Middleware Challenges Ahead

Kurt Geihs, Goethe University

Presented by Eric Leshay

CS 525M Mobile Computing

Overview

- Middleware, what is it?
- Applications in the Enterprise
- Applications across the WWW
- Quality of Service Requirements
- Mobile and Ubiquitous computing
- Review of current network models
- Shared memory
- The art of abstraction
- Architecture Decisions
- ACMS a Middleware Example

What is Middleware?

- An inherently gray area
- The software layer between the operating system and the distributed application.
- Key concept is abstraction

3

History of Middleware

• **DACNOS** in 1980

- Asynchronous Communication
- Simple shared object model
- Middleware Today
 - Component models
 - RMI / RPC

WPI

In the Enterprise

- Heterogeneous environment requiring homogenous communication
- Business over the Internet
 - Large scale configuration
 - Diverse interaction methods
 - Autonomous partners
 - Heterogeneous data views

Example: Vacation Reservation

- Create a reservation for flight, rental car and hotel in one transaction
- Underlying procedure chain of RPC / RMI calls
 - Too constraining
 - Desire an interaction model without spatial and temporal coupling

6

Performance Issues on the WWW

- Desire short response times for a fluctuating user base
- Desire persistent user sessions however storing data on the server is no longer economical or practical
- Security Entities exchanging information cannot trust each other or the network
- Desire Quality of Service guarantees
- Internet applications must be able to communicate with legacy applications

Middleware improvements Required for use over the Internet

- Autonomy
- Decentralized authority
- Intermittent Connectivity
- Able to evolve
- Scalability

8

Quality of Service (QoS)

- Response Time
- Availability
- Data Accuracy and Consistency
- Security
- Consumers pay for a certain level of QoS
- Existing research has been done adding QoS to Corba, but no formal procedure has been developed yet

9

Nomadic Mobility

- Variable Resources
 - Laptop, PDA, phone
 - Connection strength, bandwidth
 - Intermittent connections, devices shut on/off regularly
- Too much abstraction is a bad thing

 Context aware applications

10

Ubiquitous Computing

- Microscopic computers built into everyday objects forming a "personal area network"
- Devices communicate wirelessly to create ad hoc networks on the fly
- If IPv6 provides seemingly infinite IP addresses, should some be single use and disposable?

11

Networking Models

- Traditional Client-Server
 - Blocking protocol
 - PULL model
- Subscription method
 - *PUSH* model
- Peer-Peer networks
 - Everyone is a client and server

12

Asynchronous Interaction

Desire Parallelism

- Traditional methods: multithreading or non blocking I/O
- SOAP using HTTP and XML provides one-way messaging
- Event driven applications

13

Shared Memory

- Middleware creates the appearance or abstraction of shared memory
 - Linda tuple space approach
 - JavaSpace
- Concurrency and critical sections become restrictive when applied to mobile devices

14

Mobile Agents

- Each agent is an autonomous entity
- Agents communicate creating a community of individuals
- Issues
 - Security and trust
 - Requires a homogeneous environment

Distribution Transparency

- Goal is to hide as much details from the user as possible.
- Contrary to this principle context aware applications need access to many of these details.
 - What details are hidden and which are accessible?
 - How and when do we decide?
 - Is it customizable?

16

Layering

- Typical layering architectures like the OSI model, involve interaction only between adjacent layers
- Mobile applications require communication between non-adjacent layers.
 - Context aware applications need IP to calculate location
 - Security requirements may require access to authentication protocols

17

Monolithic Architectures

- Current Middleware Solutions
 inadequate
 - Not light weight (bloated)
 - Not customizable
 - Desire a low overhead solution
- Requires future research into design patterns supporting QoS management and adaptation.

18

Adaptive Applications

- Middleware must be context aware, not just the application
- Middleware can monitor resources such as bandwidth, connection and power
- Middleware can inform applications when adaptation is necessary to maintain QoS

19

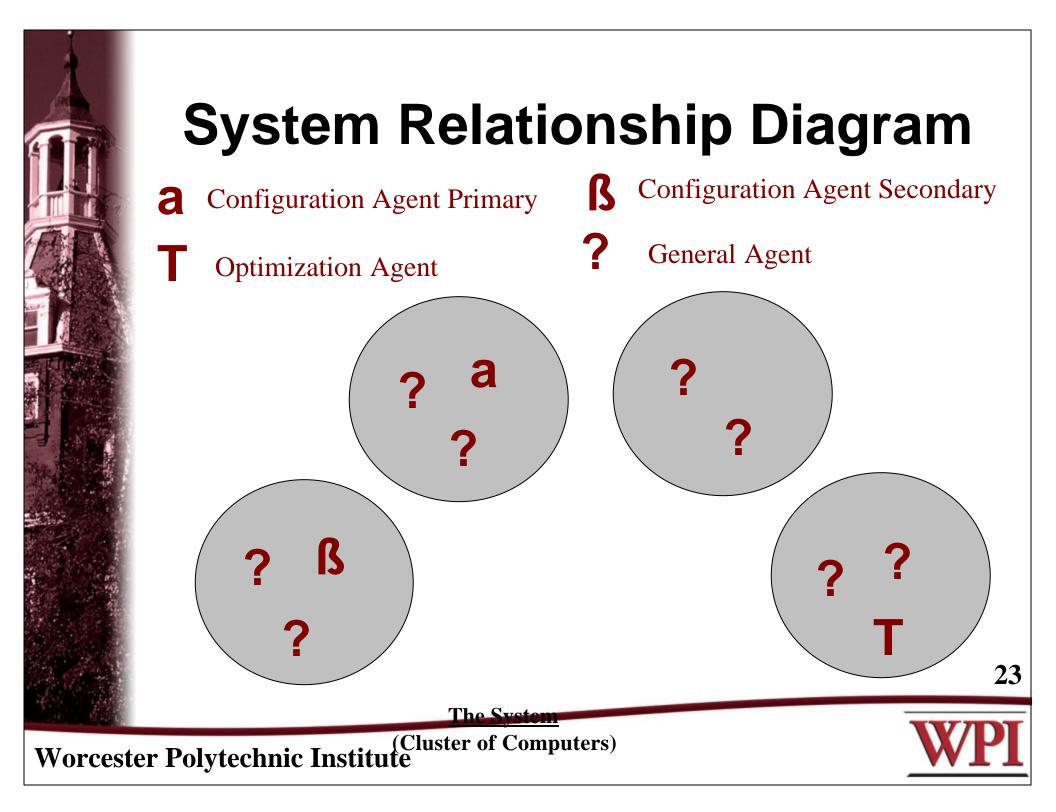
Middleware Example

- Autonomic Cluster Management
 System (ACMS) MQP at WPI
 - Mobile multi-agent system
 - Provided a framework for running distributed processes on a heterogeneous cluster
 - Agents were written in Java

20

Mobile Agents

- Agents had specific roles
- Each agent worked independently, but as a community they worked toward a common goal.
- Agents could be relocated or spawned from one machine to another in response to faults or system load.
- Agents gathered system statistics and communicated them to a central authority


21

- Agents discovered each other through polling
- Community of agents created on-thefly over an existing network
- Used certificates and SSL for security and authentication against rogue agents
- Provided single fault tolerance

22

Addisas 128-195219-125 123-193219-125 123-193219-123 128-185219-123 128-185219-123 126-185219-123	1 (D.S.) 1 102 1 1.64 1 1.64	Tool Configuration Agent Configuration Agent Optimization Agent Optimization Agent Optimization Agent	Presiden Bise Pile Taise Paise	2. 2. 2. 2. 2.	-884.825 284.825 664.626 -884.825	26 ACCCOB000 1718.32 2718.32 2718.22 2718.22 1718.32 3718.22	44.5% 53.4059 51.4059 51.4070 51.4070 53.4059 53.4059	188728 136728 136728 136728 188728	011 - LAGRAU 8 82 6 52 6 75 8 87 6 79	1 kairi C 0 0 0 0
120.180.2131.25 126.100.216.124	1109	Ceneral Agent USBAQ911	ાસ્ટાજર .(હોડ≑	2	¥C4 825 0.⊅		:01. 40395 :11	189436	9.73 [1]	

Goals of the ACMS

- Create a prototype middleware system
- Manage intensive scientific applications on a cluster
- Low overhead, in the end ACMS introduced < 5% overhead

25

Any Questions?

- Well the author gave us a few to ponder ...
- What is the most appropriate programming model for the diverse application scenarios?
- Does a single distributed programming model fit all applications?
- Can we build customizable, configurable, and flexible middleware frameworks for inherently heterogeneous environments?
- What middleware features and infrastructure services will the dynamics and ad hoc nature of mobile-ubiquitous computing require?

26

References

- N. Carriero and D.Gelernter, "Lina in Context," CACM, Apr. 1989, pp. 444-458.
- Baldassari, James D., Kopec, Christopher L., Leshay, Eric S., Truszkowski, Walter, Finkel, David.
 "Autonomic Cluster Management System (ACMS): A Demonstration of Autonomic Principles at Work".
 Proceedings 2nd IEEE EASE Conference on Autonomic Computing, (April 2005).

27