Disjunction of Non-Binary and Numeric
Constraint Satisfaction Problems

Miguel A. Salido, Federico Barber

Departamento de Sistemas Informaticos y Computacidn,
Universidad Politécnica de Valencia
Camino de Vera s/n, 46071
Valencia, Spain
{msalido, fbarber}@dsic.upv.es

Abstract. Nowadays, many researchers are working on Constraint Sat-
isfaction Problems (CSPs). Many CSPs can be modelled as non-binary
CSPs and, theoretically, they can be transformed into an equivalent bi-
nary CSP, using some of the current techniques. However, this transfor-
mation may be an inadequate or inefficient way to manage certain types
of non-binary constraints. In this paper, we propose an algorithm called
DHSA that solves numeric non-binary CSPs with disjunctions in a natu-
ral way, as non-binary disjunctive CSP solver. This proposal extends the
class of Horn constraint, originally studied by Koubarakis, since DHSA
manages disjunctions of linear inequalities and disequations with any
number of inequalities per disjunction. This proposal works on a polyhe-
dron whose vertices are also polyhedra that represent the non-disjunctive
problems. This non-binary disjunctive CSP solver translates, in a prepro-
cess step, the disjunctive problem into a non-disjunctive one by means of
a statistical preprocess step. Furthermore, a Constraint Ordering Algo-
rithm (COA) classifies the resultant constraints from the most restricted
to the least restricted one. This preprocess step can be applied to other
disjunctive CSP solvers in order to find a solution earlier.

Keywords: CSPs, non-binary constraints, Disjunctive constraints.

1 Introduction

Over the last few years, many researchers have been working on Constraint Sat-
isfaction Problems (CSPs), as many real problems can be efficiently modelled as
constraint satisfaction problems (CSPs) and solved using constraint program-
ming techniques. Some examples are scheduling, planning, machine vision, tem-
poral reasoning, medical expert systems and natural language understanding.
Most of these problems can be naturally modelled using non-binary (or n-ary)
constraints, that involve any number of variables. In the constraint satisfaction
literature, the need to address issues regarding non-binary constraints has only
recently started to be widely recognized. Research has traditionally focused on

binary constraints (i.e., constraints between pairs of variables) [17]. The basic
reasons are the simplicity of dealing with binary constraints compared to non-
binary ones and the fact that any non-binary constraint satisfaction problem can
be transformed into an equivalent binary one [9]. However, this transformation
has several drawbacks:

— Transforming a non-binary into a binary CSP produces a significant increase
in the problems’ size, so the transformation may not be practical [3] [6].
The translation process generates new variables, which may have very large
domains, causing extra memory requirements for algorithms. In some cases,
solving the binary formulation can be very inefficient [1].

— A forced binarization generates unnatural formulations, which cause extra
difficulties for constraint solver interfaces with human users [4].

When trying to solve a problem with non-binary constraints, we are faced
with a crucial modelling decision. Do we convert the problem into a binary one
or do we leave it in its non-binary representation? If we convert the problem
into a binary one, then we can use some of the widely studied algorithms and
heuristics for binary constraints to solve the problem. If we leave the problem
in its non-binary representation, we have to use algorithms and heuristics for
non-binary constraints. Such algorithms and heuristics have not been studied
extensively. Our objective is to study the disjunctive non-binary CSP in its
natural representation.

Disjunctions of linear constraints over real values are important in many
applications [5]. The problem of deciding consistency for an arbitrary set of
disjunctions of linear constraints is NP-complete [16].

In [7], Lassez and McAloon studied the class of generalized linear constraints,
this includes linear inequalities (e.g., 1 +2x5—x4 < 4) and disjunctions of linear
disequations (e.g., 3x1 — 4das — 223 # 4V 21 + 329 — x4 # 6). They proved that
the problem consistency for this class can be solved in polynomial time.

Koubarakis in [5] extends the class of generalizad linear constraints to include
disjunctions with an unlimited number of disequations and at most one inequal-
ity per disjunction. (e.g., 3x; —4xo—2x3 < 4Vw1+3zo—x4 # 6VI1+23+24 # 9).
This class is called Horn constraints. He proved that deciding consistency for this
class can be done in polynomial time.

In this paper, we propose an algorithm for solving problems with numeric
non-binary disjunctive constraints. This algorithm called ”Disjunctive Hyper-
polyhedron Search Algorithm” (DHSA) manages non-binary disjunctive CSPs
in a natural way as a non-binary CSP solver. This proposal extends the class
of Horn constraint originally studied by Koubarakis [5] since DHSA manages
disjunctions of linear and non-linear disequation and linear inequalities with any
number of inequalities per disjunction. The objective of our non-binary CSP is
more ambitious since besides of deciding consistency, DHSA obtains the minimal
domains of the variables and the solutions that the user requires. This algorithm
carries out the search through a polyhedron that maintains the problem inequal-
ities in its faces and updates itself when new constraint is studied. This proposal

overcomes some of the weaknesses of other proposals like disjunctive Forward-
checking and disjunctive Real Full Look-ahead keeping its complexity unchanged
when the domain size and the number of disequations increase.

2 Preliminaries

Briefly, a numeric constraint satisfaction problem P = (X, D, () is defined by:

— a set of variables X = {z1, 22, ..., zp};

— a set of domains D = {D, ..., D,,} where each variable z; € X has a set D;
of possible values (its domain);

— aset of constraints C' = {c1, ¢a, ..., ¢p } restricting the values that the variables
can simultaneously take.

A solution to a CSP is an assignment of a value from its domain to every
variable such that all constraints are satisfied. The objective in a CSP may be
determining;:

— whether a solution exists, that is, if the CSP is consistent;

— all solutions or only one solution, with no preference as to which one;

— the minimal variable domain;

— an optimal, or a good solution by means of an objective function defined in
terms of certain variables.

2.1 Notation and definitions

Definition 1[8]
Let P=(X,D,C) be a numeric CSP, P is globally consistent if and only if
Vz; € X, Va € D;, x; = a belongs to a solution to P.

We will summarize the notation that will be used in this paper.

Generic: The number of variables in a CSP will be denoted by n. The con-
straints will be denoted by ¢ with an index, for example, c1,¢;, cx, Also, all
constraints are global constraints, that is, all constraints have the maximum
arity n.

Variables: To represent variables, we will use z with an index, for example,
T1,Tiy Tn.

Domains: The domain of the variable z; will be denoted by D; = [l;, u;], so
that the domain length of the variable z; is d; = u; — [;. We assume continuous
domains for variables.

Constraints: Let X = xq,...,x, be a set of real-valued variables. Let a be
a polynomial of degree 1 (i.e. a = > ." p;z;) over X, and let b,p; be real
numbers. A linear relation over X is an expression of the form arb where r €
{<,<,=,#,>,>}. Specifically, a linear disequation over X is an expression of
the form « # b and a linear equality over X is an expression of the form « = b.

In accordance with previous definitions, the constraints that we are going to
manage are linear relations of the form:

Inequalities : Zpﬂ?i <b (1)
i=1
Disequations : Zpixi #b (2)
i=1
Non — linear Disequations : F(xz) #b (3)

where x; are variables ranging over continuous intervals and F'(z) is a non-linear
function. Using the above constraints, equalities can be written as conjunctions
of two inequalities. Similarly, strict inequalities can be written as the conjunction
of an inequality and a disequation. Thus, we can manage all possible relations
in {<a <= 7é7 2, >}'

2.2 Constraints

Traditionally constraints are considered additive, that is, the order of imposition
of constraints does not matter, all that matter is that the conjunction of con-
straints be satisfied [2]. Our framework will manage internally the constraints
in an appropriate order with the objective of reducing the temporal and spatial
complexity.

The arity of a constraint is the number of variables that the constraint in-
volves. A unary constraint is a constraint involving one variable. A binary con-
straint is a constraint involving a pair of variables. A non-binary constraint is a
constraint involving an arbitrary number of variables. When referring to a non-
binary CSP, we mean a CSP where some or all of the constraints have an arity
of more than 2. DHSA is a CSP solver that manages non-binary constraints.

Example. The following are examples of atomic non-binary constraints that
DHSA can manage:

221 — 5ro + 3w3 — 9wy < 4, 32T +6Yx5 — 203 # 9, 11 — 220 —daz + 74 < 4

The first and second constraints are managed directly by DHSA. The last
constraint is transformed into two constraints:

1 — 200 —4rz x4 <4 =121 — 200 —4da3+x4s <4ANx1—200—4T3+74 £ 4

In this paper, we assume a non-binary CSP where variables are bounded in
continuous domains (for example: x; € [l;,u;]) and a collection of non-binary
constraints of the form (1)(2) and (3).

3 Specification of DHSA

DHSA is considered to be a CSP solver that manages non-binary disjunctive
constraints. In Figure 1, a general scheme of DHSA is presented. Initially, DHSA
studies the significant parameters such as number of variables and number of
disjunctive inequalities. Depending on these parameters DHSA runs a preprocess
step in which two algorithms are carried out: a heuristic process to translate the
disjunctive problem into a non-disjunctive one, and the Constraint Ordering
Algorithm (COA) to classify the most restricted constraints first, reducing the
temporal complexity considerably. Then, using the resultant ordered and non-
disjunctive problem, DHSA carries out the consistency study with the resultant
problem as a classic CSP solver.

3.1 Preprocess Step

Solving disjunctive constraint problems requires considering an exponential num-
ber of non-disjunctive problems. For example, if the problem has k disjunctive
constraints composed by [atomic constraints, the number of non-disjunctive
problems is I*.

DHSA uses a preprocessing heuristic technique to obtain the non-disjunctive
problem that is likely to satisfy the problem. This technique can be compared
with the sampling from a finite population, in which there is a population, and a
sample is chosen to represent this population. In this context, the population is
the convex hull of all solutions generated by means of the Cartesian Product of
variable domain bounds. This convex hull may be represented by a polyhedron
with n dimensions and 2™ vertices. However, the sample that the heuristic tech-
nique chooses is composed by n? vertices of the complete polyhedron'. These
vertices are well distributed in order to represent the entire population.

With the selected sample of vertices (n?), the heuristic technique studies
how many vertices v;; : v;; < n? satisfy each atomic constraint ¢ij - Thus, each
atomic constraint ¢;; is labelled with p;;: ¢;;(psij), where p;; = v;; /n2 represents
the probability that c;; satisfies the whole problem. Thus, the heuristic technique
selects, the atomic constraint with the highest p;; for each disjunctive constraint.

As we remarked in the preliminaries, constraints are considered additive, that
is, the order in which the constraints are studied does not make any difference
[2]. However, DHSA carries out an internal ordering of the constraints. If some
constraints are more restricted than others, these constraints are studied first
in order to reduce the resultant polyhedron. Thus, the remaining constraints
are more likely to be redundant. However, if the remaining ones are not redun-
dant, they generate less new vertices, so the temporal complexity is significantly
reduced.

The constraint ordering algorithm (COA) classifies the atomic constraints
in ascending order of the labels p;;. Therefore, DHSA translates the disjunctive

! The heuristic selects n? items if n > 3, and 2" vertices, otherwise

NUMBER OF |1 PREPROCESS [DISJUNCTIVE
VARIABLES STEP CONSTRAINTS
cimenvenV.ven | BEURIO0E | S~ | aLcormam | !
C2=C21VC2V...VCyy Cr=Cy; Cord2
Ck=Cr1VCia V... VCt Cx=Crkp Cordk
DISJUNCTIVE NON-DISJUNCTIVE NON(;)I}];JEUR;:CDTIVE
PROBLEM -
PROBLEM o PROBLEM

11 11l 11

(Step 1)
Varlable Domains Polyhedron
Xx; €] u.] Creation
UI’MI]>< R [lmun]
(=) constraint (Step 2) (Step 3)
Polyhedron
Z pix; <b Redu‘;ldant Updating
—— L (Step4)
Problem Consistency

Backtracking Not consistent With (#) constraint

Current Problem

-Consstent Problem
-One or many Solution
-Minimal Domains
-Multiobjective Function -

Fig. 1. General Scheme of DHSA

non-binary CSP into a non-disjunctive and ordered CSP in order to be studied
by the CSP solver.

In Figure 2, we can observe an example in which the atomic selected con-
straints in a disjunctive CSP are: (c12, ¢o1, ¢32). Therefore, DHSA will run the
corresponding non-disjunctive problem. Let suppose that the atomic constraint
labels are (c12(3), c21(2), ¢32(1)). If DHSA carries out the consistency study in the
order of imposition of constraints (option 1) (c¢12, a1, c32), DHSA will generate

Fig. 2. Example of the Constraint Ordering Algorithm

6 new vertices. However, if DHSA runs the ordering algorithm, which classifies
the constraints in ascending order (option 2) (cs2, o1, c12), DHSA will generate
only one new vertex with the corresponding time reduction.

If the selected and ordered non-disjunctive problem is not consistent, the
algorithm backtracks and the the heuristic technique selects the following set of
atomic constraints that is more likely to satisfy the problem.

3.2 CSP solver

The CSP solver used by DHSA is a complete CSP solver [11] [13]. It generates
an initial polyhedron (step 1) with 2™ vertices created by means of the Cartesian
product of the variable domain bounds (D; x Dy X ... X D,;). DHSA classifies the
selected constraints (by the preprocess step) in two different sets: the inequality
set and the disequation set. For each (<) constraint, the CSP solver carries out
the consistency check (step 2). If the (<) constraint is not consistent, the CSP
solver returns mot consistent current problem and it backtracks to the prepro-
cess step in order to select a new non-disjunctive problem. If the constraint is
consistent, the CSP solver determines whether the (<) constraint is not redun-
dant, and updates the polyhedron (step 3), i.e. the CSP solver eliminates the

inconsistent vertices and creates new ones. Finally, when all inequalities have
been studied, DHSA studies the consistency with the disequations. Therefore,
the solutions to CSP are all vertices, and all convex combinations between any
two vertices that satisfy all disequations.

DHSA can obtain some important results such as: the problem consistency;
one or many problem solutions; the minimal domain of the variables; the vertex
of the polyhedron that minimises or maximises some objective or multi-objective
function.

Theorem 1. The CSP solver is sound and complete.

Proof: The CSP solver is sound and complete because it always maintains the
solution set in a convex polyhedron whose faces are the problem (<) constraints.
If the resultant polyhedron is not empty, each solution found by the CSP solver
is correct, and all solutions can be found into the convex hull of the resultant
polyhedron.

Proposition 1. By theorem 1, DHSA obtains global consistency in each
non-disjunctive problem.

4 Analysis of the DHSA

DHSA spatial cost is determined by the number of vertices generated. Initially,
in the preprocess step, DHSA studies the consistency of the n? vertices with
the atomics constraints, where n is the number of problem variables. Thus, the
spatial cost is O(n?). Then, DHSA generates 2" vertices. In the worst case,
for each (<) constraint (step 2), DHSA might eliminate only one vertex and
generate n + c< new vertices, where c< is the number of previously studied (<)
constraints. Thus, the number of vertices is 2"+ k(n+c<), where k is the number
of disjunctive constraints. Therefore, the spatial cost is O(2").

The temporal cost can be divided into five steps: Preprocess, initialization,
consistency check with (<) constraints, actualization and consistency check with
(#) constraints. The preprocess cost is O(ktn?) where ¢ is the maximum num-
ber of atomic constraints in a disjunctive constraint. The initialization cost
(step 1) is O(2™), because the algorithm generates 2" vertices. For each (<)
constraint (step 2), the consistency check cost depends linearly on the num-
ber of polyhedron vertices, but not on the variable domains. Thus, the tempo-
ral cost is O(2™). Finally, the actualization cost (step 3) and the consistency
check with () constraints depend, on the number of vertices, that is O(2").
In the worst case, if all non-disjunctive problems must be checked, these three
steps must be carried out [*. Thus, the temporal cost in the worst case is:
O(ktn?) + O(2™) + I*(k - (O(2") + O(2™)) + O(2")) = O(I*2"). Note, that
in practice this complexity is much smaller because the heuristic technique ob-
tains statistically the more appropriate non-disjunctive problem at the prepro-
cess step, so it is not necessary to try all possibilities.

5 Evaluation of the Polyhedron Search Algorithm

In this section, we compare the performance of DHSA with some of the more
current CSP solvers. We have selected Forward-checking [4] (FC) and Real Full
Look-ahead [10] (RFLA)? because they are the most appropriate techniques
that can manage this CSP typology. We have used a PIII-800 with 256 Mb. of
memory and Windows N'T operating system.

Generally, the benchmark sets are used to test algorithms for particular prob-
lems, but in recent years, there has been a growing interest in the study of the
relation between the parameters that define an instance of CSP in general (i.e.,
the number of variables, domain size, density of constraints, etc..).

In this empirical evaluation, each set of random constraint satisfaction prob-
lems was defined by the 5-tuple < n,c<,cx,d,t >, where n was the number
of variables, c< the number of disjunctive (<) constraints, cx the number of
(#) constraints, d the length of variable domains and ’t’ the number of atomic
constraints for each disjunctive (<) constraint. The problems were randomly gen-
erated by modifying these parameters. We considered all constraints as global
constraints, that is, all constraints had maximum arity. Thus, each of the graphs
shown sets four of the parameters and varies the other one in order to evaluate
the algorithm performance when this parameter increases. We tested 100 test
cases for each type of problem and each value of the variable parameter, and we
present the mean CPU time for each of the techniques. Four graphs are shown
which correspond to the four significant parameters (Figures 3, 4, 5, 6). The
domain length parameter is not significant for DHSA, so we do not include this
graph. Each graph summarizes the Mean CPU time for each technique. Here, for
unsolved problems in 200 seconds, we assigned a 200-second run-time. Therefore,
these graphs contain a horizontal asymptote in time = 200.

In Figure 3, the number of variables was increased from 3 to 11, the number
of (<) and (#) constraints, the variable domain length and the number of atomic
constraints were set < n, 6,20, 2000,6 > respectively. The graph shows a global
view of the behaviour of the algorithms. The mean CPU time in FC and RFLA
increased faster than DHSA. When the unsolved problems were set to time=200
and the others maintained their real-time cost, we observed that FC was worse
than RFLA. However, DHSA always had a better behaviour and was able to
solve all the problems satisfactorily.

In Figure 4 , the number of variables, the number of (#) constraints, the
variable domain length and the number of atomic constraints were set < 11, ¢, 40,
2000, 6 >, and the number of random (<) constraints ranged from 2 to 10. The
graph shows that the mean CPU times in FC and RFLA increased exponentially
and were near the horizontal asymptote for problems with 10 (<) constraint. The
number of unsolved problems increased in FC and RFLA much more than in
DHSA.

2 Forward-checking and Real Full Look-ahead were obtained from CON’FLEX,
which is a C+4 solver that can handle constraint problems with continu-
ous variables with disjunctive constraints. It can be found in: http://www-
bia.inra.fr/T /conflex/Logiciels /adressesConflex.html.

Fig. 3. Mean CPU Time when the number of variables increased

Fig. 4. Mean CPU Time when the number of inequalities increased

In Figure 5, the number of variables, the number of (<) constraints, the
variable domain length and the number of atomic constraints were set < 11,6, ¢,
2000, 6 >, and the number of random (#) constraints ranged from 10 to 1000.
The graph shows that the behavior of FC and RFLA got worse when the number
of (#) constraints increased. DHSA did not increase its temporal complexity due
to the fact that it carried out the consistency check of the (#£) constraints in low
complexity. The number of unsolved problems was very high for both FC and
RFLA, while DHSA had a good behavior. Note that DHSA was proved with an
amount of 105 disequations and it solved them in few seconds (< 3 sc.)

In Figure 6, the number of variables, the number of (<) and (#) constraints
and the variable domain length were set < 10,6,10,200,¢ >, and the atomic
constraints were increased from 4 to 14. To study the behaviour of the algorithms
when the number of atomic constraints increased, we chose ¢t — 1 non-consistent
atomic constraints and only one consistent atomic constraint. That is, if the
number of atomic constraints was 8, the random constraint generator generated
7 non-consistent atomic constraints and 1 consistent constraint.

Fig.5. Mean CPU Time when the number of disequations increased

Fig. 6. Mean CPU Time when the number of atomic constraints increased

Thus, we could observe the behaviour of the algorithm when the number of
atomic constraints increased. FC and RFLA had worse behaviour than DHSA.
DHSA makes a preprocess step in which it selects the most appropriate non-
disjunctive problem. Also, this preprocess step is made in polynomial time, so
the temporal cost is very low.

We present a comparison between DHSA without the Constraints Ordering
Algorithm (N-COA) and DHSA with the Constraints Ordering Algorithm (Y-
COA) in Table 1. This comparison was carried out in two different contexts:
in non-consistent problems and in consistent problems. It can be observed that
the number of vertices generated was higher in DHSA N-COA than DHSA Y-
COA in both cases due to the fact that the Constraints Ordering Algorithm first
selects the more appropriate non-disjunctive problems.

Following, we present a comparison between RFLA and FC with the proposed
preprocess step (Y-RFLA and Y-FC) and without it (N-RFLA and N-FC) in
Table 2. The random generated constraints had the following properties: the
number of variables, the number of (#) constraints, the variable domain length

Non-Consist Prob. Consist Prob.
Const N-COA Y-COA N-COA Y-COA
2 560 0 1050 588
5 1500 420 2920 870
10 2800 872 4215 1625
15 3200 1054 6538 2135
20 3520 1314 7346 2627

Table 1. Number of vertices generated in problems < 9, ¢, 40, 100, 10 >

and the number of atomic constraints were set < 5, ¢, 5, 10,2 > and the number of
(<) constraints were increased from 5 to 30. We can observed that the preprocess
step reduced the temporal cost in both algorithms. This temporal cost would be
reduce if the number of atomic constraints was higher than 2.

Number of disjunctive constraints
Algor. 5 10 15 20 30
N-FC 0.3 9.33 22.7 45.4 75.6
Y-FC 0.15 4.5 18.7 32.1 59.7

N-RFLA 0.25 11.3 25.5 41.2 62.5

Y-RFLA 0.2 8.7 14.5 20.1 43.2

Table 2. Mean CPU time in solved problems < 5,¢,5,10,2 >

6 Conclusion

In this paper, we have proposed an algorithm called DHSA that solves non-binary
disjunctive CSP solver. This proposal extends the class of Horn constraint orig-
inally studied by Koubarakis [5] since DHSA manages disjunctions of linear and
non-linear disequation and linear inequalities with any number of inequalities
per disjunction. The objective of our non-binary CSP solver may be: to obtain
the problem comnsistency; to get the minimal domains of the variables and to
obtain the solutions that the user requires.

This proposal carries out a consistency study using an algorithm composed of
two preprocess algorithms. The first algorithm translates the disjunctive problem
into a non-disjunctive one and the other algorithm orders the atomic constraints
in an appropriate form. Then, a complete algorithm is carried out over the re-
sulting problem in order to study the consistency of the non-disjunctive problem.
DHSA overcomes some weaknesses of other algorithms because its behavior is
independent from the domain size and the number of atomic constraints, while
other approaches depend exponentially on the number of variables, the number
of constraints and the domain size.

Currently, we are working on a framework that is dynamically configured
depending on the parameters. This framework is composed by DHSA as a com-
plete CSP solver helped by heuristics such as OFHH (a linear heuristic) [14] and
POLYSA (a cubic heuristic) [12]. Furthermore, we are applying these techniques
to discrete CSPs [15].

7 Acknowledgments

This paper has been partially supported by grant UPV-20010980 from the Tech-
nical University of Valencia and grant DPI12001-2094-C03-03 from the Spanish
government.

References

1. F. Bacchus and P. van Beek, ‘On the conversion between non-binary and binary
constraint satisfaction problems’, In proceeding of AAAI-98, 311-318, (1998).

2. R. Bartk, ‘Constraint programming: In pursuit of the holy grail’, in Proceedings of
WDS99 (invited lecture), Prague, June, (1999).

3. C. Bessire, ‘Non-binary constraints’, In Proc. Principles and Practice of Constraint
Programming (CP-99), 24-27, (1999).

4. C. Bessire, P. Meseguer, E.C. Freuder, and J. Larrosa, ‘On forward checking for
non-binary constraint satisfaction’, In Proc. Principles and Practice of Constraint
Programming (CP-99), 88-102, (1999).

5. M. Koubarakis, ‘Tractable disjunction of linear constraints’, In Proc. 2nd Interna-
tional Conference on Principles and Practice of Constraint Programming (CP-96),
297-307, (1999).

6. J. Larrosa, Algorithms and Heuristics for total and partial Constraint Satisfaction,
Phd Dissertation, UPC, Barcelona, 1998.

7. J.L. Lassez and K. McAloon, ‘A canonical form for generalizad linear constraints’,
In Advanced Seminar on Foundations of Innovative Software Development, 19-27,
(1989).

8. O. Lhomme, ‘Consistency techniques for numeric CSPs’, In International Joint
Conference on Artificial Intelligence (IJCAI-93), 232-238, (1993).

9. F. Rossi, C. Petrie, and V. Dhar, ‘On the equivalence of constraint satisfaction
problems’; In proceeding of European Conference of Artificial Intelligence, 550—
556, (1990).

10. D. Sabin and E.C. Freuder, ‘Understanding and improving the MAC algorithm’, In
proceeding of Principles and Practice of Constraint Programming, 167-181, (1997).

11. M.A. Salido and F. Barber, ‘An incremental and non-binary CSP solver: The
Hyperpolyhedron Search Algorithm’, In Proc. of 7th International Conference on
Principles and Practice of Constraint Programming (CP-01), LNCS 2259, 799-780,
(2001).

12. M.A. Salido and F. Barber, ‘POLYSA: A polinomial algorithm for non-binary
constraint satisfaction problems with <= and <>’, In Proceeding of EPIA-2001
Worshop on Constraint Satisfaction and Operation Research (CSOR01), 99-113,
(2001).

13.

14.

15.

16.

17.

M.A. Salido, A. Giret, and F. Barber, ‘Constraint satisfaction by means of dynamic
polyhedra’, In Operational Research Proceedings 2001, Springer Verlag, 1, 405-412,
(2001).

M.A. Salido, A. Giret, and F. Barber, ‘A non-binary constraint satisfaction solver:
The One-Face Hyperpolyhedron Heuristic’, Research and Development in Intelli-
gent Systems XVIII, Springer Verlag, 1, 313-324, (2001).

M.A. Salido, A. Giret, and F. Barber, ‘Integration of Discrete and Non-binary CSPs
with Linear Programming Techniques’, To appear in Proc. of CP-2002 Workshop
on Cooperative Solvers in Constraint Programming, (2002).

E. Sontag, ‘Real addition and the polynomial time hierarchy’, Information Pro-
cessing Letter, 20, 115-120, (1985).

E. Tsang, Foundation of Constraint Satisfaction, Academic Press, London and San
Diego, 1993.

