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ABSTRACT 
Rare objects are often of great interest and great value. Until re-
cently, however, rarity has not received much attention in the 
context of data mining. Now, as increasingly complex real-world 
problems are addressed, rarity, and the related problem of imbal-
anced data, are taking center stage. This article discusses the role 
that rare classes and rare cases play in data mining. The problems 
that can result from these two forms of rarity are described in 
detail, as are methods for addressing these problems. These de-
scriptions utilize examples from existing research, so that this 
article provides a good survey of the literature on rarity in data 
mining. This article also demonstrates that rare classes and rare 
cases are very similar phenomena—both forms of rarity are shown 
to cause similar problems during data mining and benefit from the 
same remediation methods. 
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1. INTRODUCTION 
In life it is often the rare objects that are most interesting.  This 
carries over to data sets, which, after all, represent some aspect of 
reality. Consequently, in data mining it is often rare objects that 
are of primary interest. Examples abound and include identifying 
fraudulent credit card transactions [9], learning word pronuncia-
tions [3], predicting pre-term births [22], predicting telecommuni-
cation equipment failures [50], and detecting oil spills from 
satellite images [34]. It is important to study rarity in the context 
of data mining because rare objects are typically much harder to 
identify than common objects and most data mining algorithms 
have a great deal of difficulty dealing with rarity. 
Before proceeding, it is useful to discuss what exactly is meant by 
rarity. Much of the research on rarity relates to rare classes, or, 
more generally, class imbalance. This type of rarity requires la-
beled examples and is associated with classification problems. 
The data set used to detect oil spills from satellite images provides 
a good example of a rare class. Because only 41 of the 937 satel-
lite images contain oil slicks, we can say that oil slicks are rare 
(i.e., a rare class).1 
A second type of rarity concerns rare cases. Informally, rare cases 
correspond to a meaningful but relatively small subset of the data, 
or equivalently, define a small region of the instance space. Rare 
cases depend only on the distribution of data and therefore are 
defined for both labeled and unlabeled data, and for supervised 

                                                                 
1 Rarity must be defined with respect to some distribution. In this 

case it is defined with respect to the training distribution, al-
though ideally it should be defined with respect to the underly-
ing (but typically unknown) distribution.  

and unsupervised data mining tasks. Rare cases are naturally de-
fined by the domain and will share common characteristics. In the 
case of labeled data, a rare case corresponds to a subconcept, or 
subclass, that occurs infrequently.  For example, if the task is to 
identify the presence of cancer using blood test results, a rare case 
may correspond to those test indicators that are associated with a 
rare form of cancer. Unfortunately, except for artificially gener-
ated domains, rare cases are not easily identified. However, unsu-
pervised learning techniques such as clustering may help to 
identify them, and they may also manifest themselves as small 
disjuncts in classifiers induced from the data. Small disjuncts are 
those disjuncts in the learned classifier that cover few training 
examples [23]. 
Figure 1 shows an artificial domain with two classes, A and B, 
where A is the rare (minority) class and B is the common (major-
ity) class. Holding with established conventions, the rare class is 
designated the positive class and the common class is designated 
the negative class. The true decision boundaries are displayed 
with solid lines while the learned boundaries are displayed with 
dashed lines. The labeled examples are represented in the figure 
using the “+” and “-” symbols. 
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Figure 1: Graphical representation of a rare class and rare case 

The five subconcepts associated with class A are labeled A1-A5. 
Subconcepts A2-A5 correspond to rare cases, whereas A1 corre-
sponds to a fairly common case, covering a substantial portion of 
the instance space. The majority class is comprised of two sub-
concepts, B1 and B2. Subconcept B1 is a very general case that 
covers most of the instance space. Subconcept B2, on the other 
hand, corresponds to a rare case, demonstrating that common 
classes may contain rare cases. However, we expect rare classes, 
by their very nature, to contain a greater proportion of rare cases 
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(a very rare class cannot contain any common cases). Figure 1 
also shows that rare cases A3, A4, and A5 cause small disjuncts to 
be formed in the learned classifier (rare case A2 is “missed” com-
pletely by the classifier). Rare cases, like rare classes, can be con-
sidered the result of a form of data imbalance and have in fact 
been referred to as within-class imbalances [24]. 
An example of a rare class in the context of unsupervised learning 
can be found in association rule mining and, in particular, in mar-
ket basket analysis, which looks at how the items purchased by a 
customer are related. Some groupings of items, such as peanut 
butter and jelly, occur frequently and can be considered common 
cases. Other associations may be extremely rare. For example, food 
processor and cooking pan will be an extremely rare association 
(i.e., case) in a supermarket, not because the items are unlikely to 
be purchased together, but because neither item is frequently pur-
chased in a supermarket [37]. 
One final aspect of rarity worth considering is whether rarity is an 
absolute or relative property.  For example, if a case or class cov-
ers 1% of a dataset that has one thousand entries, we would cer-
tainly say that the class/case is rare—but what if the dataset 
contains ten million entries?  From a practical perspective we are 
concerned with those properties that make data mining difficult 
and, as we shall see, both absolute and relative rarity pose prob-
lems for conventional data mining systems. 
This article discusses the issues associated with mining with rarity 
and possible methods for effectively mining in the presence of 
rarity. Unlike most previous work, we consider rare classes and 
rare cases together, as well as how rarity affects both supervised 
and unsupervised learning tasks. Consequently we provide a more 
general analysis of mining with rarity than has been presented 
previously. This proves to be very useful because rare cases and 
rare classes cause many of the same problems for data mining and 
can benefit from some of the same remediation techniques. Thus, 
this article unifies research topics that previously were considered 
separate. This article also advances previous work by thoroughly 
discussing the problems associated with rarity as well as methods 
for better handling rarity. 

2. WHY DOES RARITY MAKE DATA 
MINING DIFFICULT? 

There are a number of problems that arise when mining rare 
classes and rare cases. We divide these problems into categories 
and describe each one in detail in separate subsections.  

2.1 Improper Evaluation Metrics 
Evaluation metrics play a critical role in data mining. Metrics are 
used to guide the data mining algorithms and to evaluate the re-
sults of data mining. For example, when using a decision tree 
algorithm to solve a classification task, information gain may be 
used to guide the construction of the decision tree while accuracy 
may be used to evaluate the performance of the final tree. 
We begin by discussing the evaluation metrics most commonly 
used to assess the results of data mining. If these metrics do not 
adequately value rarity, then data mining is not likely to handle 
rare classes and rare cases very well. Classification accuracy, 
which computes the fraction of examples that are correctly classi-
fied, is the most commonly used evaluation metric for classifica-
tion tasks. The flaw with this metric with respect to rare classes is 
well known—rare classes have less impact on accuracy than 
common classes. For example, for a two-class problem with a 

class distribution of 90:10, the performance of the classifier on 
majority-class examples will count nine times as much as the per-
formance on minority-class examples. For similar reasons, accu-
racy does not value rare cases as much as common cases. 
An empirical study by Weiss and Provost [52] supports the con-
clusion that accuracy leads to poor minority-class performance. 
These results, averaged over twenty-six data sets, show that the 
error rate of minority-class classification rules is 2-3 times that of 
the rules that identify majority-class examples and, just as impor-
tant, minority-class examples are much less likely to be predicted 
than majority-class examples. Using terminology from informa-
tion retrieval, the minority class has much lower precision and 
recall than the majority class. Many practitioners have observed 
that for extremely skewed class distributions the recall of the mi-
nority class is often 0—there are no classification rules generated 
for the minority class. 
We now discuss the use of evaluation metrics to guide the search 
algorithms employed by data mining systems. In the interest of 
space we only consider some representative metrics, used to guide 
the construction of decision trees. Most decision trees are grown 
in a top-down manner. Test conditions are repeatedly selected and 
cause new branches (and levels) to be added to the tree. Test se-
lection functions, which identify and evaluate potential test condi-
tions, typically assess the goodness of a test by determining the 
purity of each branch and then computing an overall purity value, 
which weights the purity of each branch by the number of exam-
ples that follow that branch. These metrics (e.g., information gain) 
prefer tests that result in a balanced tree where purity is increased 
for most of the examples to a test that yields high purity for a 
relatively small subset of the data but low purity for the rest [44]. 
The problem with this is that a single high purity branch may 
identify a useful rare case. Another problem occurs when each 
classification “rule” is assigned a class label. The label is usually 
assigned based on an error estimate and a threshold (typically 
50%). Accuracy may be used to determine the class label, but this 
will yield an unreliable estimate when the number of examples 
that are covered is small [39; 54]. 
Association rule mining systems use the support and confidence 
metrics to guide the search for association rules. Support meas-
ures the number of records that contain the association, while 
confidence measures the percentage of times that the association 
is found. In general, association rule mining systems only look for 
rules that have some minimum support, minsup. This allows much 
of the search space to be pruned. For efficiency reasons minsup 
cannot be set low enough to identify rare associations (this is 
discussed further in Section 2.3). 
In this section we described how some evaluation metrics can 
make it difficult to mine rare classes and rare cases. These metrics 
are finally giving way to more sophisticated metrics that better 
value rarity. Some of these metrics are described in Section 3.1. 

2.2 Lack of Data: Absolute Rarity 
The most fundamental problem with rarity is the associated lack 
of data. In this section we are concerned with absolute rarity, 
where the number of examples associated with the rare class/case 
is small in an absolute sense. In this situation the lack of data 
makes it difficult to detect regularities within the rare 
classes/cases. 
Figure 2 demonstrates the problems that can result from an “abso-
lute” lack of data. The figure only shows the region from Figure 1 
surrounding rare case A3. The left side of Figure 2 shows the 
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original situation, where A3 contains only one positive example, 
while the right side represents the situation where much more data 
is available. As can clearly be seen, the learned decision bounda-
ries (shown using dashed lines) much more closely approximate 
the true decision boundaries when more data is available. 

A3

+

A3

+ +
+

+

+

+

++

++

++

+

 

Figure 2: The impact of an “absolute” lack of data 

So, rare cases may be due to a lack of data. The impact that these 
rare cases have on classification performance has been analyzed. 
One study, which employed synthetically generated data sets, 
showed that rare cases have a much higher misclassification rate 
than common cases [48]. We refer to this as the problem with rare 
cases. This research further demonstrated something that had 
previously been assumed—that rare cases cause small disjuncts in 
the learned classifier. The problem with small disjuncts, observed 
in many empirical studies, is that they (i.e., small disjuncts) gen-
erally have a much higher error rate than large disjuncts [2; 3; 23; 
47; 48; 51]. We can see that this is again the result of a lack of 
data. The most thorough empirical study of small disjuncts ana-
lyzed thirty real-world data sets and showed that, in the classifiers 
induced from these data sets, the vast majority of errors are con-
centrated in the smaller disjuncts [51]. 
The error-prone nature of small disjuncts is a direct result of rar-
ity. Therefore, an understanding of why small disjuncts are so 
error prone will help explain why rarity is a problem. One expla-
nation is that some small disjuncts may not represent rare, or ex-
ceptional, cases, but rather something else—such as noisy data. 
Thus, only small disjuncts that are “meaningful” should be kept.  
Most classifier induction systems have some means of preventing 
overfitting, to remove subconcepts (i.e., disjuncts) that are not 
believed to be meaningful. Statistical significance testing is used 
by some systems to prevent this overfitting. Disjuncts that cover 
few examples will not pass these significance tests. If a data set 
has two classes and an equal number of training examples in each, 
then a disjunct is 99% significant if and only if it covers at least 7 
training examples [23]. The basic problem is that the significance 
of small disjuncts cannot be reliably estimated and consequently 
significant small disjuncts may be eliminated along with the in-
significant ones. Empirical results [23] show that the strategy of 
eliminating all small disjuncts results in an increase in overall 
error rate and hence is not a good strategy. Error estimation tech-
niques are also unreliable when there are only a few examples, 
and hence they suffer from the same basic problem. These ap-
proaches work well for large disjuncts because in these cases sta-
tistical significance and error rate estimation techniques yield 
relatively reliable estimates—something they do not do for small 
disjuncts. 

2.3 Relative Lack of Data: Relative Rarity 
One problem with rarity is that rare “objects” can be hard to find. 
This holds true even if rarity is relative—that is, objects are not 
rare in an absolute sense but are rare relative to other objects. A 
popular phrase that illustrates this is “like a needle in a haystack”. 
This phrase is relevant because it is the large number of strands of 
hay in the haystack that makes it hard to find the needle. 
So why is finding/identifying rare objects (patterns, cases, events, 
etc.) difficult when data mining? One reason is that the rare ob-
jects are not easily located using greedy search heuristics and 
more global methods are, in general, not tractable. Greedy search 
heuristics have a problem with rarity for several reasons. First, 
rare objects may depend on the conjunction of many conditions 
and therefore examining any single condition in isolation may not 
provide much information, or guidance. While this may also be 
true of common objects, with rare objects the impact is greater 
because the common objects may obscure the true signal (the 
related issue of data fragmentation is covered in Section 2.4). 
As a specific example of this general problem, consider the asso-
ciation rule mining problem described earlier, where we want to 
be able to detect the association between food processor and 
cooking pan. The problem is that both items are rarely purchased 
in a supermarket, so that even if the two are often purchased to-
gether when either one is purchased, this association may not be 
found. To find this association, the minimum support threshold 
for the algorithm must be set quite low. However, if this were 
done, it would cause a combinatorial explosion because frequently 
occurring items will be associated with one another in an enor-
mous number of ways. This problem has been called the rare item 
problem [37]. The fact that these random co-occurrences will 
swamp the meaningful associations between rare items is one 
example of the problem with relative rarity. 

2.4 Data Fragmentation 
Many data mining algorithms employ a divide-and-conquer ap-
proach, where the original problem is decomposed into smaller 
and smaller problems, which results in the instance space being 
partitioned into smaller and smaller pieces. Decision tree algo-
rithms are a good example of this approach in that they begin with 
all of the data (all of the instance space) and repeatedly partition it 
into smaller and smaller pieces. This process may lead to data 
fragmentation [20]. Data fragmentation is a problem because 
regularities can then only be found within each individual parti-
tion, which will contain less data. While data fragmentation is 
always a concern, it is more of a concern when mining rare 
classes/cases, because of the existing “lack of data” problem de-
scribed in Section 2.2. Thus all iterative divide-and-conquer ap-
proaches may have difficulty in the presence of rarity. Data 
mining algorithms that do not employ a divide-and-conquer ap-
proach are therefore more appropriate when mining rare 
classes/cases. Some of these methods are described in Section 3. 

2.5 Inappropriate Inductive Bias 
Generalizing from specific examples, or induction, requires an 
extra-evidentiary bias. Without such a bias “inductive leaps” are 
not possible and learning cannot occur. The bias of a data mining 
system is therefore critical to its performance. Many learners util-
ize a general bias in order to foster generalization and avoid over-
fitting. This bias can adversely impact the ability to learn rare 
cases and rare classes. 
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Consider a learner with a maximum-generality bias [23]. Once the 
learner decides to create a disjunct that covers some set of training 
examples, it selects the most general set of conditions that satisfy 
those examples but no others. This can be contrasted with a 
maximum-specificity bias, which will add all possible conditions 
that satisfy the training examples. The maximum-generality bias 
works well for large disjuncts but not for small disjuncts, leading 
to the observed problem with small disjuncts. Thus we infer that 
the maximum-generality bias is not appropriate for rare cases, 
since it may make them overly general.  This leads to error-prone 
classification rules for predicting the minority class, which may 
subsequently be pruned. Most methods for addressing the prob-
lem of small disjuncts (and rare cases) operate by adjusting the 
bias of the learner. 
Inductive bias also plays a role with respect to rare classes. Many 
induction systems will tend to prefer the more common classes in 
the presence of uncertainty (i.e., they will be biased in favor of the 
class priors). As a simple example, imagine a decision tree learner 
that branches on all possible feature values when splitting a node 
in the tree. If one of the resulting branches covers no training 
examples, then there is no evidence on which to base a classifica-
tion. What label should be associated with the resulting leaf node? 
Most decision-tree learners will predict the most frequently occur-
ring class, biasing the results against rarer classes. 

2.6 Noise 
Noisy data will affect the way any data mining system behaves, 
but, what is interesting from the perspective of this article, is that 
noise has a greater impact on rare cases than on common cases.  
To see this, consider Figure 3. The left side of Figure 3 repro-
duces the bottom part of Figure 1, while the right side does the 
same thing but also introduces some noisy examples. Noise cre-
ates a problem when positive-class examples are found in the 
negative class (class B) and negative-class examples are found in 
the positive class (class A). 

 
Figure 3: The effect of noise on rare cases 

Because rare cases have fewer examples to begin with, it will take 
fewer “noisy” examples to impact the learned subconcept. As we 
can see in Figure 3, the four noisy data points in A1 have no im-
pact on the learned decision boundary, because of the learner’s 
ability to generalize. However, the two noisy data point in A3 
cause the learner to not learn this rare case at all (i.e., there is no 
decision boundary). In this case the learner cannot distinguish 
between exceptional (rare) cases and noise, a problem that has 
been analyzed previously [48]. If the learner were modified to 
generalize less, so that a portion of A3 were correctly learned, this 
would most likely have the undesirable effect of having small 
disjuncts formed to cover the noisy examples in A1 and B1. Thus, 
noise necessitates the use of overfitting avoidance techniques 

(e.g., pruning) to eliminate noise-induced small disjuncts and a 
consequence of this is that some “true” rare cases will not be 
learned. Should these rare cases be important enough, one should 
be able to adjust the bias of the learner to include them, even 
though this will have some undesirable consequences. 

3. METHODS FOR ADDRESSING RARITY 
This section describes methods for dealing with the problems 
associated with rarity that were listed in the previous section. 

3.1 More Appropriate Evaluation Metrics 
Evaluation metrics that take rarity into account can improve data 
mining by better guiding the search process and better evaluating 
the end-result of data mining. Because some metrics are used in 
both ways, they are discussed together in this section. 
Accuracy places more weight on the common classes than on rare 
classes, which makes it difficult for a classifier to perform well on 
the rare classes. Because of this, additional metrics are coming 
into widespread use. Perhaps the most common is ROC analysis 
and the associated use of the area under the ROC curve (AUC) to 
assess overall classification performance [4; 40]. AUC does not 
place more emphasis on one class over the other, so it is not bi-
ased against the minority class. ROC curves, like precision-recall 
curves, can also be used to assess different tradeoffs—the number 
of positive examples correctly classified can be increased at the 
expense of introducing additional false positives. ROC analysis 
has been used by many systems designed to deal with rarity, such 
as the Shrink data mining system [34]. 
Precision and recall are metrics from the information retrieval 
community that are useful for data mining. The precision of a 
classification rule, or set of rules, is the percentage of times the 
predictions associated with the rule(s) are correct. If these rules 
predict class X then recall is the percentage of all examples be-
longing to X that are covered by these rule(s). For example, three 
rules that predict class A may have a precision of 80% and a recall 
of 10% (i.e., the three rules cover 10% of all A examples). 
Many systems have used some variation of precision and recall to 
guide the data mining process and evaluate the end result [7; 28; 
34; 49]. Two examples are the geometric mean (the square root of 
precision times recall) and the F-measure [45]. The F-measure is 
parameterized and can be adjusted to specify the relative impor-
tance of precision vs. recall (F1-measure counts both equally, F2-
measure counts recall twice as much). Rare cases and classes are 
valued when using these metrics because both precision and recall 
are defined with respect to the positive (rare) class. Timeweaver 
[49], a data mining system that employs a genetic algorithm, uses 
the F-measure after each iteration to evaluate the fitness of the 
classification rules evolved during that iteration. The parameter to 
the F-measure that controls the relative importance of precision 
vs. recall is varied periodically to ensure that a diverse set of clas-
sification rules is evolved—so that some rules will have high pre-
cision while others will have high recall. The expectation is that 
this will eventually lead to good solutions that have rules with 
both high precision and recall. Other research has used the F-
measure to compare the performance of different data mining 
algorithms [17; 29; 30]. 
The problem with using accuracy to label rules that cover few 
examples is that it produces very unreliable estimates—and is not 
even defined if no examples in the training set are covered. Sev-
eral metrics have therefore been designed to provide better esti-
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mates of accuracy for the classification rules associated with rare 
cases/small disjuncts. One such metric is the Laplace estimate. 
The standard version of this metric is defined as (p+1)/(p+n+2), 
where p positive and n negative examples are covered by the clas-
sification rule. This estimate moves the accuracy estimate toward 
½ but becomes less important as the number of examples in-
creases. 
A more sophisticated error-estimation metric for handling rare 
cases and small disjuncts was proposed by Quinlan [41]. This 
method improves the accuracy estimates of the small disjuncts by 
taking the class distribution (class priors) into account. The rea-
soning is that one would expect disjuncts that predict the majority 
class to have a lower error rate than those predicting the minority 
class. However, rather than using the entire training set to estimate 
the class priors, a more representative (local) set of examples is 
used. This set only uses training examples that are "close" to the 
small disjunct—that is, fail to satisfy at most one condition in the 
disjunct. Quinlan’s experimental results demonstrate that when 
this estimate is used during the data mining process, classification 
performance improves, most notably for highly skewed class dis-
tributions. 
Metrics that support cost-sensitive learning are the subject of 
much research. Because of the importance of cost-sensitive learn-
ing, this topic is covered separately in Section 3.8. 

3.2 Non-Greedy Search Techniques 
Section 2.3 described why greedy search techniques can be inef-
fective at dealing with rarity. In this section non-greedy search 
methods are described, some of which have specifically been de-
veloped to address rarity. The first such method involves genetic 
algorithms. Genetic algorithms are global search techniques that 
work with populations of candidate solutions rather than a single 
solution and employ stochastic operators to guide the search proc-
ess [21]. These characteristics permit genetic algorithms to cope 
well with attribute interactions [19; 21] and avoid getting stuck in 
local maxima, which together make genetic algorithms suitable for 
dealing with rarity. This may explain why genetic algorithms are 
being increasingly used for data mining [19]. Several systems 
have relied to the power of genetic algorithms to handle rarity. 
Timeweaver [49] uses a genetic algorithm to predict very rare 
events while Carvalho and Freitas [7; 8] use a genetic algorithm 
to discover “small disjunct rules.” 
Decision tree learning algorithms almost always employ a greedy 
search. Brute [44] was designed to address the limitations of these 
greedy, hill-climbing search algorithms. Brute performs an ex-
haustive depth-bounded search for accurate conjunctive rules. The 
focus is to find accurate rules, even if they cover relatively few 
training examples. Brute performs quite well when compared to 
other algorithms, although the length of the generated rules needs 
to be limited. Brute is capable of locating “nuggets” of informa-
tion that other algorithms may not be able to find.   
Association-rule mining systems generally employ an exhaustive 
search algorithm [1] and are therefore, in theory, capable of find-
ing rare associations. The problem, previously described in Sec-
tion 2.3, is that these algorithms become intractable if the 
minimum level of support is set small enough to find rare associa-
tions. Thus, such algorithms are heuristically inadequate for find-
ing rare associations. Section 3.7 describes an extension to these 
algorithms that makes it possible to find some meaningful rare 
associations. 

3.3 Using a More Appropriate Inductive Bias 
The bias of most data mining systems favors generality over spe-
cialization. While a general bias is good for common cases, it is 
not appropriate for rare cases and may even cause rare cases to be 
totally ignored. There have been several attempts to improve the 
performance of data mining systems with respect to rarity by 
choosing a more appropriate bias. The simplest approach involves 
modifying existing systems to eliminate some small disjuncts 
based on tests of statistical significance or using error estimation 
techniques. The hope is that these will remove only improperly 
learned disjuncts. Unfortunately, this approach was shown not 
only to degrade performance with respect to rarity, but also to 
degrade overall classification performance [23]. More sophisti-
cated approaches have been developed and are described in this 
section. The impact of these strategies on rare cases cannot be 
measured directly, since the rare cases in the “true” concept are 
generally not known. To judge the efficacy of these strategies we 
therefore consider whether they improve the performance of the 
small disjuncts—based on the assumption that rare cases manifest 
themselves as small disjuncts. 
Holte, Acker and Porter [23] changed the bias of an existing 
learner, CN2, to make the bias more specific. Rather than using 
CN2’s maximum generality bias for all disjuncts, more specific 
biases were evaluated for the induced small disjuncts. The maxi-
mum specificity bias was shown to improve the performance of 
the small disjuncts but degrade the performance of the large dis-
juncts, yielding poorer overall performance. This occurred be-
cause the “emancipated” examples—those that would previously 
have been classified by small disjuncts—were then misclassified 
at an even higher rate by the large disjuncts. Going on the as-
sumption that this change in bias was too extreme, a selective 
specificity bias was then used. This yielded further improvements, 
but these improvements were not sufficient to improve overall 
classification accuracy. 
Ting [47] subsequently evaluated a very similar approach, which 
also used a maximum specificity bias. However, in this case steps 
were taken to ensure that this bias does not affect—and therefore 
cannot degrade—the performance of the large disjuncts (due to 
the emancipated examples). The basic approach was to first use 
C4.5 [42], a decision-tree learner, to determine if an example is 
covered by a small or large disjunct. If the example was covered 
by a large disjunct, then C4.5 was used to classify the example; 
otherwise an instance-based learner was used to classify the ex-
ample. Instance-based learning was used because it is an extreme 
example of the maximum specificity bias. While the results of this 
study are encouraging and show that this hybrid approach can 
improve the accuracy of the small disjuncts, the results are not 
conclusive. 
Another research study used a similar hybrid method. C4.5 is 
again used to identify examples as belonging to a small or large 
disjunct, but this time the training examples that fall into each 
small disjunct are fed into a genetic-algorithm based learner [7, 
8]. This learner then generates classification rules to specifically 
cover the examples that fall into each individual small disjunct. 
Examples that fall into a large disjunct are classified using C4.5 
whereas those that fall into a small disjunct are classified using 
the rules induced specifically for that disjunct. When classifier 
performance is compared the hybrid approach outperforms C4.5 
in 9 cases, C4.5 outperforms the hybrid approach in 2 cases and 
the differences are not statistically significant in 11 cases. 
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One final study [3] advocates the use of instance-based learning 
for domains with many rare cases/small disjuncts, because of the 
highly specific bias associated with this learning method. The 
authors of this study were mainly interested in learning word pro-
nunciations, which have “pockets of exceptions” (i.e., rare cases) 
that cause many small disjuncts to be formed during learning. 
Results are not provided to demonstrate that instance-based learn-
ing outperforms others learning methods in this situation. Instead 
the authors argue that instance-based learning methods should be 
used because they store all examples in memory, while other ap-
proaches ignore examples when they fall below some utility 
threshold (e.g., due to pruning). Returning to Figure 1, most 
learners will not learn any part of A3 because there is only one 
positive example, and hence any examples that are near that point 
will be misclassified. However, an instance-based learning algo-
rithm will match some examples in region A3 to the positive ex-
ample and thus will often assign the correct classification. 
In summary, there have been several attempts to select an induc-
tive bias that will perform better in the presence of small dis-
juncts. These methods have shown only mixed success, although 
this may be the result of researchers using overall classification 
accuracy to evaluate the approach, rather than focusing on the 
benefit to the small disjuncts. This approach to addressing rarity 
appears promising and worthy of further study. 

3.4 Knowledge/Human Interaction 
Knowledge can always improve the data mining process. How-
ever, it is especially useful for very difficult problems, such as 
when rare classes/cases are present. Knowledge can take many 
forms. Knowledge can provide better descriptions of the exam-
ples, by providing more sophisticated features. Feature engineer-
ing may be guided by an expert’s domain knowledge and by 
knowledge of what interactions between variables may be most 
useful. Most experts will naturally tend to include features that are 
useful for predicting rare, but important, cases.  
Data Mining is inherently an interactive process. This is especially 
true for unsupervised learning tasks, such as mining association 
rules. For example, for association rule mining a human may indi-
cate which results are interesting and warrant further mining and 
which are uninteresting (e.g., the association between name and 
social security number) and do not warrant further exploration. 
This interaction is especially important when mining rare 
classes/cases, since the user may have domain knowledge that can 
aid in the search process. This viewpoint is supported by the fol-
lowing quote “Only in rare cases will users wish to see patterns 
with miniscule support. In those cases it is more likely that users 
will start the mining on a small filtered sample (which may be the 
result of a previous drill-down operation).” [32] 

3.5 Learn only the Rare Class 
As discussed throughout Section 2, if we try to learn a set of clas-
sification rules for all classes, the rare classes may be largely ig-
nored. One solution to this problem is to only learn classification 
rules that predict the rare class. One data mining system that util-
izes this recognition-based approach is Hippo [27]. Hippo uses a 
neural network and learns only from the positive (rare) examples, 
thus recognizing patterns amongst the positive examples, rather 
than differentiating between positive and negative examples. Sup-
port vector machines have also utilized this same approach to 
learn rare classes, with some success [43]. 
Systems that learn only the rare class may still train using exam-
ples belonging to all classes. Brute [44], Shrink [33] and Ripper 

[13] are three such data mining systems. Brute has been used to 
look for flaws in the Boeing manufacturing process [44]. Because 
the goal is to find failures (rare cases), Brute focuses only on the 
performance of the rules that predict failures. The advantage of 
Brute’s approach is summarized nicely in [34], “by measuring 
performance only of the positive predicting rules Brute is not 
influenced by the invariably high accuracy of the negative exam-
ples that are not covered by the positive predicting rules.” Shrink 
uses a similar approach to detect rare oil spills from satellite radar 
images [33]. Based on the assumption that there will be many 
more negative examples than positive examples, Shrink labels 
mixed regions (i.e., regions with positive and negative examples) 
with the positive class. The task then is to search for the “best” 
positive regions, which have the highest ratio of positive to nega-
tive examples. Ripper [13] is a rule induction system that utilizes 
a separate-and-conquer approach to iteratively build rules to cover 
previously uncovered training examples. Each rule is grown by 
adding conditions until no negative examples are covered. It nor-
mally generates rules for each class from the most rare class to the 
most common class. Given this architecture, it is quite straight-
forward to learn rules only for the minority class—a capability 
that Ripper provides. 
Not all of the classification rules generated by these systems need 
be used. Most data mining systems produce an estimate of the 
quality of each rule, typically the estimated precision of the rule 
based on the training data. Classification rules can then be ordered 
based on this quality metric and the user can then choose only the 
best m of n rules, m ≤ n. Varying the value of m will generate a 
precision/recall curve and this curve can then be used to select a 
specific solution, based on requirements for the problem. When 
using this general approach, data mining systems need not deter-
mine, a priori, at what point to stop generating positive prediction 
rules. 

3.6 Segmenting the Data 
One way to deal with rarity is to reduce the degree of rarity by 
carefully segmenting the data. Segmenting the data effectively 
partitions the original data-mining problem into separate sub-
problems. Imagine that some target event is rare, only occurring 
.001% of the time. It may be that by segmenting the data into two 
regions, R1 and R2, this target event may occur 20% of the time 
in R1 and .0001% of the time in R2. One can then mine R1 with-
out the problems associated with extremely rare classes. While it 
will be even more difficult to mine R2 for the target events, this 
may be acceptable, since R1 may contain the majority of these 
events. 
As a real-world example, imagine that a telephone company is 
interested in identifying all dedicated dial-up lines used to connect 
a home computer to an Internet Service Provider. The telephone 
company will have the calling history for each phone line, which 
includes the time and duration of each call, the day of week of 
each call, the calling numbers dialed, etc.  In addition, the tele-
phone company will have some modest list of phone lines for 
which the purpose of the line is known (i.e., a training set). Since 
most lines are not dedicated PC data lines, this data-mining task 
involves rarity. One strategy is to partition the phone lines into 
three segments based on weekly minutes of usage: low usage, 
medium usage, and high usage. Since most dedicated PC lines 
will have a relatively high number of weekly minutes of usage, 
one would expect these lines to be much less rare in the high us-
age segment than in the other segments. Thus, one can probably 
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do a fairly good job of identifying the dedicated lines in the high 
usage segment—which will probably account for most dedicated 
data lines. Thus, the problem has been simplified. Segmentation 
can be viewed as a specific instance of how knowledge (Section 
3.4) can be used to address rarity. 

3.7 Accounting for Rare Items 
Association rule mining can suffer from the rare item problem 
(described in Section 2.3), in which significant associations be-
tween rarely occurring items may be missed, because the mini-
mum support value, minsup, must not be set low, in order to avoid 
a combinatorial explosion of associations. This problem can be 
solved by specifying multiple minimum levels of support to re-
flect the frequencies of the associated items in the distribution 
[37]. Specifically, the user can specify a different minimum sup-
port for each item. The minimum support for an association rule is 
then the lowest minsup value amongst the items in the rule. Asso-
ciation rule mining systems are tractable mainly because of the 
downward closure property of support: if a set of items satisfies 
minsup then so do all of its subsets. While this downward closure 
property does not hold with multiple minimum levels of support, 
the standard Apriori algorithm for association rule mining can be 
modified to satisfy the sorted closure property for multiple mini-
mum levels of support [37]. The use of multiple minimum levels 
of support then becomes tractable. Empirical results indicate that 
the new algorithm is able to find meaningful associations involv-
ing rare items without producing a huge number of meaningless 
rules involving common items. 

3.8 Cost-Sensitive Learning 
In many data mining tasks (e.g., medical diagnosis), it is the rare 
classes/cases that are of primary interest. Metrics that do not take 
this into account generally do not perform well in these situations. 
One solution is to use cost-sensitive learning methods [38]. These 
methods can exploit the fact that the value of correctly identifying 
the positive (rare) class outweighs the value of correctly identify-
ing the common class. For two-class problems this is done by 
associating a greater cost with false negatives than with false posi-
tives. This strategy is appropriate for most medical diagnosis tasks 
because a false positive typically leads to more comprehensive 
(i.e., expensive) testing procedures that will ultimately discover 
the error, whereas a false negative may cause a life-threatening 
condition to go undiagnosed, which could lead to death. 
Assigning a greater cost to false negatives than to false positives 
will improve performance with respect to the positive (rare) class. 
If this misclassification cost ratio is 3:1, then a region that has ten 
negative examples and four positive examples will nonetheless be 
labeled with the positive class. Thus non-uniform costs can bias 
the classifier to perform well on the positive class—where in this 
case the bias is desirable. One problem with this approach is that 
specific cost information is rarely available. This is partially due 
to the fact that these costs often depend on multiple considera-
tions that are not easily compared [10]. For example, in the medi-
cal diagnosis task the considerations involve the probability that 
an undiagnosed condition will lead to death, the “cost” of a false-
positive on a patient’s well being, etc. Thus, without specific cost 
information, it may be more practical to only predict the rare class 
(Section 3.5) and generate an ordered list of the best positive-
predicting rules. Then one can decide where to place the threshold 
after data mining is complete. 

Most modern data mining systems can handle cost-sensitivity 
directly, in which case cost information can be passed to the data-
mining algorithm. In the past such systems often did not have this 
capability. In this case cost-sensitivity was obtained by altering 
the ratio of positive to negative examples in the training data, or, 
equivalently, by adjusting the probability thresholds used to as-
sign class labels [16]. While these “indirect” methods for handling 
cost sensitivity do work, they have some undesirable conse-
quences. This has caused some techniques for handling rarity to 
be misused. This will be discussed in detail in Section 4. 

3.9 Sampling 
One of the most common techniques for dealing with rarity is 
sampling. The basic idea is to eliminate or minimize rarity by 
altering the distribution of training examples. Typically the class 
distribution is altered to reduce the problems associated with rare 
classes, but the distribution of cases can also be altered to deal 
with rare cases [24; 48]. In most of this section we focus on the 
use of sampling to reduce class imbalance. 

3.9.1 Basic Sampling Methods 
The basic sampling methods include under-sampling and over-
sampling. Under-sampling eliminates majority-class examples 
while over-sampling, in its simplest form, duplicates minority-class 
examples. Both of these sampling techniques decrease the overall 
level of class imbalance, thereby making the rare class less rare. 
These sampling methods have several drawbacks. Under-sampling 
discards potentially useful majority-class examples and thus can 
degrade classifier performance. Because over-sampling introduces 
additional training cases, it can increase the time necessary to 
build a classifier. Worse yet, because over-sampling often in-
volves making exact copies of examples, it may lead to overfitting 
[11; 15]. As an extreme case, classification rules may be intro-
duced to cover a single, replicated, example. More importantly, 
over-sampling introduces no new data—so it does not address the 
fundamental “lack of data” issue described in Section 2.2. This 
explains why some studies have shown simple over-sampling to 
be ineffective at improving recognition of the minority class [15, 
36] and why under-sampling may be a better choice [15]. How-
ever, a study that used artificial domains came to the opposite 
conclusion [28]. The next section describes advanced sampling 
methods that can overcome some of the weaknesses described in 
this section. 

3.9.2 Advanced Sampling Methods 
Advanced sampling methods may use intelligence when remov-
ing/adding examples or combine under-sampling and over-
sampling techniques. One under-sampling strategy [35] only re-
moves majority-class examples that are redundant with other ex-
amples or border regions with minority-class examples, figuring 
that they may be the result of noise. SMOTE [11], on the other 
hand, over-samples by introducing new, non-replicated minority-
class examples. Minority-class examples are generated by adding 
examples from the line segments that join the k minority-class 
nearest neighbors (SMOTE uses k=5). This causes additional gen-
eralization, as opposed to the specialization that may arise from 
exactly replicating examples. A mixture-of-experts approach [17] 
has been used to combine the results of many classifiers, each 
induced after over-sampling or under-sampling the data with dif-
ferent over/under-sampling rates. This approach recognizes the 
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fact that it is still unclear which sampling method performs best, 
what sampling rate should be used—and that the proper choice is 
probably domain specific. Results indicate that the mixture-of-
experts approach performs well, generally outperforming another 
method (AdaBoost) with respect to precision and recall on text 
classification problems, and doing especially well at covering the 
rare, positive, examples. 
A different approach involves identifying a good class distribution 
for data mining—one that will lead to good results—and then 
generating samples with that distribution. Chan and Stolfo [9] run 
a set of preliminary experiments to identify a good class distribu-
tion and then sample in such a way as to generate multiple train-
ing sets with the desired class distribution. Each training set 
typically includes all minority-class examples and a subset of the 
majority-class examples; however, each majority-class example is 
guaranteed to occur in at least one training set, so no data is 
wasted. The learning algorithm is applied to each training set and 
meta-learning is used to form a composite learner from the result-
ing classifiers. This approach can be used with any learning 
method and Chan and Stolfo evaluate it using four different learn-
ing algorithms. The same basic approach for partitioning the data 
and learning multiple classifiers has been used with support vector 
machines. The resulting SVM ensemble [53] was shown to out-
perform both under-sampling and over-sampling. While these 
ensemble approaches are effective for dealing with rare classes, 
they assume that a good class distribution is known. This can be 
estimated using some preliminary runs, but this increases the time 
required to learn. 
Another method that uses this general approach employs a pro-
gressive-sampling algorithm to build larger and larger training 
sets, where the ratio of positive to negative examples added in 
each iteration is chosen based on the performance of the various 
class distributions evaluated in the previous iteration [52]. Ex-
perimental results indicate that the class distribution will generally 
converge to a good, nearly optimal, value for learning. This ap-
proach assumes that not all possible training examples are imme-
diately available, but rather that there is a cost associated with 
procuring each example. This method will perform well when 
such costs exist since it takes procurement costs into account. This 
can be contrasted with most other sampling schemes, where it is 
assumed that there is some large collection of examples, ready, 
without cost, for learning. 
The methods described thus far are designed to reduce class im-
balance. While existing research [52] indicates that reducing class 
imbalance will tend to also reduce within-class imbalances (i.e., 
make rare cases less rare), it is natural to ask whether sampling 
can be used in a more direct manner to reduce within-class imbal-
ances—and if this is beneficial. This question has been studied 
using artificial domains [24]. The results indicate that it is not 
sufficient to eliminate between-class imbalances (rare classes) in 
order to learn complex concepts that contain rare cases. Only 
when the within-class imbalances are also eliminated can the con-
cept be learned well. This suggests that sampling should be used 
to improve the performance associated with rare cases. Unfortu-
nately, there are a few problems with implementing the strategy 
for real-world domains. First, one does not know, a priori, any-
thing about the rare case(s). However, assuming that rare cases 
cause small disjuncts, one could sample based on disjunct size, 
with the goal of equalizing the sizes of the disjuncts in the in-
duced classifier. An alternative method would be to use clustering 
to identify possible rare cases and then sample to equalize these 

cluster sizes. A second issue is that there generally will not be 
additional examples available for the minority class—most sam-
pling strategies use all minority-class examples. However, this 
could be addressed by generating new examples using a technique 
such as SMOTE [11]. 

3.10 Other Methods 
This section describes a variety of other methods for dealing with 
rarity. In some cases one could argue that these methods fit into 
one of the previously established categories (3.1-3.9), but we 
believe that these methods warrant their own categories. 

3.10.1 Boosting 
Boosting algorithms, such as AdaBoost [46], are iterative algo-
rithms that place different weights on the training distribution 
each iteration. After each iteration boosting increases the weights 
associated with the incorrectly classified examples and decreases 
the weights associated with the correctly classified examples. This 
forces the learner to focus more on the incorrectly classified ex-
amples in the next iteration. Because rare classes/cases are more 
error-prone than common classes/cases [51; 52], it is reasonable 
to believe that boosting may improve their classification perform-
ance because, overall, it will increase the weights of the examples 
associated with these rare cases/classes. Note that because boost-
ing effectively alters the distribution of the training data, one 
could consider it a type of advanced sampling technique. 
AdaBoost’s weight-update rule has been made cost-sensitive, so 
that examples belonging to rare class(es) that are misclassified are 
assigned higher weights than those belonging to common 
class(es). The resulting system, Adacost [18], has been empiri-
cally shown to produce lower cumulative misclassification costs 
than AdaBoost and thus, like other cost-sensitive learning meth-
ods, can be used to address the problem with rare classes. 
Boosting algorithms have been developed to directly address the 
problem with rare classes. In each iteration of boosting, Rare-
Boost [31] scales false-positive examples in proportion to how 
well they are distinguished from true-positive examples and scales 
false-positive examples in proportion to how well they are distin-
guished from true-negative examples. Because AdaCost, unlike 
RareBoost, does not stratify these measures separately, it is be-
lieved that AdaCost may sometimes over-emphasize recall, thus 
leading to poorer precision. A second algorithm that uses boosting 
to address the problems with rare classes is SMOTEBoost [12]. 
This algorithm recognizes that boosting may suffer from the same 
problems as over-sampling (e.g., overfitting), since boosting will 
tend to weight examples belonging to the rare classes more than 
those belonging to the common classes—effectively duplicating 
some of the examples belonging to the rare classes.  Instead of 
changing the distribution of training data by updating the weights 
associated with each example, SMOTEBoost alters the distribution 
by adding new minority-class examples using the SMOTE algo-
rithm [11]. Empirical results indicate that this approach allows 
SMOTEBoost to achieve higher F-values than Adacost [12]. 
Boosting has been analyzed from a theoretical perspective to de-
termine whether it is guaranteed to improve the classification per-
formance of any base learner for the rare class [30]. This analysis 
shows that no such guarantee exists. Rather, the performance 
improvement from boosting is shown to be strongly tied to the 
choice of the base learning algorithm and boosting will perform 
poorly if the base learner always achieves poor precision or preci-
sion. This analysis shows, however, that if the base learner can 
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effectively trade-off precision and recall, then boosting can sig-
nificantly improve the performance of the base learner. A practical 
result is that one can often determine which base learner to use for 
boosting based on the performance of the learner without boosting. 

3.10.2 Two Phase Rule Induction 
Induction techniques that deal with rare classes must try to maxi-
mize precision and recall. Most induction techniques try to opti-
mize these two competing measures simultaneously. According to 
one view this is simply too difficult to accomplish for complex 
problems. PNrule [29] uses two-phase rule induction to focus on 
each measure separately. In the first phase, if high precision rules 
cannot be found then lower precision rules are accepted, as long 
as they have relatively high recall. So, the first phase focuses on 
recall. In the second phase precision is optimized. This is accom-
plished by learning to identify false positives within the rules from 
phase 1. Returning to the needle and haystack analogy, this ap-
proach identifies regions likely to contain needles in the first 
phase and then learns to discard the strands of hay within these 
regions in the second phase. Two phase rule induction deals with 
rare cases by handling two of the problems described in Section 2. 
The presence of the second phase permits the first phase to be 
sensitive to the problem of small disjuncts (Section 2.2) while the 
second phase allows the false positives to be grouped together, 
addressing the problem of data fragmentation (Section 2.4).2 
Experimental results [29] indicate that PNrule performs competi-
tively with other disjunctive learners on easy problems, but that as 
more complex concepts are introduced (with many rare cases), the 
performance of the other learners degrades, while PNrule main-
tains high performance. These results also show that PNrule out-
performs AdaBoost, especially for rare classes. The reason 
provided for this is that boosting lacks the ability of PNrule to 
collect the relevant false positives and to explicitly learn rules to 
exclude them. 

3.10.3 Place Rare Cases into Separate Classes 
Rare cases make data mining difficult, especially if there are a 
large number of rare cases. The underlying issue is that different 
rare cases may have little in common between them, making it 
difficult for one learner to assign the same class value to all of 
them. One possible solution is to reformulate the original problem 
so that the rare cases are viewed as separate classes. Japkowicz 
[25] implemented this approach by 1) separating each class into 
subclasses using clustering, 2) relabeling the training examples 
based on the subclasses (i.e., clusters) and then 3) re-learning on 
the revised training set. Because multiple clustering experiments 
were used in step 1, step 2 involves learning multiple models, 
which are subsequently combined using voting. The performance 
results from this study are promising, but not conclusive, and 
additional research is needed. 

4. DISCUSSION 
This section discusses various issues associated with addressing 
rarity. Section 4.1 provides a mapping from each problem associ-
ated with rarity, listed in Section 2, to method(s) from Section 3 

                                                                 
2 Whereas the data fragmentation problem usually relates to keep-

ing positive examples together, in this case the issue is keeping 
the false positives together, to avoid the problem with splintered 
false positives [6]. 

for addressing that problem. In Section 4.2 we compare and con-
trast the methods for dealing with rarity and point out drawbacks 
with some of these methods. Finally, in Section 4.3 we discuss the 
relationship between rare classes and rare cases. We show that 
these two forms of rarity are related and have similar problems 
and “solutions”. Throughout this section we refer to the problems 
in Section 2 and methods for addressing these problems in Sec-
tion 3 using the corresponding section number (e.g., 2.2 or 3.5). 

4.1 Mapping of Problems to Solutions 
Table 1 summarizes the mapping of problems with rarity to the 
methods for addressing these problems. Note that for each prob-
lem multiple solutions are available. In these cases we list the best 
(most direct, most useful) solutions first and italicize those solu-
tions that only indirectly address the underlying problem. 

Data Mining Problem Method to Address the Problem 
2.1: Improper evaluation metrics 
     - for evaluating final result 
     - to guide data mining 

3.1: More appropriate eval. metrics 
3.8: Cost-sensitive learning 

3.9: Over-Sampling 2.2: Absolute Rarity 
 Remainder identical to cell below 
2.3: Relative Rarity 
     “needles in a haystack” 

3.5: Learn only the rare class 
3.6: Segmenting the data 
3.9: Sampling (over- and under-) 
3.2: Non-greedy search techniques 
3.10.2: Two-phase rule induction 
3.7: Accounting for rare items 
3.8: Cost-sensitive learning 
3.4: Knowledge/human interaction 
3.10.3: Rare cases into separate classes 
3.1: More appropriate eval. metrics 
3.3: More appropriate inductive bias 
3.10.1: Boosting 

2.4: Data Fragmentation 
   “rare classes/cases split apart” 

3.2: Non-greedy search techniques 
3.10.2 Two-phase rule induction 
3.5: Learn only the rare class 
3.10.3: Rare cases into separate classes 
3.9:  Sampling 

2.5: Inappropriate Bias 3.3: More appropriate inductive bias 
3.1: Appropriate evaluation metrics 
3.8: Cost-sensitive learning 

2.6: Noise 3.9.2 Advanced Sampling 
3.3: More appropriate inductive bias 

Table 1: A mapping of data mining problems associated with 
rarity to methods for addressing these problems. 

Most of Table 1 requires no explanation, although the precise 
ordering of methods within each cell is certainly open to debate. 
We choose to focus our discussion on Problem 2.2 and Problem 
2.3. First consider Problem 2.3, the problem of relative rarity. 
Table 1 lists twelve methods for dealing with this problem—
which includes all of the methods listed in Section 3. For this 
problem most methods are quite good at dealing with the underly-
ing problem and hence the ordering of the methods is somewhat 
arbitrary. Those methods that are not specifically geared toward 
solving this problem tend to be listed later (e.g., cost-sensitive 
learning).  Because Problem 2.2, the problem with absolute rarity, 
shares many characteristics with the problem of relative rarity, 
they share the same solutions. In particular, note that when there 
is a problem with absolute rarity there will also be a problem with 
relative rarity (assuming the data set is not very small). For Prob-
lem 2.2 we highlight the over-sampling method by listing it first, 
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since this is the only method that directly addresses the problem 
with absolute rarity (i.e., it introduces additional rare examples). 
Specifically, over-sampling can try to address the underlying 
problem by duplicating existing rare examples (not necessarily a 
good idea), synthetically generating new rare examples, or, ide-
ally, procuring new rare examples (e.g., buying more data, survey-
ing additional people likely to belong to a rare class, etc.). For the 
“relative” data problem, sampling is instead used to rebalance the 
distribution, to reduce between-class or within-class imbalances. 
Thus, under-sampling can prevent the common cases/classes from 
hiding the rare cases/classes. As we shall see in the next section, 
rebalancing the data has its drawbacks. 

4.2 Comparative Evaluation of the Solutions 
The previous section summarizes the mapping of problems asso-
ciated with rarity to methods for addressing these problems. The 
critical question then becomes, which methods are best? Unfortu-
nately, there have been no comprehensive empirical studies that 
evaluate all, or even most, of the methods listed in Table 1. Each 
research study typically compares its method for handling rarity to 
a base learner that has no special modifications for handling rar-
ity, or to one or two very similar methods. Sampling techniques 
have generated the most research in this area and there are a few 
studies [15; 28] that compare sampling methods. Unfortunately, 
even in this case the conclusions are not consistent. The best we 
can do is to compare the ways some of the methods operate, de-
scribe drawbacks with these methods and discuss some miscon-
ceptions that result in some of these methods being misapplied. 
Because sampling is the most-used methods for dealing with rar-
ity, much of this discussion revolves around sampling. 

4.2.1 Equivalence of Sampling and Other Methods 
There exists the notion that various methods for dealing with rar-
ity and class imbalance are equivalent. In particular, Breiman [5] 
establishes the connection between the distribution of training-set 
examples, the prior probability of each class, the costs of mistakes 
on each class and the placement of the decision threshold. Thus, 
for example, one can make false negatives twice as costly as false 
positives by using cost-sensitive learning or by increasing the 
ratio of positive to negative examples in the training set by a fac-
tor of two. Each of the quantities listed by Breiman can be altered 
to help deal with rarity—and many of the techniques (e.g., sam-
pling) in Section 3 rely on this. As it turns out, in practice the 
above-mentioned equivalence does not hold, even though it may 
hold theoretically. One practical consideration is that the “precise 
relationship among these things is complex and task- and method-
specific” [11]. A second issue is that one does not have complete 
freedom to vary these quantities. This especially causes problems 
with sampling and has caused many practitioners and researchers 
to misuse sampling, or, at the very least, not properly identify how 
sampling addresses the problems associated with class imbalance. 
As a concrete example, suppose a training set has 10,000 exam-
ples and a class distribution of 100:1, so that there are only 100 
positive examples. One way to improve the identification of the 
rare class is to impose a greater cost for false negatives than for 
false positives. Suppose we choose a ratio of 100:1, even though 
we may not have actual cost information. This is theoretically 
equivalent to using a training distribution with a balanced (1:1) 
class distribution. However, can one generate such a distribution 
in practice? For the equivalence to truly hold, one must sample 
from the original distribution in order to balance the classes. 

However, this is generally not possible, because, except for artifi-
cial domains, we do not know the true distribution and additional, 
unused, training examples are typically not available. In practice 
what would be done is to discard majority-class examples (under-
sample), duplicate minority-class examples (over-sample), or use 
some combination of both in order to achieve the desired 1:1 class 
ratio. As discussed in Section 3.9, these sampling methods intro-
duce problems—they either discard potentially useful data or 
duplicate examples, which may lead to overfitting. Even generat-
ing new, synthetic, minority-class examples violates the equiva-
lence, since these examples will, at best, only be a better 
approximation of the true distribution. 

4.2.2 Unintended Consequences of Sampling 
Another significant concern with sampling is that the impact that 
sampling has on rare classes is often not fully understood, or con-
sidered. This has definite consequences for data mining. Increas-
ing the proportion of examples belonging to the rare class will 
have two effects. First, it will help address Problems 2.2 and 2.3, 
the problems with absolute and relative rarity. However, if no 
other action is taken, it will also have a second effect—it will 
impose non-uniform error costs, causing the learner to be biased 
in favor of predicting the rare class. In some situations (described 
in the next section) this second effect is not desired. The intent in 
these situations is to improve performance with respect to the rare 
class by having more data available for that class, not by biasing 
the data mining algorithm toward that class. Thus, this bias should 
be removed. This can be done using the equivalences noted in 
Section 4.2.1 to account for the differences between the training 
distribution and the underlying distribution [16; 52]. For example, 
the bias can be removed by adjusting the decision thresholds. 
One study [52] on class distribution shows the advantages of ad-
justing for this bias. This study shows that by altering the class 
distribution of the training data so that it deviates from the natu-
ral, underlying, distribution, improved classifier performance is 
possible. However, classifier performance was improved more 
when the bias just described was removed by adjusting the deci-
sion thresholds within the classifier. Other research studies that 
investigate the use of sampling to handle rare cases and class im-
balance do not remove this bias—and worse yet, do not even dis-
cuss the implications of this decision. This issue must be 
considered much more carefully in future studies. 

4.2.3 Some Recommendations and Guidelines 
Many of the methods for addressing rarity are still in the research 
stage or are not widely implemented (e.g., two-phase rule-
induction) or are widely available but the advantages for dealing 
with rarity are not conclusively proven (e.g., boosting). Still oth-
ers are domain specific and cannot always be utilized (e.g., seg-
mentation). In this section we focus our attention on two of the 
most widely used techniques for dealing with rarity—sampling 
and cost-sensitive learning. 
Given the previous discussion, what recommendations can we 
make concerning the use of sampling and cost-sensitive learning? 
First, one should use all available training data, regardless of the 
resulting distribution of classes (or cases), if feasible. Thus, no 
data is discarded and no information is lost. If cost information is 
known, then a cost-sensitive learning algorithm should be used. If 
specific cost information is not known, but the performance of the 
rare class is unsatisfactory, then several options should be investi-
gated. One option is to use cost-sensitive learning and vary the 
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cost ratios, in order to improve the performance of the rare classes 
at the expense of the common classes. By using this method in-
stead of sampling, “all of the data can be used (to produce the 
tree) thus throwing away no information, and learning speed is not 
degraded due to duplicate instances” [14, page 239]. This recom-
mendation is also supported by research that shows that such 
methods outperform over-sampling and under-sampling [28]. 
Other alternatives from Table 1 are also available, most notably 
learning only rules that predict the rare class. 
If the amount of training data must be limited because of tractabil-
ity issues or because training data is costly to acquire, then sam-
pling must be used. If one class is very rare, the sampling method 
should include all examples belonging to that class. Cost informa-
tion, if available, can be used to help select the relative sampling 
rate of the classes. If sampling is being used to reduce the size of 
the training set—and not to impose non-uniform misclassification 
costs—then any bias imposed by the sampling scheme should be 
eliminated, as described in Section 4.2.2. 
Ideally, the relative sampling rate between classes should be cho-
sen so that the generated distribution provides the best results. 
Unfortunately, as shown by Weiss and Provost [52], there is no 
general answer as to which class distribution will perform best, 
and the answer is surely method and domain dependent. Nonethe-
less, the empirical results from this study do provide some rec-
ommendations about which class distributions often perform best. 
A better approach is to try to determine, for a given domain and 
learning algorithm, which class distribution will perform best. A 
progressive sampling scheme has been shown to be effective at 
finding a near-optimal class distribution for learning [52], al-
though this does require some additional computation. Additional 
research is needed into ways to efficiently identify a good class 
distribution for learning. 
It is worth pointing out that state-of-the-art commercial data min-
ing systems (e.g., SAS Enterprise Miner) currently provide many 
of the features necessary to deal with rarity.  For example, they 
allow one to sample so that the training data deviates from the 
underlying distribution and can be configured to automatically 
remove the bias imposed by this sampling scheme. Such systems 
now can also handle complex misclassification functions, as re-
quired to perform cost-sensitive learning. Some of these systems 
can also dynamically alter the decision thresholds of induced clas-
sifiers, in order to evaluate how these changes affect overall per-
formance. Thus one can see how different misclassification costs 
would affect learning without re-learning. Finally, modern data 
mining systems also permit one to evaluate the end result of data 
mining using a wide variety of metrics (e.g., ROC curves, lift 
curves, etc.), which makes it easier to assess the performance of 
rare classes. 

4.3 Rarity: Rare Cases versus Rare Classes 
 Both rare cases and rare classes are problematic for data mining. 
This section begins by describing the connection between rare 
cases and rare classes and then shows that both forms of rarity 
cause similar problems for data mining—and that these problems 
can often be addressed using the same methods. 
Earlier in this article it was stated that rare classes tend to have a 
higher proportion of rare cases than common cases. This is sup-
ported by an empirical study that shows that, over twenty-six two-
class learning problems, minority-class rules consistently are 
made up of smaller disjuncts than the majority-class rules [52]. 
Specifically, these results show that for the eighteen data sets with 

a class distribution of at least 2:1, only in two cases does the ma-
jority class have a smaller average disjunct size than the minority 
class. Thus, between-class and within-class imbalances are linked. 
Therefore, we expect that when class imbalance (i.e., between 
class imbalance) is reduced, then within-class imbalance will also 
be reduced. 
We now argue that rare classes and rare cases are not just linked, 
but are very similar phenomena. That is, both forms of rarity af-
fect data mining in a similar way and hence the problems associ-
ated with both forms of rarity can be addressed using the same 
methods. Consider the problems associated with rarity. Of the six 
problems listed in Section 2 and summarized in Table 1, all apply 
equally to rare cases and rare classes. For example, data fragmen-
tation can be a problem for rare classes because the examples 
belonging to the rare classes can become separated; similarly, it 
can be a problem for rare cases because the examples belonging to 
each rare case can become separated. Thus, both rare classes and 
rare cases share the same fundamental problems. This equivalence 
should not be surprising since a rare case can be viewed as a rare 
class (Method 3.10.3, which maps rare cases into separate classes, 
relies on this). 
Next we cover the methods for addressing rarity. Methods 3.1-3.4 
apply equally to both rare classes and rare cases. Method 3.5, 
which involves learning only the rare class, by definition only 
applies to rare classes. However, if we could identify rare cases, 
then one could generalize it to include rare cases (i.e., only predict 
one rare case at a time). This is in fact what Method 3.10.3 does 
(it uses clustering to split each rare case into a rare class and then 
learns each class separately). Thus we consider Methods 3.5 and 
3.10.3 to be specific instances of the same general method—a 
method that handles both rare classes and rare cases. 
Method 3.6, which involves segmenting the data, can also apply 
to rare classes and rare cases, although, as in the last case, it may 
be harder to segment rare cases than rare classes. Method 3.7 
deals with associations between rare items, and therefore applies 
only to rare cases (associations are considered to be cases, al-
though one could argue they are a distinct form of rarity). Method 
3.8, cost sensitive learning, applies most directly to rare classes, 
since misclassification costs are normally assigned based on the 
actual and predicted class value. Costs can be assigned based on 
characteristics of each example, but since rare cases are not easily 
identified a priori, this method does not seem applicable, in prac-
tice, to rare cases. Since Method 3.9, sampling, has been used to 
reduce within-class imbalances as well as between-class imbal-
ances [24], it can be applied to both rare cases and rare classes. 
Both boosting (3.10.1) and two-phase induction (3.10.2) can be 
used to address the problems with rare classes and rare cases. As 
was shown earlier, Method 3.10.3 is a counterpart of Method 3.5, 
and the general technique shared by both can be applied to both 
forms of rarity. 
The discussion in this section therefore shows that rare classes 
and rare cases suffer from similar problems and that most methods 
for addressing rarity apply to both rare cases and rare classes. A 
few methods apply mainly to rare classes, but could be applied to 
rare cases if the rare cases could be more easily identified. While 
this is generally not possible for real-world domains, as described 
earlier unsupervised learning methods such as clustering can help 
(alternatively one could rely on small disjuncts to help identify 
rare cases). This section therefore shows that rare cases and rare 
classes can be viewed using a common framework and that meth-
ods developed to address a problem with one of these will usually 
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benefit the other. This common framework is especially promising 
given that most recent research on rarity has focused on between-
class imbalances, while within-class imbalances may actually be 
more problematic [24]. Thus, we may be able to leverage methods 
for dealing with between-class imbalances to deal with within-
class imbalances. 

5. CONCLUSION 
This article investigates the issues related to mining in the pres-
ence of rare classes and rare cases. The problems that can arise 
from these two forms of rarity are categorized and described in 
detail. Methods for addressing these problems are also described 
and a mapping from “problems” to “solutions” is provided. In 
most instances the descriptions of the problems and solution 
methods include descriptions of relevant research and data mining 
programs; thus, this article also provides a good survey of the 
literature on data mining with rare classes and rare cases. This 
article also demonstrates that rare classes and rare cases both suf-
fer from the same set of problems and generally can benefit from 
the same solutions. Thus both forms of rarity can be viewed as 
being instances of the same basic phenomenon. This realization 
should certainly impact future research. 
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