: ð3:2Þ

They should look different from the video set in V2

if the characterization according to the rule of
f0ðx;F0Þ is visually meaningful. In order words, we
need at most rules to classify a video into class N7:

3.2.2. Supervised decision-tree learning and rules

extraction

The classification scheme uses the rule-based
system to build a binary tree and associates tree
nodes with subclasses of videos. This enables fast
video classification. The key computational step is
to create the two children of a node so their
associated classes are clustered with respect to a
meaningful visual characteristic. This implies that
video subsets associated with each one of the two
child nodes are more alike with respect to the
visual property then the video clips associated with
the parent node. If the tree is deep enough, its
leaves should correspond to clusters of similar
video events, and a query by visual-content or
classification based on visual features should
return one or more of these video clusters.
The decision tree [16] is one of the most widely

used and practical methods used to generate rules
in inductive inference. Given a collection of S that
contains a total of c categories of some target
concepts, the Entropy of S relative to this c-wise
classification is defined as

EntropyðSÞ ¼
Xc

i¼1

pi log2 pi; ð3:3Þ

where PI is the proportion of S belonging to class
i: The entropy is equal to 0, which is the minimum,
when all cases in a set belong to the same class.
The entropy is equal to 1, which it the maximum,
when each class is equally distributed in the given
set. The Information Gain is simply the expected
reduction in the entropy caused by partitioning
examples according to an attribute. More pre-
cisely, the information in Gain Gain(S,A) of an
attribute A relative to a collection of examples S is
defined as

GainðS;AÞ ¼EntropyðSÞ �
X

vAValuesðAÞ

jSvj
jSj

EntropyðSvÞ:

ð3:4Þ

Fig. 4. Illustration of rule-based tree for classification.

W. Zhou et al. / Information Systems 27 (2002) 559–586 567



where ValueðAÞ is the Set of all possible values for
attribute A; and Sv is the subset of S for which
attribute A has value v (i.e. Sv ¼ fsASjAðsÞ ¼ vg).
Note the first term in Eq. (3.4) is just the entropy
of the original collection S; and the second term is
the expected vale of the entropy after S is
partitioned using attribute A: GainðS;AÞ is the
information provided about the target function
value, given the value of some other attribute A:
The value of GainðS;AÞ is the number of bits saved
when encoding the target value of an arbitrary of
S; by knowing the value of attribute A: To
determine the first attribute to be tested in the
tree, the algorithm determined the Information

Gain for each candidate attribute (all feature
attributes used in the training process), then selects
the one with highest information gain. The process
of selecting a new attribute and partitioning the
training examples is now repeated for each non-
terminal descendant node, which uses the training
examples associated with that node only. Attri-
butes that have been incorporated higher in the
tree are excluded, so that any give attribute can
appear at most once along any path through the
tree. This process continues for each new leaf node
until either of these two conditions is met: (1) every
attribute has already been included along this path
through the tree, or (2) the training examples
associated with this leaf node all have the same
target attribute value (i.e. their entropy is zero). In
summary, the decision-tree learning procedure has
the following steps:

* At each step, we split the tree upon the variable
that maximizes the entropy gain. If S contains
one or more tuples labeled by CI and the
decision tree is a leaf identifying class Ci; Stop.

* Otherwise, S contains tuples with mixed classi-
fication. We split S into S1;S2;y;Sm that
‘‘tend to belong’’ to the same class. The split
is executed according to possible outcomes
fO1;O2;y;Omg of a certain feature attribute
rk: Thus, SI contains all r in S such that r k ¼
Oi: In this case, the tree for S is a node with m

children. The node is labeled with feature
attribute rk and function f ¼ /rk;OiS:

* Perform the above two steps recursively for
each S1;S2;y;Sm:

The whole tree induction depends upon the split
criterion and the stop criterion. A good tree should
have few levels as it is better to classify with as few
decisions as possible; in addition, a good tree
should have a large leaf population as it is better to
have leaves with as many cases as possible. In the
learning algorithm, we split the training data upon
the variable that maximizes the GainðS;AÞ; here,
the ‘‘gain’’ value is only based on the class
distribution, which makes the computation easy
to perform, and the ‘‘Entropy gain measure’’ does
not take popularity into consideration. If the stop
criterion was chosen when the entropy was 0 (same
class for all cases), then it will cause over-fitting
and yield to very deep trees with few cases on the
leaf nodes, which is undesirable. So it is possible to
choose the stop criterion either at a minimum
popularity allowed for the leaves, or at a certain
entropy value to be reached, or even better by
combining the previous two conditions. Usually
the algorithm will do tree over-fit, first, and then
do pruning.
In practice, one quite successful method for

finding high-accuracy hypotheses is a technique
called rule post-pruning. A variant of this pruning
method is used by C4.5 [15]. Rule post-pruning
involves the following steps:

1. Infer the decision tree from the training set,
growing the tree until the training data is fit as
well as possible and allowing over fitting to
occur.

2. Convert the learned tree into an equivalent set
of rules by creating one rule for each path from
the root node to a leaf node.

3. Prune (generalize) each rule by removing any
preconditions that result in improving its
estimated accuracy.

4. Sort the pruned rules by their estimated
accuracy, and consider them in this sequence
when classifying subsequent instances.

In rule post-pruning, one rule is generated for each
leaf node in the tree. Each attribute test along the
path from the root to the leaf becomes a rule
antecedent (precondition) and the classification at
the leaf node becomes a rule consequent (post-
condition). Next, each such rule is pruned by
removing any antecedent, or precondition, whose
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removal does not worsen its estimated accuracy.
Rule post-pruning would select whichever of the
above pruning steps produces the greatest im-
provement in estimated rule accuracy, then con-
sider pruning the second precondition as a further
pruning step. No pruning step is performed if it
reduces the estimated rule accuracy.
The 4.5 algorithm [15] evaluates the perfor-

mance based on the training set itself, using a
pessimistic estimate to make up for the fact that
the training data gives an estimate biased in favor
of the rules. More specifically, C4.5 calculates its
pessimistic estimate by calculating the standard
deviation in this estimated accuracy assuming a
binomial distribution. For a given confidence level,
the lower-bound estimate is then taken as the
measure of rule performance. For large data sets,
this pessimistic estimate is very close to the
observed accuracy.
The rules can be generally expressed as follows:

IF ðfeature 1 ¼ value 1Þ and ðfeature 2 ¼

value 2Þ

THEN Class concept ¼ class 1:

The major advantages of converting a decision tree
to rules are:

* Converting to rules allows distinguishing
among the different contexts in which a decision
node is used.

* Converting to Rules removes the distinction
between attribute tests that occur near the root
of the tree and those that occur near the leaves.

* Converting to rules improves the readability.
Rules are often easier for people to understand.

* Rules are easier to incorporate with a knowl-
edge base for further intelligent inferring and
reasoning.

3.3. Video classification procedure for query and

filtering

Learned decision trees are constructed with a
top-down approach, beginning with the question
‘‘Which attribute should be tested at the root of
the tree?’’ The central points of the video
classification algorithm are ‘‘Which attribute is
the most useful in classifying examples?’’ and

‘‘What is a good quantitative measure of the worth
of an attribute?’’ The goal of the algorithm is to
find a value which can measure how well a given
attribute separates training examples according to
their target classification. The properties described
above are very important in video classification
because, since there are so many possible features
to be used as keys to query video/image databases,
each feature is not always the best for all queries
under different applications. To solve the feature
indexing and classification problem efficiently, the
study of feature effectiveness for a certain classi-
fication application is essential.
The rule tree provides the optimal procedure to

find a value that can measure how well a given
attribute separates training examples according to
their target classification. A new video clip is then
classified as follows. Following the tree, the feature
to be utilized in Level 1 (the root level) test is first
extracted and the corresponding rule is applied.
The result of this first test dictates the next feature
selection, extraction and test to be followed, and
the same procedure will be repeated at each level
until the leaf node is reached. In this system, only
those features that are relevant are extracted and
they are matched with the rule threshold directly.
Further processing, such as data indexing, will be
made right after the classification is done.
This system of knowledge-based video classifi-

cation/inference processing is depicted in Fig. 5. It
consists of the following three major steps:

* Preprocessing for feature and feature-extraction

section: Based on the target video specified in a
user’s profile or query, the system will search for
nodes in the rule tree of the knowledge base by
traversing up and down tree structure. If a
concept key work is identified in the video
semantic hierarchy tree, relevant visual/audio
features and their thresholds will be selected. At
the same time, the feature-extraction operators
for the corresponding feature descriptor will be
decided.

* Knowledge-based content matching: Once each
feature-extraction operator obtains the feature
value, it is compared with rule. If it matches,
then the next feature extraction and matching
operators are selected. The procedure is
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continued until the leaf node in the binary tree
is reached.

* Video dissemination based on video classification:
The raw video data, including audio and texts,
are then filtered and disseminated to the end
users depending upon the concept matching
between the incoming real-time media streams
and the users’ requests or profiles.

4. On-line video content extraction and analysis

This section describes the flow chart of video
content analysis for on-line video indexing and
filtering based on video semantic conceptual
content (see Fig. 6). One key technical component
integrated into this system is the decomposition of
unconstructed and continuous video streams into
structured units with both perceptual and con-
ceptual meanings, which are composed of three
major components.
Figs. 1 and 7 depict schematic analyses of the

video structure and the relationship between video
low-level perceptual features and high-level con-
ceptual contents. At first, video data needs to be
parsed either based on visual criteria or logic

criteria from the top down (see Arrow 1 in Fig. 7).
Video is analyzed by segmentation into shots.
Then shots can be defined as a set of contiguous
frames which depict the same scene or signify a
single camera operation or contain a distinct event
or action like a significant present or persistence of
an object [17]. Scene changes have to be detected
when segmenting the video initially. In the mean-
time, the low-level perceptual features are being
extracted for two purposes: one is to serve as
content-based indexing to support query and
retrieval based on low-level feature similarities;
the other is to be used to infer the video’s high-
level semantic meanings based on the patterns
shown in each video concept category. The video
segmentation process is followed by shot analysis
in order to obtain the final structured video that
contains link relations between different shots as
well as content features for different shots. While
perceptual features need to be captured bottom up
(see Arrow 2 in Fig. 7), the video conceptual
meanings tend to be associated with larger blocks
of video sequences and should be analyzed top
down (see Arrow 3 in Fig. 7). Based on the
proposed layered video analysis model and the
observations given above, hierarchical multi-level

Fig. 5. The flow chart of knowledge-based video classification for query and filtering.
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video segmentation and content analysis schemes
have been successfully implemented and evaluated
in our research work.
We extract low-level video features and knowl-

edge using a bottom-up approach (Arrow 1 in
Fig. 7). In this approach, a video is parsed into
scenes and the key frames of the video scenes are
extracted to represent and summarize the whole
video. Then, the key frame images are analyzed by
using image processing methods to obtain features
such as colors, textures and shapes. Besides,
motion and audio features are also analyzed.
These low-level features can be used to index

video databases or to link key frames. The main
advantage of using low-level features in video
database indexing is that database organization
can be completely automated. At the same time, its
main disadvantages it that it is very difficult to find
the description of an image/video, which is close to
the semantic description of its contents. However,
conceptually similar video clips generally share
common perceptual patterns, and this provides the
foundation of video classification for conceptual
meanings. Here, we used a supervised learning
method to generate functions to bridge the two.
High-level video meanings are analyzed by

classifying video contents with a top-down ap-
proach (see Arrow 2 in Fig. 7) as described in
previous sections. Since a video may have a wide
range of contents, effective classification must be
done in a hierarchical way. The advantage of using
a semantic description of video is that it is possible
to give very detailed and semantically precise
descriptions of an image/video including terms
which are unlikely to be determined by using video
or image processing techniques alone. The dis-
advantage of this technique is that as yet there are
no efficient and fast methods for fast video/image
classification. To overcome this obstacle and to
organize the multimedia database more suitably
for human use, we propose a rule-based classifica-
tion system by supervised learning, and a hier-
archical video conceptual model specified in terms

Fig. 6. Flow chart of on-line video content analysis for multimedia information access.

Fig. 7. Video feature-extraction and content analysis structure.
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of the video concept tree which Fig. 8 shows an
example. Furthermore, novel machine learning
tools are developed to establish relations between
the low-level perceptual features and high-level
conceptual video contents. The rule-based knowl-
edge representation is unique but general enough
to be used on a variety of problems in different
application domains.

4.1. Real-time scene-change detection and key

frame extraction

Scene-change detection is very important, since
it is the first step and the most fundamental
element for video analysis. We have developed a
content proxy that implements a scheme for
summarizing real-time video in terms of a few
representative key frames from video sequences by
the scene-change detection process. The processing
scheme is shown in Fig. 9. The main component of
this scheme is based on real-time scene-change
detection on RTP intra-H.261 compressed video
streams that are commonly used in MBone
broadcasts. A video is split into meaningful scenes
such that each image frame corresponds to a
different shot detected out as a key one based on a
particular criterion. Fig. 9 shows a scene-change
detection based on histogram comparisons be-
tween adjacent frames of a video stream. There-

fore, a video clip can then be summarized via key
frames extracted from different scenes that make
up the whole stream. We take into account
changes in both luminance and chrominance
values in making the decision. If the change in
the luminance or chrominance histogram over
successive frames is larger than the threshold, we
categorize that frame as a scene-change frame. As
the result, a key frame is generated from the
stream and is sent out as a scene in a multicase
channel. To avoid unclear images caused by
editing effects such as dissolve, we choose the
frame that sits at the end of the first 10% of video
sequences right after a new scene has been
detected, as the key frame of the scene. The
scene-change tag and key frame can also be
inserted into a multicase channel so that other
relevant proxies that are attempting to do other
kinds of processing on the network can utilize this
extracted information.
We have developed a family of algorithms,

including one that utilizes full decompression to
get full frames and a partial decompression to get
information on the changed blocks so as to
estimate the extent to which the full frame has
changed since the last frame. In our earlier
investigations, joint algorithms based on video
codec characteristics were carried out to acquire
fast and accurate scene detection. Experiment
results shows that our algorithms are capable of
supporting real-time video processing and satisfy-
ing on-line annotation needs [18,19] given different
networks and data characteristics. We also adopt
the scene-change detection algorithm in the
compressed domain proposed by Yeo and Liu
[20] for MPEG-1 video. A good survey of
technologies for parsing digital video was given
by Ahangera and Little [21].

4.2. Video events segmentation with visual and

audio cues

Our segmentation process for sports events is
shown in Fig. 10. To segment sports into logical
units such as events, we employed a heuristic rule
that can detect sports event boundary by identify-
ing the sound of a whistle or the change associated
with a new scene. Since a whistle sound from a

Fig. 8. Example of hierarchical concept tree.
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referee usually indicates the start or end of an
event at games, we treat it as the logic boundary
break for a new event even if there is no scene
change. This audio feature analysis and whistle
sound detection will be discussed in the following
subsections.

4.3. Feature extraction and analysis for audio cues

Generally, audio features are divided into two
distinct categories, time and frequency domain. To
extract both domain features, we first sample
audio signals at 11 o25Hz with 16 bits/sample.

Then for each of the audio clips corresponding to a
distinct visual scene, we calculate audio features as
follows.

4.3.1. Time-domain features

In the time domain, we calculate statistical
parameters (such as mean, standard deviation,
and dynamic range, etc.) of the trajectories of
short-time audio volume and zero-crossing rate for
each audio clip, Non-silence ratios are also
calculated based on both short-time volume and
zero-crossing rate. The short-time audio volume

Fig. 9. On-line scene-change detection for H.261 video.

Fig. 10. Sports event segmentation flow chart.
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and the zero-crossing rate are defined in Eqs. (4.1)
and (4.2), respectively.

Vn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
m
½xðmÞwðn � mÞ	2;

r
ð4:1Þ

Zn ¼
1

2

X
jsgn½xðmÞ	 � sgn½xðm � 1Þ	jwðn � mÞ;

ð4:2Þ

where for both equations,

wðnÞ ¼ 1 when 0pnpN � 1 otherwisewðnÞ ¼ 0:

And for Eq. (4.2) only

sgn½xðmÞ	 ¼ 1 when xðmÞX0 while sgn½xðmÞ	

¼ �1 when xðmÞo0:

In both the above equations, xðmÞ is the discrete
time audio signal with index of m; n is the time
index of the short audio frame whose size is
specified by a rectangular window of wðnÞ with
window length N: Here, we choose the frame size
of N ¼ 150 samples (i.e. the audio frame is about
15ms long) and calculate both features once every
100 samples (about 10ms apart) in the audio clips.
The statistical parameters of the above two
features, such as mean and variance, are calculated
based on index n: Since the dynamic ranges of
these statistical features differ a lot, we normalize
them by their maximum volume and maximum
zero-crossing rate, respectively, for each audio
clop. To detect the silence ratio in each clip, we
compare the volume and the zero-crossing rate
with a certain threshold for each. It is claimed that
the audio frame is silent when both its volume and
zero-crossing rate with a certain threshold for
each. It is claimed that the audio frame is silent
when both its volume and zero-crossing rate are
smaller than each of its thresholds. Thus, the non-
zero ratios of Vn and Zn are the percentage of non-
silent audio frames over the whole audio clip.

4.3.2. Frequency-domain features

In the frequency domain, we first calculate the
spectrum of an audio clip by using a direct FFT
transform with a 512-point FFT size which
generates a 2-D plot of the short-time Fourier
transform (over each audio frame) with frequency

as the X-axis and the amplitude in db as the Y-axis
for all audio frames over the time domain. We
compute the following features for each frame and
their distributions over the entire audio clip:

* Short-time fundamental frequency (FuF): The
FuF is defined as follows. When the sound is
harmonic, the FuF value is equal to the
fundamental frequency estimated from the
audio signal; and when the sound is non-
harmonic, the Fuf is set to zero. We calculate
each frame’s FuF as described by Zhang and
Kuo [22].

* FuF distribution for the whole audio clip:
Statistical parameters, such as mean and
variance, are computed for the trajectory of
the FuF of each audio frame over the time
through the entire audio clip.

* Centroid frequency and bandwidth: Similar to
the work of Wold et al. [23], the frequency
centroid, CðiÞ; and bandwidth BðiÞ; of each
audio frame are defined as

CðiÞ ¼

R
N

0 ojSiðoÞj2 doR
N

0 jSiðoÞj2 do
; ð4:3Þ

bðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
N

0 ðo� CðiÞÞ2jSiðoÞj2 doR
N

0 jSiðoÞj2 do

s
; ð4:4Þ

where SiðoÞ represents the short-time Fourier
transform of the ith frame. Using Eqs. (4.3) and
(4.4), we compute the centroid and the bandwidth
for every audio frame over the entire audio clip,
thus generating 3-D plots of the centroids and the
bandwidths of audio clips along the time axis. The
mean and the standard deviation of both the
centroid and the bandwidth of an audio clip are
used as four frequency domain features:

* Energy ratio of some sensitive sub-bands. The
energy distribution in different frequency bands
varies quite significantly among different audio
signals. For example, the spectral peak tracks in
speech normally lie in the lower frequency
bands, ranging from 100–300Hz; while whis-
tles, which are often heard in sports videos,
have high frequencies and strong spectrum
energy with frequencies ranging from 3500–
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4500Hz. To differentiate special audio events,
like speech, whistles or noise, we calculate
energy ratios in the sub-bands [0–400Hz],
[400–1720Hz], [1800–3500Hz], [3500–4500Hz]
with respect to the overall energy for all frames
in the audio clip.

* Peak of spectrum on each audio frame and peak
distribution of the entire audio clip. The peak
track in the spectrum of an audio signal often
provides us with some characteristics property
of the sound. In the sports video games, one
typical sound is a referee’s whistle, which often
occurs right after fouls in basketball and soccer,
or at the beginning of a serve in volleyball, etc.
Whistles in sports videos often last at least 1 s,
and have stronger energy then speech and
music. We link whistle detection to both video
semantic boundary detection and semantic
meaning inference. Peaks of whistle spectrums
normally range from 3500 to 4500Hz. We
detect the most prominent frequency from
FFT transformed spectrums for every frame in
an audio clip so as to get a 2-D graph with the
time domain on the X-axis. It is claimed that a
sound of whistle is detected if there is a longer
than 1 s window of peak frequencies which fall
into the range between 3500 and 4500Hz, as
shown in Fig. 11.

4.4. Motion feature extraction and analysis

Motion information is a good cue to use in
video [24], as it is an integral part of a motion
sequence. In addition, motion is typically already
calculated in most video codecs, and motion
compensation information is available in the
compressed data stream. In MPEG-1 video, there
are three types of frames, I frame, B frame and P
frame (see Fig. 12). To find the motion patterns for
certain videos, we focus on the direction and
magnitude of the video sequences motion flows of
P frames only. The reason is that P frames give
only forward prediction, and the information is
useful for us in order to calculate the direction of
the ‘‘flow’’ of that video clip. Motion information
is specifically important to us as we are focusing on
sports videos where the ‘‘motion flow’’ is a
significant cue.
We did not track the object and extract

objection motion information directly as this
approach is typically computationally complex
and time consuming. Instead we tried to use some
statistical motion descriptors to see if they could
satisfy our requirement. We calculated two such
statistical features, dominant motion direction and
the motion magnitude of the motion vectors in
that clip.

Fig. 11. Whistle sound detection by using audio spectrum features.
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4.4.1.1. Direction of motion descriptor extra-

ction. For each of the motion vectors in the vector
image, we can cluster, and then classify each
motion vector’s direction according to Fig. 13. We
cluster the vectors first to Fig. 13(b); the criteria is
as follows: the vectors in Regions 1 and 8 are
termed as RIGHT; the vectors in the Regions 2
and 3 as UP; the vectors in Regions 4 and 5 as
LEFT; and the vectors in Regions 6 and 7 as
DOWN. We then calculate the amount of motion
along each direction by counting the total number
of vectors along that direction in each class for the
whole video sequence. This results in a 4-D motion
direction vector.

4.4.1.2. Motion magnitude calculation. Normally
the magnitude of the motion is also encoded in the
motion vector. To get the instances of magnitude
and speed of the motion descriptors along both X

and Y directions, we calculated the motion
magnitude of the whole frame according to

Eq. (4.5).

xaveði; jÞ ¼
Pn�1

i¼0 xi

n
; yaveði; jÞ ¼

Pm�1
j¼0 yi

m
; ð4:5Þ

where n and m are the total number of motion
vectors in the frame with respect to the X direction
and Y direction, respectively. We also calculated
average and biggest motion magnitude along the X

and Y directions for the whole video sequence.

4.4.2. Color features

In addition to motion, color and edge informa-
tion also play an important role in object
identification. In particular, we wanted to use
color and edge information to classify a given
video clip key frame into four categories such as
left court, right court, middle court and so on, as
shown in Figs. 14–16.
To achieve this goal, a key frame was first

extracted for every newly detected scene. To avoid

Fig. 12. Forward prediction and bi-directional prediction for MPEG-1 video.

Fig. 13. Motion directions extraction.
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unclear images caused by editing effects, such as
dissolve, we chose the frame which marks the end
of the first 10% of video sequences after a new
scene has been detected as the key frame by using
histogram scene-change detection algorithm. We
then extracted color information such as color
histogram, dominant color and regional color
information for each key frame. YV histograms
are automatically generated by the shot change

detection agents. The color histogram and the
dominant color orientation histogram [25] are
statistical visual cues. They do not contain the
spatial information. For example, some visually
different key frames might have exactly the same
color distribution, but different localized colors.
Thus, to get more detailed color information and
increase the differentiating power of the color
feature, we considered the dominant color and the
localized color information. We used the median-
cut algorithm [26] to reduce the color map to
about 256 colors. That is, colors in a image were
mapped to their closest match in the new color
map so that the colors of the original images were
mapped to their closest match in the new color
map so that the colors of the original images were
clustered. We used the clustering method to
automatically detect a number of dominant colors
and output them as a color tree for each frame.
Then, all pixels were back mapped into homo-
geneous regions, if the distance to a dominant
color was not bigger than a given threshold, to get
regions corresponding to the first five maximum
dominant colors. Once we got the region for each
dominant color. The centroid and the region
boundary were calculated as the attribute values
of the regional color.

Fig. 15. Features to cluster key frames into: (a) left court, (b) right court, (c) middle court, and (d) close-up.

Fig. 14. Various key frames of basket ball scenes (a) left court,

(b) right court, (c) middle court, and (d) close-ups.
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4.4.3. Edge detection and analysis

Changes or discontinuities in an image ampli-
tude attribute such as the luminance or the
tristimulus value are fundamental characteristics
of an image since they often provide an indication
of the physical extent of object within the image.
Edges characterize object boundaries and they can
be used in image segmentation, registration,
identification and representation of an object in
scenes. Also, edge patterns can be used to analyze
key characteristics and scene classification. For
example, in boxing sports, there are generally
fence-like edges which contain more lines of
horizontal edges than for soccer videos. Edge
patterns can also be treated as a simple texture in
each key frame image.
Here, we used a gradient edge operator to detect

edges and take edge detection masks to fulfil the
edge detection task. Edge detection masks in-
cluded the first-order derivative masks, such as the
prewitt and the robinson three-level masks. Edge
detection with an option of the second-order
Laplacian mask was also provided. In the first-
order derivative masks, all eight directional masks
were used to detect out edges along different
directions. Edge densities along different direc-

tions and different lengths around the dominant
color region were calculated as edge features.
Furthermore, we analyzed the edge information
along four directions by calculating the distribu-
tion of the visible edges and clustering them into
horizontal, vertical and other category edge types.
In the meantime, each key frame of the video clip
was clustered into the categories shown in Figs. 14
and 15. The flow chart for key frame clustering is
shown in Fig. 16. In the experiment, the left court
has regional blue color in the middle of the left half
region; the edge around the region is horizontal
and vertical. By contrast, while the middle field
does not have a blue dominant color, it has a
vertical edge in the middle.

4.5. Video key frame clustering

Once all low-level visual proxies have generated
visual feature values, clustering proxies can group
similar low-level features to identify key frames.
For the basketball video, we used the color and
edge information to classify a key frame into four
categories such as the left court, the right court,
the middle court and others, as shown in Fig. 14–
16. In the experiment, the left court has a regional
green color in the middle of the left half region and
the edge around the region was horizontal and
vertical. The middle field did not have the green
dominant color. Instead, it has a vertical edge in
the middle.

5. Evaluation of the proposed system

5.1. System architecture

According to our layered video analysis model,
we proposed and implement a system prototype
for a content-aware and user-preference-oriented
multimedia data distribution system over the
Internet based on the multicast protocol. Fig. 17
shows an infrastructure prototype to support on-
line media content analysis and present a model of
service that realizes the goal of providing effective
on-line content-based media dissemination by
filtering. More specifically, we develop a real-time
intelligent multimedia system prototype consisting

Fig. 16. Feature extraction for key frame clustering.
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of coordinated proxies for fast video content
analysis and dissemination over the Internet based
on users’ profiles. One of its applications is to
manage contents of real-time collaborative ses-
sions which generate various types of data streams,
primarily raw audio, video, and graphics data,
along with application-specific data types. As part
of its operation, this system aims to analyze input
streams based on users’ profiles, enrich the raw
data streams with semantic description tags, and
create knowledge rules to capture high-level
conceptual meanings. Then, it will use the created
knowledge-based system to support filtering and
ad hoc queries of these data streams. However, a
number of multimedia data streams in their raw
forms are not amenable to automated semantic
interpretation, and typically will have to be
enhanced with other features, which are either
manually created/attached or are extracted by
analyzing the raw data in off-line mode. Our
system provides a set of intelligent tools to solve
this challenging task.
As shown in Fig. 17, the system will provide on-

line feature extraction, multimedia stream content
understanding and organization, and data filtering
by matching with user profiles for real-time media
distribution and sharing over the Internet. This
system is expected to provide synchronized multi-
media data stream distribution and filtering. In
addition, the system will attempt to organize
multimedia resources over the Internet in a

scalable way, allowing users to find items related
to their interest based on the content of the data.
The system can also be extended to applications
such as interactive and personalize TV broadcast
services, personalized web services and training
services and collaborative applications. The whole
system is composed of the following three mod-
ules.

1. Content agents/proxies: To meet the goal of fast
on-line multimedia information access, every
stream must be transmitted in real time or near
real time, and quick content analysis and
annotations are required to be properly classi-
fied and disseminated by the architecture. Most
of the functionalities for content extraction,
content analysis and data filtering/redistribu-
tion as per user interests/query are fulfilled by
intelligent content agents residing at proper
Internet nodes. In this architecture, the agent or
proxy is an active software module that can be
placed throughout the network grid to perform
various operations needed for on-line multi-
media data processing. Typically, the order of
executed for a set of proxies depends on a
particular request. For example, after an
annotation proxy generates annotations of a
stream, a filtering proxy will perform matching
functions based on the learned knowledge and
users’ profiles, to properly re-route or cut off
the stream as necessary, and a transcoding

Fig. 17. The proposed on-line video stream analysis and dissemination infrastructure.
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proxy (and/or a summarization proxy) will
transform the raw data to adapt to low
bandwidth networks. Note that it is possible
to combine some of these operations into a
single proxy. For example, the same proxy can
perform both annotations and filtering.
Furthermore, annotations extracted by content
agents can also support indexing and content-
based retrieval.
In the on-line video content analysis infra-

structure as shown in Fig. 17, each semantic
multicase content proxy consists of modules to
do one or more specific data processing opera-
tions and each runs as a daemon. The video
content analysis proxies are centered to the
hierarchical decomposition of video data, and
extract visual/audio/motional characteristic
contents by combining and/or coordinating
video semantic class inference engines. High-
level video semantics are inferred from low-level
features for the filtering purpose. Extracted
features and semantic content can further serve
as annotation or indexing for off-line database
management. Some of the functions, performed
by different proxies, are described below.
* Annotation: The creation of a high-level

annotation tag for an information stream
is an important form of content enrich-
ment and is essential to effective informa-
tion dissemination in semantic multicast.
As agent may generate tags on session sub-
streams (e.g. timestamp, or concept) to
prepare for archival and filtering. In their
raw form, multimedia data types such as
video and audio are not amenable to
automated semantic interpretation and
typically have to be enhanced with high-
er-level features such as keywords, video
scene-change tags, and representative sam-
ple frames. For example, and audio classi-
fier can classify the audio signals into
categories, such as speech, noise or whistle.
And speech-understanding systems can
automatically transcribe the audio stream
in order to create a text of the spoken
words that can be utilized to allows the
creation of a time-aligned transcript of the
spoken words contained in the audio

stream. At the next level, natural language
processing techniques can be applied to
correct and summarize the transcript as
well as to identify key words that will
describe logical sub-units of the entire
session, as defined by the video segmenta-
tion operation.

* Filtering: An agent may subset a session
based on annotations to reduce the scope
to the interests of a particular group. Such
filtering is generally time constrained to
minimize the latency incurred in the
delivery of filtered information to users.
In our filtering algorithms, we come with a
knowledge base which can accommodate
the media low-level feature descriptor, plus
description schemes to facilitate the filter-
ing. Each feature descriptor has its own
specific definition and extraction operator.

* Archival: An agent may store ‘‘appropri-
ate’’ sub-sessions in an associated multi-
media archive. As the agent archives the
stream, it performs a more detained and
off-line analysis to provide additional
semantic structuring and indexing for
subsequent retrieval and feedback to the
semantic multicast graph.

* Temporal synchronization of content with

descriptions: To allow the temporal asso-
ciation of descriptions with content (AV
objects) that can vary over time and
effective media stream consumption, we
use timestamps of RTP media streams as a
synchronization connection between var-
ious media streams.

* Synthesis of multiple low-level features

associated with a content item: An agent
will allow flexible localization of descriptor
data with one or more content objects. A
variety of descriptors and description
schemes could be associated with each
content item. Depending on the user’s
profile, not all of these will be used in all
cases. In push applications (e.g. real-time
multicast/broadcast), effective feature
synthesis and data multiplexing are needed
to satisfy various content requests from
users.
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* Buffer management of further decisions and

actions: Local storage and buffering man-
agement is essential for real-time applica-
tions, as every step of content analysis or
decision making generates latency.

2. Video semantic inference engine: However, as we
discussed in previous sections, low-level con-
tents have limits in their ability to support more
advanced information access demands, such as
on-line filtering based on semantic contents. To
overcome this limitation, agents may archive
information streams and perform more detailed
analysis on the data to provide additional
semantic structures for subsequent filtering
and retrieval. The video semantic inference
engine consists of the rule-based knowledge
base for the video classification subsystem. A
service assigner manages and coordinates the
content agents for on-line perceptual and
semantic content analysis other than filtering
and query procedures.

3. Multimedia repository: A multimedia repository
will store the data streams and any annotations
and transformations made by the content
agents, such as feature extraction proxies. As
we discussed, video content is analyzed in both
perceptual and conceptual aspects; and multi-
media streams, especially video, can be orga-
nized and stored with indexings pointing to the

continuous streams with both perceptual and
conceptual features. A smart interface to the
multimedia repository provides the tools for
off-line data searching, retrieval and browsing.

5.2. On-line basketball video semantic classification

for filtering and indexing

5.2.1. Basketball video classification rules and

experimental results

The proposed knowledge- and rule-base video
classification system is shown in Figs. 3 and 5.
Knowledge for video classification is trained off-
line first. In our experiment, sample video clips of
the different categories were first identified and
appropriate low-level features were created. We
then utilized an entropy-based inductive tree-
learning algorithm [16] to establish the trained
knowledge base of the video data type. This
knowledge base is represented as a decision tree
with each node in the tree being an if–then rule as
applied to a similarity metric utilizing an ‘‘appro-
priate’’ low-level feature along with a good
‘‘derived threshold:. The rule scheme for basket-
ball is shown in Fig. 18, where the rule at each
level is depicted as /F ; yS: Note that the appro-
priate feature F and a good threshold y are
automatically created by the training process.
Note also that the semantic categories into which

Fig. 18. Rule tree for basketball video classification.
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the video sequences will be classified form the
leaves of the tree. This rule-based classifier begins
with the question ‘‘Which attribute should be
tested at the root of the tree?; and we aim for the
attributes which are the most useful for classifying
the examples. Next we may ask ‘‘What is a good
quantitative measure of the worth of an attri-
bute?’’ and the tree provides the optimal procedure
to find a value that can measure how well a given
attribute separates the training examples accord-
ing to their target classification. A new video clip is
then classified as follows: following the tree, the
feature which was utilized at Level 1 (the root
level) I first extracted and the corresponding rule is
applied, following which the path selected is
chosen. At the next level, the same step is carried
out whereby an appropriate feature is selected and
the corresponding rule applied. In this system,
only the relevant features are extracted and they
are matched with the rule threshold directly.
Further processing, such as data indexing, is made
right after the classification is done.
We applied our system (Figs. 3 and 18) to

basketball videos by using on-line classifying and
filtering basketball into nine major meaningful
events. They are:

1. Team offense at the left court;
2. Team offense at the right court;
3. fastbreak to the left;
4. fastbreak to the right;
5. dunk-like in the left court;
6. dunk-like in the right court;
7. scoring in the left court;
8. scoring in the right court; and
9. close-ups for audience or players.

We applied the proposed system to 157 basketball
video clips segmented from a basketball game for
training. After training, we arrived at an at most
three-level decision tree that contains 14 rules, as
shown in Fig. 15. Note that in the classification
stage, at most we have to do three calculations for
each class, as that is the level of the tree. No more
than six features are needed to classify all nine
basketball events. We used a set of basketball
video data from one game to train the learning
algorithm to get the nine classes’ critical patterns
and classifying rules that are of the differentiating

powers. From the rule tree, we see that using the
descriptor of key frame type alone, the program
can judge weather the video sequence is a close-up
or not. To discern right to left fastbreak, first, we
need to judge key-frame type, and then judge the
dominant motion direction and following that
judge the average magnitude of the motion vector
component along the X-axis. In other words, only
key frame type and motion direction and average
magnitude for the X-axis are relevant for right and
left fastbreak classes and thus these features are
suitable for fastbreak event threshold for each
specific basketball event, which is especially useful
for on-line user profile filtering.
By applying the learned rules to classifying a

new set of 110 basketball game video clips, we
reached a classification accuracy of from 70% to
85.7% for the above nine identified basketball
events for the nine basketball classes as shown in
Table 1. Here accuracy is defined as

Accuracy ¼
#corrected

#corrected þ #false � alarmed
:

5.2.2. Content agent coordination for filtering and

indexing

The proposed rule-based video classification
system is good for both on-line and off-line video
classifications, which are applicable to video
indexing systems, video scene understanding and
mining, on-line video filtering and video intelligent
summarization, and fast video browsing and so

Table 1

Results of basketball video classification by rules-based

classification system

Class Training

sample

Testing

sample

Accuracy

(%)

Left offense 20 14 75.8

Right offense 22 14 85.7

Left fastbreak 20 14 78.5

Right fastbreak 21 15 80.0

Left scores 15 12 75.0

Right scores 17 10 70.0

Left dunk 12 10 70.0

Right dunk 10 9 77.8

Close-up scenes 20 12 75.0

Total 157 110 78.2
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on. General video classification problems can
easily follow the system prototype illustrated in
Figs. 3 and 5. Once we have learned the knowledge
to classify each basket ball event, the rules are used
to build on-line feature extraction in response to
both archiving purposes and user-specified filtering
purposes.
It is straightforward to apply such a rule-based

video classification system to on-line user-specified
video filtering. Fig. 19 illustrates the data flow for
such applications. For any user-specified video
category, the knowledge base contains the corre-
sponding characteristic features and rules to
identify it. Only those relevant features are
extracted on-line and they are matched with rule
threshold. If they satisfy the rules, then the real-
time stream matches with the user’s expectation;
otherwise, it does not, and a further decision based
on this intelligent video classification will be made
based on the application. For example, to classify
left-scoring events, we need to first segment the
video into small units, and then extract key frames

and low-level features for clustering. It takes
multiple cooperating agents to realize final results
for video semantic classification, indexing and
dissemination, as in shown in Fig. 20.
In the current system design, the negotiation of

agent service is realized by requiring each proxy to
implement an ‘‘applicability’’ function that cap-
tures the behavior and capability of the agent and
exposes it to the semantic multicase framework.
However, an agent often can process the input
data streams but not necessarily transform them
into a form that satisfies the target group request.
In this case, while the agent cannot by itself
completely service the data-processing needs, it
may still ‘‘partially’’ transform the input data
streams into others that can be further processed
by other agents to satisfy the target group request.
As a result, the applicability function is defined to
return: (i) an intermediate group request that the
agent can process the input data streams into, (ii)
the specification of the intermediate data streams,
and similar to the last case, and (iii) the config-
uration parameters for the agent to perform the
operation. The intermediate group request and
data streams can then be treated as a new source
request and data stream, and along with the target
group request, get passed to other agents to
determine if they can complete the mapping from
the link between the source and target group
requests to a series of agent instances.
The characteristic features include low-level

features of video, such as key frames, color
histograms, dominant colors and regional colors.
For any incoming on-line key frame, video
feature-extraction agents extract low-level features
fast, using the same feature descriptor and algo-
rithm as those specified by the knowledge base. A
key frame classification proxy checks if the new

Fig. 19. Flow chart for on-line video filtering based on user’s

profile.

Fig. 20. Data flows in content analysis specified by rules: agents cooperating to realize video semantic classification for indexing and

dessemination.
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key frame’s features are matched with those in the
knowledge base and a binary decision (yes/no) for
each key frame semantic category will be output.
This is of great use in the sense that once we can
make this distinction, we can (in the case of a
basketball-interested user, say) either pass the
video to the user if the user requires basketball
video, or we may use the key frame of the basket
ball video as the basket ball event boundary for
finer semantics extraction from the video classifi-
cation procedure, if his or her request is more
specific.
Fig. 20 shows how the data streams carrying

‘‘all basketball video’’ may be processed by a series
of semantic multicase agents to produce data
streams carrying ‘‘Left-scoring-related basketball
events’’ that satisfy the request represented by the
corresponding semantic multicase graph node. In
particular, a video key frame extraction agent may
identify natural break points in the newscast video
and a video segmentation agent may use that

information to separate the newscast into seg-
ments representing independent new stories.
Furthermore, after a video newscast has been
segmented, the closed caption text associated with
each news story segment may be analyzed and
processed by a concept-filtering agent to identify
news stories related to left-scoring basketball
events for redistribution.
As specified by the on-line video annotation and

classification procedure as shown in Fig. 5, appro-
priate agents choose appropriate algorithms to get
target feature descriptors (see Figs. 17 and 20), and
output the binary classification result (yes/no) to
user’s specification based on rules specified for
each basketball event. After on-line video segmen-
tation and automatic low-level feature annotation
and classification, basketball videos can be parsed
and annotated as shown in Fig. 21. The annotated
metadata can be further stored in a relational
database as shown in Table 2 and serve as the
indexes for the continuous basketball video games.

Table 2

Video annotation indexing table based on both perceptual and semantic content

VideolD SeqlD Start time End time Events Court Type MotionDV FeatureN

V1 S1 T1 T2 Left scoring Left (m1;m2) (f1; f2;y; fn)

— — — — — — — —

Fig. 21. Basketball indexed with event concepts.
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These annotated indexes are based on both the
low-level perceptual features and the high-level
semantic contents as specified by the basketball
event categories.
The video archives of on-line live video streams

can be queried based on both semantic content
and low-level feature similarity matchings. For
example, to search for basket ball left-scoring
event, we can have query execution plans like
Eqs. (5.1) and (5.2)

Select V ;S

FromVideoID V ;SeqID S; Events E

Where Events ¼ left scoring ð5:1Þ

Or from Fig. 18, we can

Select V ;S

FromVideoID V ;SeqID S; CourtType C;

MotionDV M ;FeatureN Fn

Where Court ¼ Left AND M1 > ym AND Fnpyn

ð5:2Þ

In Eq. (5.2), ym and yn are the low-level feature
value thresholds for each test feature used in the
knowledge base. By applying queries using
Eqs. (5.1) and (5.2), fast on-line and off-line video
information access are enabled.

6. Conclusion

In this paper, we have introduced a novel system
approach to on-line knowledge- and rule-based
video classification — one that supports automatic
indexing filtering based on the semantic concept
hierarchy. Our research addresses not only the
challenges arising from general video management
issues (either on-line or off-line) such as video
semantic content analysis, but also the stringent
requirements imposed by on-line video processing.
The difference in our work and the existing
accomplishments in the literature is that while
most of them use static models for video classifica-
tion to provide semantic indexing of off-line
multimedia databases, we use supervised learning
techniques to form an on-line classification system
and apply it specifically to basketball video event
indexing as an experimental example. a complete

prototype system has been developed to facilitate
intelligent access to the rich multimedia data over
the Internet, and to evaluate the performance of
clustering and video/audio content analysis and
features-extraction techniques using sports data.
At the core of our system, we have developed a

general video analysis model in conjunction with
various techniques for fast and efficient video
content analysis, such as scene-change detection,
key frame selection, low-level feature extraction
and clustering, and video semantic classification. A
supervised rule-based video classification system is
proposed using video automatic segmentation,
annotation and summarization techniques for
seamless information browsing and updating.
The rules were calculated using an inductive
decision-tree-learning approach applied to multi-
ple low-level image features. The proposed rule-
based video classification system is good both on-
line and off-line, and is useful for numerous video
applications. In particular, the classification sys-
tem was applied to basketball clips with good
accuracy, which shows that this system is effective
and promising. Because the learning algorithm
and low-level features are general, the proposed
system is also suitable for other video domains if
the appropriate new rules for the specific video are
leaned in advance. ultimately, for videos from
different domains, a more complete set of video
features may be extracted for training processing.
One of the major architecture advantages of our
on-line multimedia content analysis system is the
use of intelligent proxies to encapsulate, coordi-
nate, and combine distinct operations in optimum
processing orders for semantic analysis of video
and audio contents. Moreover, the system proto-
type can be made modular and scalable. In the
future, we will extend our work to wider video
domains, such as for other sports like football or
soccer.
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