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Rapid and Brief Communication

Why can LDA be performed in PCA transformed space?
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Abstract

PCA plus LDA is a popular framework for linear discriminant analysis (LDA) in high dimensional and singular case. In
this paper, we focus on building a theoretical foundation for this framework. Moreover, we point out the weakness of the
previous LDA based methods, and suggest a complete PCA plus LDA algorithm. Experimental results on ORL face image
database indicate that the proposed method is more e6ective than the previous ones. ? 2002 Published by Elsevier Science
Ltd on behalf of Pattern Recognition Society.
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1. Introduction

Linear discriminant analysis (LDA) has been successfully
applied in many classi9cation problems such as image re-
cognition, multimedia information retrieval and so on.
However, for the high-dimensional and small sample size
problem such as face identi9cation, the traditional LDA
encounters two aspects of di<culties [1,2]. First, the
traditional algorithm cannot be used directly in that the
within-class scatter matrix is always singular. Second,
the high-dimensional image vectors lead to computationally
di<culty.

In order to avoid these di<culties, a very popular tech-
nique usually called PCA plus LDA [1–3] is proposed and
widely utilized subsequently. In this method, the principal
component analysis (PCA) is 9rst used for dimensionality
reduction before the application of LDA. Although PCA
plus LDA approach has been veri9ed e6ective by experi-
ence, the theoretical foundation of this method is still not
clear. Why select PCA for dimensionality reduction before-
hand? Is there any important discriminatory information lost
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in the PCA process since the criterion of PCA is not iden-
tical to that of LDA? These essential problems still remain
unsolved.

In this paper, we intend to solve these problems and build
a theoretical foundation for the PCA plus LDA method.
Moreover, we point out the weakness of the previous LDA
based methods, and suggest a complete PCA plus LDA
algorithm. Experimental results indicate that the proposed
method is more e6ective.

2. The essence of LDA in singular case: PCA plus LDA

Suppose there are c known pattern classes, Sb, Sw and St
denote the between-class scatter matrix, within-class scatter
matrix and total scatter matrix, respectively. As we know,
they are all semi-positive de9nite, and satisfy St = Sb + Sw.
The classical Fisher criterion function is generally de9ned

by

Jf(X ) =
X TSbX
X TSwX

or J (X ) =
X TSbX
X TStX

: (1)

In the singular case, the latter one is usually adopted. And a
set of optimal discriminant vectors (projection axes) based
on this criterion is required. Now, the problem is where to
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9nd them. Naturally, we can 9nd them in Rn. But it is too
di<cult in that the dimension is very high and St is always
singular. Fortunately, they can be derived from amuch lower
dimensional subspace of Rn by the following theory.

Suppose �1; �2; : : : ; �n are n orthonormal eigenvec-
tors of St , and the 9rst m (m = rank St) ones are cor-
responding to positive eigenvalues. De9ne the subspace
�t = span{�1; �2; : : : ; �m}, and its orthogonal complement
can be denoted by �⊥

t = span{�m+1; : : : ; �n}. Obviously,
�⊥
t is the null space of St .
Since Sb, Sw and St are all semi-positive de9nite and St =

Sb + Sw, it is easy to get

Lemma 1. If St is singular; X TStX = 0 if and only if
X TSwX = 0 and X TSbX = 0.

Theorem 1. For any arbitrary ’∈Rn; ’ can be denoted
by ’ = X + �; where; X ∈�t and �∈�⊥

t ; and satis6es
J (’) = J (X ).

Proof. Since Rn=span{�1; �2; : : : ; �n}; by the de9nition of
�t and �⊥

t ; for any arbitrary ’∈Rn; ’ can be denoted by
’= �1�1 + · · ·+ �m�m

︸ ︷︷ ︸

m

+ �m+1�m+1 + · · ·+ �n�n
︸ ︷︷ ︸

n−m

= X + �;

where X ∈�t and �∈�⊥
t .

Since �∈�⊥
t , it follows that �

TSt�= 0.
By Lemma 1, we have �TSb�=0, which imply that Sb�=0

since Sb is semi-positive de9nite. Hence ’TSb’ = �TSb� +
2X TSb�+ X TSbX = X TSbX .

Similarly, ’TSt’= X TStX .
So J (’) = J (X ).

According to Theorem 1, we can conclude that all optimal
discriminant vectors can be derived from �t without any
loss of the optimal discriminatory information with respect
to Fisher criterion J (X ).
Now, the problem is how to 9nd the optimal discriminant

vectors in �t . By linear algebra theory, �t is isomorphic to
m-dimensional Euclidean space Rm. And the corresponding
isomorphic mapping is

X = PY; where P = (�1; �2; : : : ; �m);
X ∈�t and Y ∈Rm: (2)

By the isomorphic mapping X=PY , the criterion function
J (X ) becomes

J (X ) =
Y T(PTSbP)Y
Y T(PTStP)Y

=
Y TS̃bY
Y TS̃ tY

= J̃ (Y ); (3)

where S̃b = PTSbP, S̃ t = PTStP. It is easy to prove that
S̃b is semi-positive de9nite and S̃ t is positive de9nite. That
means J̃ (Y ) can act as a criterion like Fisher criterion. By
the property of isomorphic mapping and Eq. (3), we have

Proposition 1. Suppose Y1; Y2; : : : ; Yd are optimal
discriminant vectors based on J̃ (Y ); then; X1 = PY1;
X2 = PY2; : : : ; Xd = PYd are the required optimal discrimi-
nant vectors based on J (X ).

Then, the linear discriminant transformation can be de-
9ned as follows:

Z =W TX; (4)

where W T = (X1; X2; : : : ; Xd)T = (PY1; PY2; : : : ; PYd)T =
(Y1; Y2; : : : ; Yd)TPT.

The transformation in Eq. (4) can be divided into two
items

Y = PTX; where P = (�1; �2; : : : ; �m) (5)

and

Z = V TY; where V = (Y1; Y2; : : : ; Yd): (6)

Since the column vectors of P are eigenvectors correspond-
ing to nonzero eigenvectors of St , the transformation in
Eq. (5) is exactly PCA which transform Rn into Rm. In the
transformed space Rm, it is easy to get that the total scatter
matrix is S̃ t =PTStP and the between-class scatter matrix is
S̃b = PTSbP. Thus, the criterion J̃ (Y ) is exactly the Fisher
criterion in PCA transformed space, and Y1; Y2; : : : ; Yd are
the corresponding Fisher optimal discriminant vectors.

Now, the essence of LDA in singular case is revealed.
That is, PCA is 9rst used to reduce the dimension of image
space to m (the rank of the total scatter matrix). Then, LDA
is performed in the transformed space.

3. How to perform LDA in the PCA transformed space

Although the Fisherfaces [1] and EFM [3] methods both
follow the PCA plus LDA strategy, they are imperfect in
that some small principal components are thrown away in
the PCA step. So some potential and valuable discrimina-
tory information is lost in this step. Rather, in this sec-
tion, we propose a complete LDA method that is capable
of deriving all discriminatory information. In PCA step, we
use all positive principal components and transform the im-
age space into Rm, where m = rank St . Then, we use the
OFLD [4] method for the second feature extraction. The
idea of the algorithm is described as follows. In PCA trans-
formed space Rm, split the within-class scatter matrix S̃w
into its null space �̃

⊥
w =span{�q+1; : : : ; �m} and its orthogo-

nal complement �̃w =span{�1; : : : ; �q}, where �1; : : : ; �m are
orthonormal eigenvectors of S̃w, and the 9rst q ones are cor-
responding to positive eigenvalues. In fact, it can be veri9ed
all discriminatory information with respect to Fisher crite-
rion is contained in these two subspaces [4]. Since for any
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Table 1
Comparison of the maximal recognition rates of the 9ve LDA based methods with a minimum distance classi9er

Number of Proposed Fisherface [1] EFM [3] NLDA [5] DLDA [2]
training sample m = 50

3 92.5%(52) 87.5%(38) 87.9%(36) 91.8%(39) 87.9%(35)
4 95.4%(55) 88.7%(39) 92.1%(30) 94.6%(39) 90.8%(22)
5 97.0%(41) 88.5% (39) 93.5%(39) 96.0%(39) 94.0%(34)

Note: In this table, m=50 is the number of the selected principal components in PCA step of EFM, and the value in ( ) denotes features
number as the maximal recognition rate is achieved.

Table 2
Classi9cation errors of the proposed method as axes number varying

Classi9er 39 40 41 42 43 44 45 46 47 48 49

Minimum distance 8 7 6 6 6 6 7 7 8 7 8
Nearest neighbor 8 8 8 6 6 6 7 7 7 8 8

nonzero vector Y in �̃
⊥
w , the within-class scatter Y

TS̃wY =0
and the between-class scatter Y TS̃bY ¿ 0, so the Fisher crite-
rion J̃ (Y ) can be replaced by J̃ b(Y )=Y TS̃bY . While, for any
nonzero vector Y in �̃w, Y TS̃wY ¿ 0, so the Fisher criterion
J̃ (Y ) is still applicable. The isomorphic mapping technique
mentioned above is employed again for the calculation of
the Fisher optimal discriminant vectors based on J̃ b(Y ) (or
J̃ (Y )) in �̃

⊥
w (or �̃w). The detailed algorithm is as follows.

Step 1. In PCA transformed space Rm, work out the
within-class scatter matrix S̃w’s orthonormal eigenvectors
�1; : : : ; �m, suppose the 9rst q ones are corresponding to
positive eigenvalues.

Step 2. Let P1 = (�q+1; : : : ; �m) and NSb = PT
1 S̃bP1, work

out NSb’s orthonormal eigenvectors Z1; : : : ; Zl, then, the op-
timal discriminant vectors contained in �̃

⊥
w are Yj = P1Zj;

j = 1; : : : ; l. Generally, l = c − 1, c is the number of
classes.

Step 3. Let P2=(�1; : : : ; �q) and Ŝb=PT
2 S̃bP2, Ŝ t=PT

2 S̃ tP2,
work out d–l generalized eigenvectors Zl+1; : : : ; Zd of Ŝb
and Ŝ t corresponding to the 9rst d–l largest eigenvalues.
Then, the optimal discriminant vectors derived from �̃w are
Yj = P2Zj; j = l+ 1; : : : ; d.

Step 4. Let Yj =P1Zj(j=1; : : : ; l) and Yj =P2Zj(j= l+
1; : : : ; d) act as projection axes to form the feature extractor
� = (Y1; : : : ; Yl; Yl+1; : : : ; Yd).

4. Experiment

The proposed method is tested on the ORL face
image database (http://www.cam-orl.co.uk). There are
10 di6erent images of 40 distinct subjects. There
are variations in facial expression (open=closed eyes,
smiling=nonsmiling) and facial details (glasses=no glasses).

All the images were taken against a dark homoge-
neous background with the subjects in an up-right,
frontal position, with tolerance for some tilting and ro-
tation of up to about 20◦. There is some variation in
scale of up to about 10%. The size of each image
is 92× 112.

In this experiment, we use the 9rst k (k =3, 4, 5, respec-
tively) images of each person for training and the remain-
ing for testing. The Fisherfaces [1], EFM [3], NLDA [5],
DLDA [2] and the proposed algorithm are, respectively, used
for feature extraction. In the transformed space, a minimum
distance classi9er is employed. The recognition accuracy is
listed in Table 1. And, as the axes numbers varying from 39
to 49, the classi9cation errors of the proposed method with
a minimum distance classi9er and a nearest neighbor clas-
si9er are shown in Table 2. Table 1 shows the performance
of the proposed method is better than the others’. Table 2
indicates the classi9cation results are very robust with the
variation of axes number.
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