
Annals of Operations Research 140, 67–124, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Integer-Programming Software Systems

ALPER ATAMTÜRK atamturk@ieor.berkeley.edu
Department of Industrial Engineering and Operations Research, University of California, Berkeley,
CA 94720–1777, USA

MARTIN W. P. SAVELSBERGH mwps@isye.gatech.edu
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA 30332–0205, USA

Abstract. Recent developments in integer-programming software systems have tremendously improved our
ability to solve large-scale instances. We review the major algorithmic components of state-of-the-art solvers
and discuss the options available to users for adjusting the behavior of these solvers when default settings do
not achieve the desired performance level. Furthermore, we highlight advances towards integrated modeling
and solution environments. We conclude with a discussion of model characteristics and substructures that
pose challenges for integer-programming software systems and a perspective on features we may expect to
see in these systems in the near future.

Keywords: integer programming, algebraic modeling languages, software

In the last decade, the use of integer-programming (IP) models and software has in-
creased dramatically. Twenty years ago, mainframe computers were often required to
solve instances with fifty to a hundred integer variables. Today, instances with thousands
of integer variables are solved reliably on a personal computer and high quality solutions
for instances of structured problems, such as set partitioning, with millions of binary
variables can frequently be obtained in a matter of minutes.

The basis of state-of-the-art integer-programming systems is a linear-programming
based branch-and-bound algorithm. Today’s IP codes, however, have become increas-
ingly complex with the incorporation of sophisticated algorithmic components, such
as advanced search strategies, preprocessing and probing techniques, cutting plane al-
gorithms, and primal heuristics. The behavior of the branch-and-bound algorithm can
be altered significantly by changing the parameter settings that control these compo-
nents. Through extensive experimentation, integer-programming software vendors have
determined “default” settings that work well for most instances encountered in practice.
However, in integer programming there is no “one-size-fits-all” solution that is effec-
tive for all problems. Therefore, integer-programming systems allow users to change the
parameter settings, and thus the behavior and performance of the optimizer, to handle
situations in which the default settings do not achieve the desired performance. A major
portion of this paper is dedicated to a discussion of the important components of modern
integer-programming solvers and the parameters available to users for controlling these

68 ATAMTÜRK AND SAVELSBERGH

components in three state-of-the-art systems: CPLEX1, LINDO2, and Xpress-MP3. We
explain how parameter settings change the behavior of the underlying algorithms and in
what situations this may be helpful. We illustrate the impact of modified parameter set-
tings on instances from the MIPLIB 2003 library (Martin, Achterberg, and Koch, 2003).

Although many integer programs can be solved well by fine-tuning parameter
settings, there remain cases in which this is not sufficient. In such cases, it may be
necessary to develop decomposition or iterative approaches, in which several models
representing different subproblems are solved in a coordinated manner, and the solution
of one model is used as the input for another model. In order to easily develop and
experiment with such approaches, a close integration of modeling tools and optimization
engines is required.

Modern integer-programming systems support several means for developing cus-
tomized solution approaches. The user can modify the basic branch-and-bound algorithm
to obtain a customized approach that can include specialized techniques such as dynamic
cut and column generation, specialized branching, or heuristics to help find feasible so-
lutions more quickly. This kind of solver customization can be accomplished at several
levels. At the highest level are the modeling languages that enable the implementation of
sophisticated algorithms using looping features and successive calls to a solver. At the
lowest level are the application programming interfaces (APIs) or subroutine libraries
that enable interaction with a solver through various low level functions within a pro-
gramming language. More recently, we have seen the emergence of environments that
fall between a modeling language and an application programming interface. These envi-
ronments aim to provide the ease of model development offered by modeling languages,
as well as the efficiency and low level controls of an API. We review some of the options
available and provide complete implementations of a simple cutting plane algorithm
using Dash Optimization’s Xpress-Mosel (Dash Optimization, 2004c) and Xpress-BCL
(Dash Optimization, 2004b), and ILOG’s OPL/OPL script (ILOG, 2002) and Concert
Technology (ILOG, 2003) as examples.

We want to emphasize that the purpose of this paper is not to compare the per-
formance of integer-programming solvers. For such comparisons we refer the reader
to the website “Benchmarks for Optimization Software” (Mittelman, 2002). Our goal
is to show what state-of-the-art integer-programming solvers are capable of, and what
advanced features and customization options they offer to the users.

Although tremendous progress has been made over the past several years, many
challenges still remain for integer-programming systems today. We will discuss model
characteristics or substructures that are known to pose difficulties for modern integer-
programming solvers. This type of knowledge is useful for practitioners, of course, but
it also points to potential research topics in the area of integer programming.

This paper is intended to be accessible and interesting for a variety of readers, from
users of integer-programming models and software who would like to understand more
about the methodology so that they can, for example, make more knowledgeable choices;
to students who are relatively new to the topic of integer programming and would like to

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 69

learn more about it; to operations researchers, computer scientists, and mathematicians
who are curious about recent developments, trends, and challenges in this active branch
of optimization.

The remainder of the paper is organized as follows. In Section 1, we present a
few examples that illustrate what modern IP solvers are capable of. In Section 2, we
describe the linear-programming based branch-and-bound algorithm that forms the ba-
sis of most integer-programming solvers. In Sections 3–7, we describe the important
algorithmic components of modern IP solvers: search, cut generation, preprocessing,
and primal heuristics. In Sections 3 and 4, we discuss the choices for node selection
and branching and their effect on the search tree. In Section 5, we discuss issues related
to cut generation and management. In Section 6, we present several relatively simple
and computationally efficient techniques for strengthening the formulations and reduc-
ing their size. In Section 7, we review techniques available for quickly finding feasible
solutions during the search. In each of the Sections 3–7, we present computations that
illustrate the impact of different parameter settings that control the corresponding com-
ponent. We present experiments on MIPLIB 2003 (Martin, Achterberg, and Koch, 2003)
instances for which changing the respective parameters have the most noticeable impact.
In Section 8, we discuss the options provided by IP solvers for developing customized
solution approaches and review the trend towards integrating modeling and optimization
more closely. In Section 9, we discuss model characteristics and substructures that pose
challenges for modern integer-programming systems, and finally, in Section 10, we con-
clude with a perspective on features that we may see appearing in integer-programming
systems in the near future.

1. Success stories

As mentioned in the introduction, integer programming is rapidly gaining acceptance
as a powerful computational tool that can provide optimal or near optimal solutions to
real-life strategic and operational planning problems.

In this section, we illustrate the advances made in integer programming in the area
of production scheduling, which is key to manufacturing across industries. The reported
speed-ups achieved by the commercial integer-programming solvers is the result of
effectively integrating many algorithmic components and enhancements (to be discussed
in the remainder of this paper), and advances in computer technology.

As linear programming is at the heart of branch-and-bound methods for integer
programming, we observe that Bixby et al. (2002) report a 2360 fold speed-up of the
CPLEX linear programming code from 1988 to 2002 and that, in the same period of
time, an additional 800 fold speed-up is obtained due to advances in hardware.

Our first example (Bixby et al., 2002) is a weekly production planning model using
daily buckets. The objective is to minimize the end-of-day inventory. The model involves
production (at a single facility), shipping (via a dedicated fleet), and demand (assumed
to be deterministic) from wholesale warehouses. Complicating constraints arise due

70 ATAMTÜRK AND SAVELSBERGH

to consecutive-day production and minimum truck fleet use requirements. When the
model was developed a few years ago, real-life instances could not be solved using
the integer-programming technology of that time (CPLEX 5.0). A two-phase approach
was developed instead. In the first phase, decisions regarding which products to assign to
which machines were made. In the second phase, with variables corresponding to product-
machines assignments fixed, a restricted version of the model was solved. Solution times
of the integer program with fixed variables using CPLEX 5.0 are about 3500 seconds
on a 2 GHz Pentium IV computer. With CPLEX 8.0 this integer program with fixed
variables can be solved in 1.4 seconds on the same computer. Moreover with CPLEX 8.0
the original model can be solved in less than 2 hours and the resulting solution is about
20% better than the one obtained with the two-phase approach.

Our second example (Dash Optimization, 2004a) is a multi-period production and
inventory planning problem arising in Procter & Gamble’s snacks business. It involves
capacity constraints, minimum lot-sizes and product changeover restrictions. The ob-
jective is to keep inventory as low as possible, while maintaining product availability.
Out-of-stocks must be avoided. The line produces ∼50 SKUs, which belong to 6 product
families. Capacity is limited, and not far in excess of average demand. Day-to-day de-
mand fluctuates; on top, there are two seasonal peaks. Due to the nature of the production
process, capacity must be 100% utilized, or planned to be shut down for a prolonged
period. Production is scheduled in multiples of full shifts (8 hours each). The process is
continuous (24/7), with the exception of planned maintenance periods. Depending on the
SKU, a minimum batch can represent a few days or several months of shipments. The
problem was formulated as a discrete lot sizing problem with backlogging. (With planning
periods defined as one shift, only one product is produced in a “bucket”, and production
must run during a whole shift.) The use of strong cutting planes resulted in (near-)integer
linear-programming relaxations and branch-and-bound times of less than one minute–on
some data sets even less than 15 seconds. This represents a speed-up of over 50 times
compared to the initial formulation. The optimization model has been integrated in an in-
house built production planning tool and the results were excellent: improved customer
service at equal or lower inventories, less disruptions (expediting/schedule changes) in
the operation. Planners’ productivity increased significantly, as a complete planning cycle
(including, among others, data transfers, checks on materials availability and warehouse
status) reduced to less than 2 hours.

2. Linear-programming based branch-and-bound

The task of an integer-programming (IP) solver is to solve an instance of the mixed-integer
program

min cx + dy
(MIP) s.t. Ax + Gy ≤ b

x ∈ ZZn
, y ∈ IRm

,

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 71

where c, d, A, G, and b are rational matrices with appropriate dimensions. Here x and
y are the variables of MIP. Each row (α, γ, β) of (A, G, b) defines a constraint of MIP.
Constraint (α, γ, β) is satisfied by a point (x, y) ∈ IRn × IRm if αx + γ y ≤ β. A point
(x, y) ∈ ZZn × IRm is said to be feasible if it satisfies every constraint of MIP. The set of
all feasible points defines the feasible region. The objective function or objective of MIP
is cx + dy. An optimal solution is a feasible point with the smallest objective function
value. The linear programming (LP) relaxation of MIP is the problem obtained from
MIP by dropping the integrality restrictions, i.e., replacing x ∈ ZZn

+ with x ∈ IRn
+. As

the feasible points of MIP form a subset of the feasible points of its LP relaxation, the
optimal value of the LP relaxation provides a lower bound on the optimal value of MIP.
Therefore, if an optimal solution to the LP relaxation satisfies the integrality restrictions,
then that solution is also optimal for MIP. If the LP relaxation is infeasible, then MIP is
also infeasible, and if the LP relaxation is unbounded, then MIP is either unbounded or
infeasible.

All commercially available IP software packages employ an LP based branch-and-
bound algorithm. To be able to use IP software packages effectively, it is imperative to
understand the use of lower and upper bounds on the optimal objective function value in
an LP based branch-and-bound algorithm. Therefore, we briefly describe the basic LP
based branch-and-bound algorithm for solving MIP. For a comprehensive exposition on
integer-programming algorithms we refer the reader to Nemhauser and Wolsey (1988)
and Wolsey (1998).

An overview of the basic LP based branch-and-bound algorithm is given in Algo-
rithm 1. The branch-and-bound algorithm follows a “divide-and-conquer” strategy by
which the feasible region of MIP is partitioned into subregions and then each subregion
is explored recursively. The algorithm maintains a list L of active subproblems which
are the optimization problems over these subregions. Let MIP(k) denote subproblem k.
The objective value of any feasible solution to MIP(k) provides an upper bound on the
global optimal value. The feasible solution with the smallest objective value found so far
is called the incumbent solution and its objective value is denoted as zbest. Let xk be an
optimal solution to the LP relaxation of MIP(k) with objective value zk . If xk satisfies
the integrality constraints, then it is an optimal solution to MIP(k) and a feasible solution
to MIP, and therefore we update zbest as min{zk, zbest}. Otherwise, there are two possi-
bilities: if zk ≥ zbest, then an optimal solution to MIP(k) cannot improve on zbest, hence
the subproblem MIP(k) is removed from consideration; on the other hand, if zk < zbest,
then MIP(k) requires further exploration, which is done by branching, i.e., by creating
q ≥ 2 new subproblems MIP(k(i)), i = 1, 2, . . . , q, of MIP(k) by dividing its the feasi-
ble region Sk into q subregions Sk(i), i = 1, 2, . . . , q. A simple realization, which avoids
xk in the subproblems of MIP(k) is obtained by selecting a variable xi for which xk

i
is not integer and creating two subproblems; in one subproblem, we add the constraint
xi ≤ �xk

i �, which is the floor of xk
i , and in the other xi ≥ �xk

i �, which is the ceiling of xk
i .

MIP(k) is replaced with its subproblems in the list L of active subproblems. The small-
est among all LP relaxation values associated with the active subproblems provides a

72 ATAMTÜRK AND SAVELSBERGH

global lower bound on the optimal value. The algorithm terminates when the global lower
bound and global upper bound are equal, in which case the list L of active subproblems
vanishes.

Algorithm 1 The Linear-Programming Based Branch-and-Bound Algorithm

0. Initialize.
L = {MIP}. zbest = ∞. xbest = ∅.

1. Terminate?
Is L = ∅? If so, the solution xbest is optimal.

2. Select.
Choose and delete a problem MIP(k) from L.

3. Evaluate.
Solve the linear programming relaxation LP(k) of MIP(k). If LP(k) is
infeasible, go to Step 1, else let zk be its objective function value and xk be its
solution.

4. Prune.
If zk ≥ zbest, go to Step 1. If xk is not integer, go to Step 5, else let zbest = zk ,
xbest = xk . Go to Step 1.

5. Branch.
Divide the feasible set Sk of MIP(k) into smaller sets Sk(i) for i = 1, . . . , q,
such that ∪q

i=1Sk(i) = Sk and add subproblems MIP(k(i)), i = 1, . . . , q, to L.
Go to Step 1.

It is convenient to represent the branch-and-bound algorithm as a search tree, in
which the nodes of the tree represent the subproblems. The top node of the tree is referred
to as the root or the root node and represents the original MIP. Subsequent descendant
(or child) nodes represent the subproblems obtained by branching. At any time, the leaf
nodes of the tree denote the list of active subproblems yet to be evaluated.

As the branch-and-bound algorithm terminates when the global lower bound and
global upper bound are equal, efforts to make the basic algorithm more efficient need to
be focused on rapidly improving these global bounds, i.e., on decreasing the global upper
bound and on increasing the global lower bound. Decreasing the global upper bound can
only be accomplished by finding improved feasible solutions during the search process.
Increasing the global lower bound, as it is the minimum over all lower bounds of actives
nodes, can only be accomplished by choosing the node with the smallest lower bound and
improve that LP bound. LP bounds are improved either by branching, i.e., dividing the
feasible region into smaller pieces, or by adding constraints to the subproblem that cut-off
the optimal LP solution but keep at least one optimal integer solution (such constraints
are often referred to as cutting planes).

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 73

The above paragraph highlights two fundamental tradeoffs in linear–programming
based branch-and-bound algorithms:

• Should we employ a strategy that focuses on improving the upper bound or one that
focuses on improving the lower bound?

• Should we employ a strategy that favors improving the lower bound through the
identification of cutting planes or one that favors improving the lower bound through
branching?

Much of the remainder of this paper is dedicated to providing a more elaborate
discussion of these tradeoffs and the options provided in modern IP solvers for tuning
the strategy so as to obtain the best performance on a class of integer programs.

Another potentially effective way of improving lower bounds is to reformulate
the problem so that the objective value of the LP relaxation of the reformulation is
higher. LP relaxations of different formulations of a problem can be vastly different
in terms of the quality of the bounds they provide. A discussion on how to generate
formulations with strong LP bounds is beyond the scope of this paper. The reader is
referred to (Wolsey, 1998) for this important topic. Preprocessing, which is discussed
in Section 6, can be viewed as a way of deriving an alternative stronger formulation by
simple transformations.

3. Node selection

As mentioned above, a fundamental tradeoff in linear–programming based branch-and-
bound algorithms is whether to focus on decreasing the global upper bound or on in-
creasing the global lower bound. The primary control mechanism available for this is the
node (subproblem) selection strategy.

A popular method of selecting a node to explore is to choose the one with the lowest
value zk . This is known as best-bound search (or best-first search). This node selection
strategy focuses the search on increasing the global lower bound, because the only way
to increase the global lower bound is to improve the LP relaxation at a node with the
lowest LP relaxation value. Another well-known method of selecting a node to explore
is to always choose the most recently created node. This is known as diving search (or
depth-first search). This node selection strategy focuses the search on decreasing the
global upper bound, because feasible solutions are typically found deep in the tree.

In addition to a different focus, both methods also have different computational
attributes. Diving search has low memory requirements, because only the sibling nodes
on the path to the root of the tree have to be stored. Furthermore, the changes in the linear
programs from one node to the next are minimal—a single bound of a variable changes,
which allows warm-starts in the LP solves. (As the linear programs are solved using a
simplex algorithm, the resident optimal basis can be used to warm-start subsequent LP
solves.) Best-bound search, on the other hand, favors exploring nodes at the top of the

74 ATAMTÜRK AND SAVELSBERGH

tree as these are more likely to have low LP relaxation values. This, however, can lead
to large list of active subproblems. Furthermore, subsequent linear programs have little
relation to each other—leading to longer solution times. (The time to solve LPs at each
node can be reduced by warm-starting from the optimal basis of the parent node, but this
requires saving basis information at all the nodes. Consequently, memory requirements
for best-bound search may become prohibitive.)

Let zopt be the optimal objective value for MIP. We say that node k is superfluous
if zk > zopt . Best-bound search ensures that no superfluous nodes will be explored. On
the other hand, diving search can lead to the exploration of many superfluous nodes that
would have been fathomed, had we known a smaller zbest.

Most integer-programming solvers employ a hybrid of best-bound search and diving
search, trying to benefit from the strengths of both, and switch regularly between the two
strategies during the search. In the beginning the emphasis is usually more on diving, to
find high quality solutions quickly, whereas in the later stages of the search, the emphasis
is usually more on best-bound, to improve the global lower bound.

For selecting nodes that may lead to good feasible solutions, it would be useful to
have an estimate of the value of the best feasible solution at the subproblem of a given
node. The best-projection criterion, introduced by Hirst (1969) and Mitra (1973) and the
best-estimate criterion found in Bénichou et al. (1971) and Forrest, Hirst, and Tomlin
(1974), incorporate such estimates into a node selection scheme. The best-projection
method and the best-estimate method differ in how an estimate is determined. Once
estimates of the nodes are computed, both methods select a node with the smallest
estimate.

For any node k, let sk = ∑
i∈I min(fi , 1 − fi) denote the sum of its integer infea-

sibilities. The best projection criterion for node selection is to choose the node with the
smallest estimate

Ek = zk +
(

zbest − z0

s0

)

sk .

The value (zbest − z0)/s0 can be interpreted as the change in objective function value per
unit decrease in infeasibility. Note that this method requires a known zbest.

The estimate of the best-projection method does not take into account which vari-
ables are fractional or the individual costs for satisfying the integrality requirements of
each variable. A natural extension of the best-projection method is to use estimates P−

i
and P+

i of the per unit degradation of the objective function value if we fix xi to its
floor and ceiling, respectively. These estimates are called down and up pseudocosts and
are discussed in more detail in Section 4. This extension is known as the best-estimate
criterion. Here, the estimate of the best solution obtainable from a node is defined as

Ek = zk +
∑

i∈I

min(|P−
i fi |, |P+

i (1 − fi)|),

which has the advantage that it does not require a known upper bound zbest.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 75

Forrest, Hirst, and Tomlin (1974) and Beale (1979) propose a two-phase method
that first chooses nodes according to the best-estimate criterion. Once a feasible solution
is found, they propose to select nodes that maximize the percentage error, defined as

P Ek = 100 × zbest − Ek

zk − zbest

for node k. The percentage error can be thought of as the amount by which the estimate
of the solution obtainable from a node must be in error for the current solution to not be
optimal.

A typical branching scheme creates two child nodes. Usually the value of the LP
relaxation at the parent node is (temporarily) assigned to the node as an (under)estimate
of the bound it provides until the node is selected and evaluated. Consequently, a node
selection strategy must rank these nodes to establish the evaluation order. For schemes
that prioritize nodes based on an estimate of the optimal solution obtainable from that
node, the ranking is immediately available, since individual estimates are computed for
the newly created nodes. For schemes that do not distinguish between the importance of
the two newly created nodes, such as best-bound or diving search, we have to resort to
other means. One possibility, if we branch on variable xi , is to select the down node first
if fi < 1 − fi and the up node first otherwise (Land and Powell, 1979).

3.1. Software node selection options

3.1.1. CPLEX
One of the most important factors influencing the choice of node selection strategy is
whether the goal is to find a good feasible solution quickly or to find a proven optimal
solution. CPLEX offers a single parameter mip emphasis that allows users to indicate
that high level goal. The following options are available:

• balanced (default),

• feasibility,

• optimality,

• bestbound,

• hiddenfeas.

With the setting of balanced, CPLEX works towards a proof of optimality, but
balances that with an effort towards finding high quality feasible solutions early in the
optimization. When set to feasibility, CPLEX favors identifying feasible solutions
early on as it optimizes the problem, thereby increasing the time is takes to establish a
proof of optimality. When set to optimality, less effort is spent towards finding feasible
solutions early. With the setting bestbound, even greater emphasis is placed on proving
optimality through moving the best bound value, so that the detection of feasible solutions

76 ATAMTÜRK AND SAVELSBERGH

along the way becomes almost incidental. When set to hiddenfeas, CPLEX works even
harder to find high quality feasible solutions.

CPLEX allows more detailed control over the solution process for knowledgeable
users. Node selection rules in CPLEX can be set using the parameter mip strategy

nodeselect. The following options are available

• best-bound search: the node with the best objective function value will be selected,

• best-estimate search: a node’s progress towards integer feasibility relative to its degra-
dation of the objective function value will be estimated,

• alternate best-estimate search: a proprietary variant of best-estimate search,

• depth-first search.

When best-estimate node selection is in effect, the parameter bbinterval defines the
frequency at which backtracking is done by best-bound.

The parameter mip strategy backtrack controls how often backtracking is done
during the branching process. The decision when to backtrack depends on three values
that change during the course of the optimization:

• the objective function value of the best integer feasible solution (“incumbent”)

• the best remaining objective function value of any unexplored node (“best node”)

• the objective function value of the most recently solved node (“current objective”).

CPLEX does not backtrack until the absolute value of the difference between the
objective of the current node and the best node is at least as large as the target gap,
where “target gap” is defined to be the absolute value of the difference between the
incumbent and the best node, multiplied by the backtracking parameter. Low values of
the backtracking parameter thus tend to increase the amount of backtracking, which
makes the search process more of a pure best-bound search. Higher parameter values
tend to decrease backtracking, making the search more of a pure depth-first search.

The parameter mip strategy dive controls “probing dives.” The tree traversal
strategy occasionally performs probing dives, where it looks ahead at both child nodes
before deciding which node to choose. The following options are available:

• automatic: choose when to perform a probing dive,

• traditional: never perform probing dives,

• probing dive: always perform probing dives,

• guided dive: spend more time exploring potential solutions that are similar to the
current incumbent.

CPLEX allows users to specify the preferred branching direction, either up, down,
or leave it to CPLEX’ discretion.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 77

For a detailed description of CPLEX user options the reader is referred to ILOG
(2003).

3.1.2. LINDO
The node selection rule is set by the parameter nodeselrule in LINDO. Available options
are:

• depth-first search,

• best-bound search,

• worst-bound search,

• best-estimate search using pseudo-costs,

• a mixture of the above.

For a detailed description of LINDO user options please refer to LINDO Systems
(2002).

3.1.3. Xpress-MP
The setting of nodeselection determines which nodes will be considered for solution
once the current node has been solved. The available options are:

• local-first search: choose from the two child nodes if available; if not, then choose
from all active nodes,

• best-first search; all active nodes are always considered,

• local depth-first search: choose from the two child nodes if available; if not, then
choose from the deepest nodes,

• best-first, then local-first search: all nodes are, considered for breadthfirst nodes,
after which the local-first method is used,

• depth-first: choose from the deepest active nodes.

To determine the default setting of nodeselection Xpress-MP analyzes the matrix.
Once the set of nodes to consider is determined based on the chosen node selection

strategy, the setting of backtrack determines the actual selection of the node to be
processed next. The available options are:

• If miptarget is not set, choose the node with the best estimate. If miptarget is set
(by user or during the tree search), the choice is based on the Forrest-Hirst-Tomlin
criterion.

• Always choose the node with the best estimated solution.

• Always choose the node with the best bound on the solution (default).

78 ATAMTÜRK AND SAVELSBERGH

For a detailed description of XPRESS-MP user options please refer to Dash Opti-
mization (2004d).

3.2. Sample computations on node selection strategies

To demonstrate the effect of the node selection strategy on the overall solution process,
we have conducted the following experiment. We have used Xpress-MP 2004b to solve
MIPLIB problems with different settings of the control parameter nodeselection. The
results of the experiment for eight instances are summarized in Table 1. The maximum
CPU time was set to 1800 seconds and we present the value of the best feasible solution,
the number of feasible solutions found, and, in case the instance was solved to optimality,
the solution time (which happened for only one of the eight instances).

The most striking observation is that with the default settings no feasible solution
was found within the given time limit for one of the instances. As expected, the two node
selection strategies that focus specifically on finding good feasible solutions, i.e., best
project (Hirst-Forrest-Tomlin) search and best estimate search, identify more feasible
solutions during the solution process than the other node selection strategies.

It also interesting to observe that the best-bound search strategy takes more than
three times as long to prove optimality than local-depth-first search on the one instance
that could be solved within the given time limit.

While examining these computational results, it is important to observe that certain
parameter settings can exhibit quite different computational behavior on instances from
different sources. However, it is generally true to that certain parameter settings exhibit
fairly consistent behavior on instances from the same source. Therefore, in practice
tuning branching parameters can be extremely important. Even though a combination
of parameters may not work well on a wide variety of instances, it may work extremely
well on the class of problems that need to be solved.

4. Branching

An obvious way to divide the feasible region of MIP is to choose a variable xi that
is fractional in the current linear programming solution x̄ and impose the new bounds
of xi ≤ �x̄i� to define one subproblem and xi ≥ �x̄i� to define another subproblem.
This type of branching is referred to as variable dichotomy, or simply branching on a
variable.

If there are many fractional variables in the current linear programming solution,
we must select one variable to define the division. Because the effectiveness of the
branch-and-bound method strongly depends on how quickly the upper and lower bounds
converge, we would like to “branch on a variable” that will improve these bounds as
much as possible. It has proven difficult to devise general rules for selecting a branching
variable that will affect the upper bound. However, there are ways to predict which
fractional variables will improve the lower bound most when required to be integral.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 79

Ta
bl

e
1

Im
pa

ct
of

no
de

se
le

ct
io

n
st

ra
te

gy
.

D
ef

au
lt

L
oc

al
-d

ep
th

-fi
rs

t
fh

t
B

es
t-

es
tim

at
e

B
es

t-
bo

un
d

N
am

e
V

al
ue

#s
ol

T
im

e
V

al
ue

#s
ol

T
im

e
V

al
ue

#s
ol

T
im

e
V

al
ue

#s
ol

T
im

e
V

al
ue

#s
ol

T
im

e

m
zz

v1
1

–
–

−1
9,

46
0.

00
1

−2
0,

35
0.

00
3

−2
0,

07
2.

00
2

–
–

m
zz

v4
2z

−1
9,

20
0.

00
2

−1
9,

55
0.

00
4

−1
8,

92
0.

00
9

−1
8,

94
0.

00
10

−1
9,

20
0.

00
2

tim
ta

b1
80

1,
49

7.
00

10
81

3,
92

6.
00

13
78

8,
30

6.
00

23
78

6,
52

2.
00

16
80

1,
49

7.
00

10
tr

12
-3

0
13

3,
21

3.
00

9
13

3,
91

0.
00

8
13

3,
28

5.
00

13
13

4,
71

2.
00

11
13

3,
21

3.
00

9
sw

at
h

46
8.

63
18

46
8.

48
18

50
7.

84
9

46
8.

63
19

46
8.

63
13

m
kc

−5
58

.2
9

18
−5

56
.3

9
20

−5
27

.2
7

9
−5

45
.5

3
17

−5
88

.2
9

18
a1

c1
s1

12
,2

71
.3

8
9

12
,4

64
.9

4
14

12
,4

38
.3

1
8

12
,8

21
.2

2
7

12
,2

71
.3

8
9

ha
rp

2
−7

3,
89

9,
73

9.
00

32
68

7
−7

3,
89

9,
73

9.
00

37
20

8
−7

3,
89

9,
73

9.
00

25
3

26
3

−7
3,

89
9,

73
9.

00
76

21
9

−7
3,

89
9,

73
9.

00
32

68
3

80 ATAMTÜRK AND SAVELSBERGH

Estimation methods work as follows: with each integer variable xi , we associate
two estimates P−

i and P+
i for the per unit degradation of the objective function value

if we fix xi to its rounded down value and rounded up value, respectively. Suppose that
x̄i = �x̄i� + fi , with fi > 0. Then by branching on xi , we will estimate a change of
D−

i = P−
i fi on the down branch and a change of D+

i = P+
i (1 − fi) on the up branch.

The values P−
i and P+

i are often referred to as down and up pseudocosts.
One way to obtain values for P−

i and P+
i is to simply observe the increase in the

LP bound due to branching. That is, letting z−
L P and z+

L P denote the values of the linear
programming relaxation for the down and up branches, then we compute the pseudocosts
as

P−
i = z−

L P − zL P

fi
and P+

i = z+
L P − zL P

1 − fi
.

To complement this monitoring strategy an initialization strategy is needed. A popular
choice is to use the objective function coefficient as an initial estimate of the expected
change.

Once we have computed the estimates on the degradation of the LP objective, given
that we branch on a specific variable, we must still decide how to use this information in
order to make a branching choice. The goal of variable selection methods is to select a
variable that maximizes the difference between the LP objective value of the node and
its children. However, since there are two branches at a node, there are different ways
to combine degradation estimates of the two branches. The most popular ones include
maximizing the sum of the degradations on both branches, i.e., branch on the variable xı̂

with

ı̂ = arg max
i

{D+
i + D−

i },

and maximizing the minimum degradation on both branches, i.e., branch on the variable
xı̂ with

ı̂ = arg max
i

{min{D+
i , D−

i }}.

Instead of using an estimate of the change in the objective function based on pseudo-
costs to choose among possible variables to branch on, it is also possible to tentatively
change the bound on a variable and partially solve the resulting LP to observe what
happens to the objective function value. (That is, to simply perform a small number of
simplex iterations.) This is the idea behind strong branching. Not surprisingly, with-
out care, the computational requirements can become prohibitive. Solving LPs, albeit
partially, just to identify a branching variable has to be done very carefully. To keep
the computational requirements of strong branching under control, typically only the
first few iterations of an LP solve are executed for only a small set of “promising”
variables.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 81

When the problem has constraints of the form
∑

j∈T x j = 1 (or
∑

j∈T x j ≤ 1)
for some T ⊆ {1, 2, . . . , n}, another scheme to divide the feasible region of MIP can
be used. Here, a subset T ′ ⊆ T for which the solution of the LP relaxation xi at node
i satisfies 0 <

∑
j∈T ′ xi

j < 1 is chosen. The constraint
∑

j∈T ′ x j = 0 is enforced in
one subregion, and the constraint

∑
j∈T \T ′ x j = 0 is enforced in the other subregion.

Note that these constraints can be enforced by fixing the variables’ bounds. When there
is a logical ordering of the variables in the set T , this set is sometimes called a special
ordered set (SOS) and hence this division method is sometimes called SOS branching.
One advantage of branching on such a constraint instead of on a single variable is that the
branch-and-bound tree is more “balanced.” Suppose we have a constraint

∑
j∈T x j = 1,

and we choose to branch on a single variable x j∗ . Setting x j∗ = 0 has little effect on
variables xi , i ∈ T \ { j∗}. However, setting x j∗ = 1 fixes xi = 0 for all i ∈ T \ { j∗};
hence the asymmetry in the two branches.

The discussion above illustrates the ideas and concepts incorporated in branching
schemes employed by modern IP solvers. In a sense, most of them can be viewed as
attempts to identify the variables representing the most important decisions in the problem
and the values to which these variables need to be set to obtain the best possible solution.
In many cases, knowledge about the problem being solved can be used to effectively
guide these choices. For example, many planning problems involve multiple periods and
decisions relating to the first period impact the decisions relating to subsequent periods.
Therefore, it is usually important to focus on decisions in the earlier periods before
focusing on decisions in the later periods. Thus, it is preferable to branch on variables
representing decisions in the earlier periods before branching on variables representing
decisions in the later periods. IP software allows user to convey this type of information
through variable priorities. Other situations where guiding branching decisions using
priorities can be effective involve problems in which there exist a natural hierarchy
among the decisions. In facility location problems, for example, two types of decisions
have to be made: which facilities to open, and which facility to assign customers to.
Clearly, the impact of deciding to open or close a facility on the objective value is much
larger than the impact of deciding to assign a customer to a particular (open) facility or
not. Thus, it is usually more effective to branch on variables representing the decisions
to open or close facilities, before branching on variables representing the decisions to
assign a customer to a particular facility.

4.1. Software branching options

4.1.1. CPLEX
Users can set mip strategy variableselect to choose one of the following variable
selection rules:

• minimum integer infeasibility: branch on a fractional variable whose fraction is closest
to being integer,

82 ATAMTÜRK AND SAVELSBERGH

• maximum integer infeasibility: branch on a fractional variable whose fraction is closest
to being 0.5,

• automatic: solver determines strategy,

• pseudo-costs: derive an estimate about the effect of each proposed branch from duality
information,

• strong branching: analyze potential branches by performing a small number of simplex
iterations,

• pseudo reduced costs: a computationally cheaper version of pseudo-costs.

Users can also prioritize the variables for branching and set limits on the number of
candidate variables (strongcand) and simplex iterations (strongit) for strong branching.

4.1.2. LINDO
The users can specify the variable selection strategies in LINDO by setting the varsel-

rule parameter. The following options are available:

• most infeasible (fractional part closest to 0.5),

• smallest index,

• cause large change in the objective function.

The last option is executed by either strong branching or pseudocost. Users can ad-
just the amount of strong branching application with the parameter strongbranchlevel.
This parameter specifies the maximum depth of nodes in which strong branching is used
(default is 10).

LINDO allows users to specify variable priorities to bias variable selection.

4.1.3. Xpress-MP
The setting of varselection determines the formula for calculating a degradation esti-
mate for each integer variable, which in turn is used to select the variable to be branched
on at a given node. The variable selected is the one with the minimum estimate. The
variable estimates are combined to calculate an overall degradation estimate of the node,
which, depending on the backtrack setting, may be used to choose an active node. The
following options are available:

• determined automatically,

• the minimum of up and down pseudo-cost,

• the sum of up and down pseudo-cost,

• the maximum of up and down pseudo-cost, plus twice the minimum of up and down
pseudo-cost,

• the maximum of the up and down pseudo-cost,

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 83

• the down pseudo-cost,

• the up pseudo-cost.

Xpress-MP assigns a priority for branching to each integer variable; either the de-
fault value of 500 or one set by the user in the so-called directives file. A low priority
means that the variable is more likely to be selected for branching. Up and down pseu-
docosts can also be specified for each integer variable. The optimizer selects the variable
to branch on from among those with the lowest priority. Of these, it selects the one with
the highest estimated cost of being satisfied (degradation).

4.2. Sample computations on node selection strategies

To demonstrate the effect of the variable selection strategy on the overall solution process,
we have conducted the following experiment. We have used Xpress-MP 2004b to solve
MIPLIB problems with different settings of the control parameter varselection. The
results of the experiment for eight instances are summarized in Table 2. The maximum
CPU time was set to 1800 seconds and we present the value of the best feasible solution,
and, in case the instance was solved to optimality, the solution time (which happened for
only one of the seven instances).

The most striking observation is that with the default variable selection strategy,
as was the case with the default node selection strategy, no feasible solution was found
within the given time limit for one of the instances.

Note that the variable selection rule “maximum of the up and down pseudocosts
plus twice the minimum of the up and down pseudocosts” does reasonably well on this
set of instances. The motivation for this criterion is to accurately balance the impact on
both child nodes created.

Table 2
Impact of variable selection strategy.

max{up, down}
Default min{up, down} up + down +2 min{up, down}

Name Value Time Value Time Value Time Value Time

mzzv11 – – −15,020.00 −17,074.00
mzzv42z −19,200.00 −18,786.00 −19,090.00 −18,180.00
timtab1 801,497.00 790,118.00 791,058.00 791,962.00
tr12-30 133,213.00 133,789.00 133,278.00 132,967.00
swath 468.63 472.06 473.03 471.96
mkc −558.29 −556.59 −551.29 −552.24
a1c1s1 12,271.38 12,326.00 12,224.48 12,223.91
harp2 −73,899,739.00 687 −73,899,739.00 580 −73,899,739.00 663 −73,899,739.00 446

84 ATAMTÜRK AND SAVELSBERGH

5. Cutting planes

As mentioned earlier, the key for solving large-scale MIPs successfully in an LP based
branch-and-bound framework is to have strong upper and lower bounds on the optimal
objective value. Modern solvers generate a host of cutting planes to strengthen the LP
relaxations at the nodes of the branch-and-bound tree.

Before discussing the issues related to adding cutting planes, we briefly review the
basics of the approach. A valid inequality for an MIP is an inequality that is satisfied
by all feasible solutions. A cutting plane, or simply cut, is a valid inequality that is not
satisfied by all feasible points of the LP relaxation. If we find a cut violated by a given
LP solution, we can add it to the formulation and strengthen the LP relaxation. By doing
so, we modify the current formulation in such a way that the relaxed feasible region
becomes smaller but the MIP feasible region does not change. Then the LP relaxation of
the new formulation is resolved and the cut generation process is repeated as necessary.
It is also possible to add cutting planes that may remove part of the MIP feasible region
as long as at least one integer optimal solution remains intact. Such cuts are typically
referred to as optimality cuts.

The branch-and-cut method is a generalization of the branch-and-bound method,
in which we add violated cuts to the formulation at the nodes of the search tree. If
no violated cuts are found or the effectiveness of the cutting planes in improving the
LP bound tails off, we branch. Branch-and-cut algorithms generalize both pure cutting
plane algorithms, in which cuts are added until an optimal IP solution is found, i.e., no
branching is done, as well as branch-and-bound algorithms, in which no cuts are added.

Naturally, a branch-and-cut algorithm spends more time in solving LP relaxations
at the nodes. However, the result of improved LP bounds is usually a significantly smaller
search tree. If the cuts improve the LP bounds significantly and the addition of cuts does
not increase the LP solution times too much, a carefully implemented branch-and-cut
algorithm can be much faster than a branch-and-bound algorithm. Finding a good tradeoff
between cutting and branching is essential in reducing the solution time and this is very
much problem dependent.

The cutting plane generation algorithms implemented in IP solvers can be classified
into two broad categories. The first are general cuts that are valid for any MIP problem;
these include Gomory mixed-integer (Balas et al., 1996; Gomory, 1960) and mixed-
integer rounding (MIR) cuts (Marchand and Wolsey, 2001; Nemhauser and Wolsey,
1990). The second category includes strong special cuts from knapsack (Balas, 1975;
Balas and Zemel, 1978; Crowder, Johnson, and Padberg, 1983; Gu, Nemhauser, and
Savelsbergh, 1998; Hammer, Johnson, and Peled, 1975; Padberg, 1979), fixed-charge
flow (Gu, Nemhauser, and Savelsbergh, 1999; Padberg, Roy, and Wolsey, 1985) and
path (Van Roy and Wolsey, 1987), and vertex packing (Padberg, 1973) relaxations of
MIPs. Strong inequalities identified for these simpler substructures are quite effective
in improving LP relaxations of more complicated sets. IP solvers automatically identify
such substructures by analyzing the constraints of the formulation and add the appropriate
cuts if they are found to be violated by LP relaxation solutions in the search tree.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 85

By default, IP solvers look for all of these substructures and try to add appropriate
cuts. As with all techniques designed to improve the performance of the basic branch-
and-bound algorithm, one should keep in mind that the time spent looking for cuts
should not outweigh the speed-up due to improved LP bounds. Solvers provide users
with parameters to set the level of aggressiveness in looking for cuts or to disable certain
classes of cuts.

Computational experience has shown that knapsack cover cuts are effective for
problems with constraints modeling budgets or capacities, fixed-charge flow and path
cuts are effective for production and distribution planning problems with fixed-charge
network flow substructures, and clique cuts are effective for problems with packing
and partitioning substructures modeling conflicts and coverage, such as time-indexed
formulations of scheduling problems, crew pairing, staff rostering problems.

When none of the above mentioned special cuts work well, general mixed-integer
cuts may help to improve the quality of the LP relaxations. Gomory mixed-integer cuts,
which had been overlooked for several decades due to initial unsuccessful implemen-
tations in pure cutting plane algorithms, have become standard in state-of-the-art IP
solvers after their effectiveness in a branch-and-cut framework was demonstrated by
Balas et al. (1996). Caution is in order, though, when using Gomory mixed-integer cuts,
especially for instances with large numbers of variables, as the cuts tend to be dense,
i.e., contain nonzero coefficients with many digits for many variables, compared to the
special cuts. This can cause numerical difficulties for the LP solvers and make the LP
relaxations significantly harder to solve. The mixed-integer rounding variants from the
original constraints may provide sparse alternatives (Marchand and Wolsey, 2001).

Other related and important issues regarding cutting planes are how often to generate
them and how to manage them. The more cuts added to the formulation, the bigger the
formulation gets and the harder it becomes to solve the LP relaxations. It is not uncommon
to add thousands of cuts to an instance with only a few hundred initial variables and
constraints. This is especially true when adding user-defined cutting planes that make
use of specific problem structure. Therefore, it may become necessary to remove some
of the cuts that are not binding from the formulation to reduce the LP solution times.
Removal of cuts is usually done in two phases. In the first phase, an inactive cut is
moved from the formulation to a pool, where it is checked for violation before new cuts
are generated. If the size of the cut pool increases beyond a limit, to reduce the memory
requirements, inactive cuts in the pool may be removed permanently in the second phase.
In order to control the size of the formulations, the solvers also provide options for setting
the maximum number of cut generation phases, the maximum depth of nodes to generate
cuts, number of nodes to skip before generating cuts, etc.

5.1. Software cut generation options

5.1.1. CPLEX
The aggressiveness of cut generation in CPLEX can be adjusted for individual cut classes
or for all classes by setting the parameters mip cuts all, cliques, covers, disjunctive,

86 ATAMTÜRK AND SAVELSBERGH

flowcovers, gomory, gubcovers, implied, mircut, pathcut to one of the following
values:

• do not generate,

• automatic,

• moderate,

• aggressive.

The aggressiveness of generating a cut class should be increased if the particular cut class
is useful for solving the problem of interest. Other options available to users include

• aggcutlim: maximum number of constraints that can be aggregated for generating
flow cover and mixed-integer rounding cuts,

• cutpass: maximum number of passes for generating cuts,

• cutsfactor: the maximum number of cuts added to the formulation is (cutsfactor-1)
times the original number of constraints in the model (no cuts are added if cutsfactor
is set to at most 1).

5.1.2. LINDO
Cuts generated at higher nodes of the search tree usually have more effect on the solution
process than the ones generated at deeper nodes. LINDO provides user options to control
the depth of nodes for generating cuts. The following user parameters are available:

• cutlevel top: This parameter turns on or off the types of cuts to be applied at the root
node of the search tree. Bit settings are used to enable the cuts including knapsack
cover, GUB cover, flow cover, lifting cuts, plant location cuts, disaggregation cuts,
lattice cuts, coefficient reduction cuts, greatest common divisor cuts, Gomory cuts,
objective integrality cuts, basis cuts, cardinality cuts.

• cutlevel tree: Parameter for turning on or off the types of cuts to be applied at the
nodes other than the root node of the search tree.

• cuttimelim: Maximum time in seconds to be spent on cut generation.

• cutfreq: Cut generation frequency. Cuts will be generated at every cutfreq nodes.

• cutdepth: A threshold value for depth of nodes. Cut generation will be less likely for
nodes deeper than cutdepth.

• maxcutpass top: Maximum number of cut generation phases at the root node of the
search tree.

• maxcutpass tree: Maximum number of cut generation phases at nodes other than
the root node of the search tree.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 87

• maxnonimp cutpass: Maximum of cut phases without improving the LP objective
(default is 3).

• addcutobjtol: Minimum required LP objective improvement in order to continue cut
generation.

• addcutper: Maximum number of cuts as a factor of the total number of original
constraints (default is 0.5).

5.1.3. Xpress-MP
The parameter cutstrategy is used to adjust the aggressiveness of cut generation in
Xpress-MP. A more aggressive cut strategy, generating a greater number of cuts, will
result in fewer nodes to be explored, but with an associated time cost in generating the
cuts. The fewer cuts generated, the less time taken, but the greater subsequent number
of nodes to be explored. The parameter may be set to one of the following:

• automatic selection of the cut strategy,

• no cuts,

• conservative cut strategy,

• moderate cut strategy,

• aggressive cut strategy.

The parameter cutdepth sets the maximum depth in the tree search at which cuts
will be generated. Generating cuts can take a lot of time, and is often less important at
deeper levels of the tree since tighter bounds on the variables have already reduced the
feasible region. A value of 0 signifies that no cuts will be generated.

The parameter cutfrequency specifies the frequency at which cuts are generated
in the tree search. If the depth of the node modulo cutfrequency is zero, then cuts will
be generated.

The parameter covercuts specifies the number of rounds of lifted cover cuts at the
top node. The process of generating these can be carried out a number of times, further
reducing the feasible region, albeit at a significant time penalty. There is usually a good
payoff from generating these at the top node, since these inequalities then apply to every
subsequent node in the tree search.

The parameter treecovercuts specifies the number of rounds of lifted cover in-
equalities generated at nodes other than the top node in the tree.

The parameter gomcuts specifies the number of rounds of Gomory cuts at the
top node. These can always be generated if the current node does not yield an integral
solution. However, Gomory cuts are dense and may slow down the LP solving times.

The parameter treegomcuts specifies the number of rounds of Gomory cuts gen-
erated at nodes other than the first node in the tree.

88 ATAMTÜRK AND SAVELSBERGH

Table 3
Impact of cuts.

with cuts without cuts

problem cuts zroot nodes time zroot nodes time

10teams 19 924 162 9.03 917 128843 1800∗

gesa2 o 157 2.5731e+07 1409 3.44 2.5476e+07 67159 84.90
modglob 186 2.0708e+07 136 0.29 2.0431e+07 751117 208.71
mzzv42z 622 −20844.74 439 195.89 −21446.24 14049 1800∗

p2756 353 3116.51 28 0.43 2701.14 174131 306.93

The parameter maxcuttime specifies the maximum amount of time allowed for
generation of cutting planes and re-optimization. The limit is checked during generation
and no further cuts are added once this limit has been exceeded.

5.2. Sample computations with cutting planes

Here we present sample computations that illustrate the impact of cut generation on
the performance of the solution algorithms. In Table 3 we compare the performance of
CPLEX with and without adding cutting planes to the formulation for six problems from
the MIPLIB 2003 (Martin, Achterberg, and Koch, 2003). In this table, we present the
total number of cuts added to the formulation, the objective value of the LP relaxation
immediately before branching, the number of branch-and-bound nodes, and the total
CPU time elapsed in seconds. The computations are done with CPLEX version 9.0 on a
3GHz Pentium4/Linux workstation.

Cut generation with default settings reduces the number of nodes in the search
tree significantly for all problems in Table 4; and this reduces the computation time
for almost all problems. Two of the problems could not be solved without adding cuts
within the time limit 1800 seconds (marked with*). Different classes of cutting planes
are effective for the listed problem in Table 4. For 10teams a large number of cliques are
generated in preprocessing by probing and clique cuts are the most effective on problem.
Problem gesa2 o contains general integer variables and therefore Gomory and MIR cuts
are more effective. Flow cuts are very effective for modglob due to the fixed-charge flow
substructure in this problem. Cover and gub cover inequalities are the most effective ones
for p2756 due to the 0-1 knapsack constraints contained in the formulation of p2756.

6. Preprocessing

Preprocessing refers to manipulating an MIP formulation in an effort to decrease the
overall solution time. These manipulations reduce the feasible region in such a way that
at least one optimal integer solution remains feasible.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 89

Table 4
Impact of preprocessing.

with preprocessing without preprocessing

problem cons vars zinit nodes time cons vars zinit nodes time

aflow30a 455 818 983.17 31165 86.39 479 842 983.17 13903 52.65
fixnet6 477 877 3192.04 50 0.39 478 878 1200.88 9241 41.01
mod011 1535 6872 −6.2082e+07 73 127.95 4480 10958 −6.2122e+07 3904 900.47
mzzv11 8601 9556 −22773.75 4680 736.04 9499 10240 −22945.24 6611 1792.16
nw04 36 46190 16310.67 569 26.55 36 87482 16310.67 1712 96.58

IP solvers employ a number of preprocessing techniques before starting the branch-
and-bound algorithm. We will briefly discuss a number of these techniques here and
mention how they can be controlled in modern IP solvers. We refer the reader to Anderson
and Anderson (1995), Gondzio (1997), Guignard and Spielberg (1981), and Savelsbergh
(1994) for detailed explanations of preprocessing techniques.

Preprocessing usually alters the given formulation significantly by eliminating and
substituting variables and constraints of the formulation, as well as changing the coef-
ficients of the constraints and the objective function. IP solvers then solve this reduced
formulation rather than the original one and recover the values of the original variables
afterwards. The fact that there are two different formulations becomes an important issue,
when the user interacts with the solver during the algorithm via callable libraries to add
constraints and variables to the formulation. Modern solvers allow the user to work on
either the original or the reduced formulation.

Common preprocessing techniques include detecting inconsistent constraints, elim-
inating redundant constraints, and strengthening bounds on variables. A constraint is re-
dundant if its removal from the formulation does not change the feasible region. Strength-
ening bounds refers to increasing the lower bound or decreasing the upper bound of a
variable in such a way that at least one optimal integer solution remains feasible. For a
0-1 variable, this is equivalent to fixing it to either 0 or 1 and eliminating it from the for-
mulation. A simple implementation of these techniques is accomplished by considering
each constraint in isolation and verifying whether the constraint is inconsistent with the
bounds of the variables or whether there is a feasible solution when a variable is fixed to
one of its bounds. Techniques that are based on checking infeasibility are called primal
reduction techniques. Dual reduction techniques make use of the objective function and
attempt to fix variables to values that they take in any optimal solution. Another pre-
processing technique that may have a big impact in strengthening the LP relaxation of
a MIP formulation is coefficient improvement. This technique updates the coefficients
of the formulation so that the constraints define a smaller feasible set for LP relaxation,
hence leading to improved the LP bounds.

Probing is a more involved preprocessing technique that considers the implications
of fixing a variable to one of its bounds by considering all constraints of the formulation

90 ATAMTÜRK AND SAVELSBERGH

simultaneously. For instance, if fixing a 0-1 variable (a variable that takes value either
0 or 1) x1 to one, forces a reduction in the upper bound of x2, then one can use this infor-
mation, in all constraints in which x2 appears and possibly detect further redundancies,
bound reductions, and coefficient improvements. One should note, however, that fixing
each variable to one of its bounds and analyzing the implications on the whole formulation
may become quite time consuming for large instances. Therefore, one should weigh the
benefits of probing in reducing the problem size and strengthening the LP relaxation with
the time spent performing it, in order to decide whether it is useful for a particular instance.

Finally, we note that all the preprocessing techniques that are applied before solving
the LP relaxation of a formulation at the root node of the branch-and-bound tree can be
applied in other nodes of the tree as well. However, since the impact of node preprocessing
is limited to only the subtree rooted by the node, one should take into consideration
whether the time spent on node preprocessing is worthwhile.

Even though it is applied after solving the LP relaxation, we mention here another
technique that is very effective in eliminating variables from the formulation. Given an
optimal LP solution, reduced cost fixing is a method for checking whether increasing
or decreasing a nonbasic variable by δ > 0 would lead to an LP solution with worse
objective value than that of the best known feasible integer solution. If this is the case, the
variable will not change from its nonbasic value by more than δ in any optimal integer
solution. For a 0-1 variable, δ ≤ 1 implies that the variable can be fixed to its nonbasic
value. For other variables, this technique can be used to tighten their bounds without
changing the optimal IP value.

Reduced cost fixing is particularly effective for problems with small gap between
optimal IP and LP values and with large variations in the objective coefficients. For
example, it is not uncommon to eliminate more than half of the variables by reduced cost
fixing for set partitioning instances arising in crew scheduling applications.

Coefficient improvement can be very effective in strengthening the LP relaxations of
problems with large differences in constraint coefficients. In particular, models with “big
M” coefficients, which are frequently used to represent logical implications such as “ei-
ther or” and “if then” statements, can benefit significantly from coefficient improvement.

Probing tends to be most effective in tightly constrained problems, in which setting
a variable to a certain value fixes the value of many others in all feasible solutions. On
the other hand, it can be very time consuming for large-scale instances of time-indexed
formulations of scheduling problems, crew pairing and staff rostering problems with set
packing substructures, since one typically gets an overwhelming number of feasibility
implications for such formulations.

6.1. Software preprocessing options

6.1.1. CPLEX
Users can control the presolver of CPLEX by changing the levels of the following
preprocessing options from none to aggressive:

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 91

• aggregatorind: maximum trials of variable substitutions,

• coeffreduce: coefficient improvement,

• boundstrength: bound strengthening,

• probe: probing level,

• presolvenode: indicator to perform preprocessing in the tree nodes,

• numpass: maximum number of preprocessing passes.

The users can also activate or deactivate primal and/or dual reductions by setting the
parameter reduce. Primal reductions should be disabled if columns are to be added to a
formulation. Relaxing a problem by adding columns renders primal reductions, that are
based on infeasibility arguments, invalid. Similarly, dual reductions should be disabled
if the user will introduce constraints that are invalid for the original formulation.

6.1.2. LINDO
Users can control the preprocessing operations in LINDO by changing the value of the
parameter prelevel. Bit settings are used to turn on or off the following operations:

• simple presolve,

• probing,

• coefficient reduction,

• elimination,

• dual reductions,

• use dual information.

6.1.3. Xpress-MP
Users can control preprocessing in Xpress-MP through three parameters: presolve,
presolveops, and mippresolve.

The parameter presolve determines whether presolving should be performed prior
to starting the main algorithm.

• Presolve applied, but a problem will not be declared infeasible if primal infeasibilities
are detected. The problem will be solved by the LP optimization algorithm, returning
an infeasible solution, which can sometimes be helpful.

• Presolve not applied.

• Presolve applied.

• Presolve applied, but redundant bounds are not removed. This can sometimes increase
the efficiency of the barrier algorithm.

92 ATAMTÜRK AND SAVELSBERGH

The parameter presolveops specifies the operations which are performed during
the presolve. The following options are available:

• singleton column removal,

• singleton row removal,

• forcing row removal,

• dual reductions,

• redundant row removal,

• duplicate column removal,

• duplicate row removal,

• strong dual reductions,

• variable eliminations,

• no IP reductions,

• linearly dependant row removal.

The parameter mippresolve determines the type of integer preprocessing to be
performed.

• No preprocessing.

• Reduced cost fixing will be performed at each node. This can simplify the node before
it is solved, by deducing that certain variables’ values can be fixed based on additional
bounds imposed on other variables at this node.

• Logical preprocessing will be performed at each node. This is performed on binary
variables, often resulting in fixing their values based on the constraints. It greatly
simplifies the problem and may even determine optimality or infeasibility of the node
before the simplex method commences.

• Probing of binary variables is performed at the top node. This sets certain binary
variables and then deduces effects on other binary variables occurring in the same
constraints.

6.2. Sample computations with preprocessing

Now we present sample computations in order to illustrate the impact of preprocessing
on the performance of the solution algorithms. In Table 4 we compare the performance
of CPLEX with and without preprocessing for six problems from the MIPLIB 2003
(Martin, Achterberg, and Koch, 2003). In this table, we present the number of constraints
and variables in the formulation, the objective value of the initial LP relaxation, the

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 93

number of branch-and-bound nodes, and the total CPU time elapsed in seconds for both
options. The computations are done with CPLEX version 9.0 on a 3 GHz Pentium4/Linux
workstation with 1 GB memory.

Default settings of preprocessing have a positive impact on the performance of the
algorithm for most of the problems in Table 4. Typically the number of nodes and time to
solve the problems reduce significantly after preprocessing. For fixnet6 the improvement
is due to, not problem size reduction, but to the strengthening of the LP relaxation. For
nw04, however, the improvement in the performance is largely due to the significant
number of reduction in the number of variables. For mod011, mzzv11, the improvement
appears to be due to both problem size reduction and LP strengthening. However, pre-
processing appears to have a negative effect on aflow30a and it may be turned off for this
problem.

7. Primal heuristics

Primal heuristics are algorithms that attempt to find feasible solutions to MIP quickly.
For a minimization problem, while cutting planes are employed to strengthen the lower
bound, primal heuristics are used to improve the upper bound on the optimal objective
value. Rather than waiting for an integer feasible LP solution at a node, one attempts
to find feasible solutions to MIP early in the search tree by means of simple and quick
heuristics.

The motivation for employing primal heuristics is to produce a good upper bound
early in the solution process and prune as much of the tree as possible. For instance, if one
could find an optimal solution at the root node with a heuristic, branch-and-bound would
be used only to prove the optimality of the solution. For a fixed branching rule, any node
selection rule would then produce the same tree with the minimum number of nodes.
Thus, primal heuristics play a role complementary to cutting plane algorithms in reducing
the gap between the bounds and consequently the size of the branch-and-bound tree.

Most solvers apply several heuristics that combine partial enumeration, preprocess-
ing, LP solving, and reduced cost fixing. In order to get a feasible integer solution, a good
analysis of the constraints is crucial when deciding which variables to fix and to what
values. CPLEX Relaxation Induced Neighborhoods (RINS) heuristic fixes variables that
have the same value in the incumbent and LP solution and solves the remaining smaller
MIP with limited branching in an effort to obtain a feasible solution quickly (Danna,
Rothberg, and Pape, 2003).

As with cutting planes, it seems reasonable to spend more effort on finding good
feasible solutions early in the search process, since this would have the most impact on
the running time. Solvers provide users with parameters to set the frequency of applying
primal heuristics and the amount of enumeration done in the heuristics. Users may find
it useful to adjust these parameters during the course of the algorithm according to the
node selection rule chosen, depth of the node processed, and the gap between the best
known upper and lower bound.

94 ATAMTÜRK AND SAVELSBERGH

7.1. Software primal heuristic options

7.1.1. CPLEX
Users can adjust the aggressiveness of the periodic heuristic application in CPLEX by
setting the parameter heuristicfreq. The heuristic is then applied every heuristicfreq

nodes in the tree. Setting this parameter to −1 disables the heuristic. With the default
setting 0, the frequency is determined automatically by CPLEX. A similar parameter
rinsheur controls the frequency of RINS heuristic calls.

7.1.2. LINDO
Two parameters are available in LINDO to users for controlling the amount of heuristic
application. These are

• heuinttimlim: Minimum total time in seconds to spend in finding heuristic solutions.

• heulevel: This parameter controls the actual heuristic applied. Use higher levels for
a heuristic that spends more time to find better solutions.

7.1.3. Xpress-MP
The parameter heurstrategy specifies the heuristic strategy.

• Automatic selection of heuristic strategy.

• No heuristics.

• Rounding heuristics.

The parameter heurdepth sets the maximum depth in the tree search at which
heuristics will be used to find feasible solutions. It may be worth stopping the heuristic
search for solutions below a certain depth in the tree.

The parameter heurfreq specifies the frequency at which heuristics are executed
during the tree search. If the depth of the node modulo heurfreq is zero, then heuristics
will be used.

The parameter heurmaxnode specifies the maximum number of nodes at which
heuristics are used in the tree search.

The parameter heurmaxsol specifies the maximum number of heuristic solutions
that will be found in the tree search.

7.2. Sample computations with primal heuristics

In order to illustrate the impact of employing primal heuristics on the performance of
the solution algorithms, we performed an experiment using the heuristic level feature of
LINDO that controls the aggressiveness of the primal heuristics applied. If heuristic level
is zero, no primal heuristic is applied. The higher the level is, the more time is spent in
finding a feasible solution and usually the better is the heuristic solution found. In Table 5

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 95

Table 5
Impact of primal heuristics.

heur level = 0 heur level = 3 heur level = 5 heur level = 10

problem htime time nodes htime time nodes htime time nodes htime time nodes

enigma 0.00 46.71 10273 1.95 2.00 725 1.93 1.99 725 2.11 2.20 725
p0282 0.00 10.55 308 1.21 8.56 34 2.30 7.14 409 4.94 10.25 165
pp08acuts 0.00 72.57 1145 3.63 67.17 904 4.42 71.89 866 4.95 70.73 857
qnet1 0.00 215.84 764 6.59 196.10 593 11.05 35.75 88 11.19 34.14 174
gesa3 o 0.00 171.05 538 3.41 56.69 103 7.48 84.22 304 7.16 25.84 99

we compare the performance of LINDO with different heuristic levels for five problems
from the MIPLIB (Martin, Achterberg, and Koch, 2003). In this table, we present the
time spent on the heuristic, the total CPU time elapsed in seconds, and the number of
branch-and-bound nodes. The computations are done with LINDO API 2.0 on a 2GHz
Pentium4/XP workstation with 512 MB memory.

Better feasible solutions found early in the branch-and-cut algorithm may lead to
increased pruning of the tree due to tighter bounds. Also good feasible solutions lead to
improved reduced cost fixing, hence reduction in the problem size, which reduces the
LP solution times.

In Table 5 we observe that the performance of the algorithm improves when heuristic
level is positive, i.e., when a heuristic is used to find a feasible solution. However, the
heuristic level that gives the best overall performance varies from problem to problem.
If it is difficult to find feasible solutions, it may be worthwhile to spend more time on
heuristics. This is a feature users should experiment with to find the right level for their
problem in order to achieve the best performance.

8. Integrated modeling and optimization environments

One of the reasons that early mathematical programming solvers found little application
in practice was the considerable programming effort required to prepare the data into a
format recognizable by the solvers. The solvers typically required the constraint matrix
of an instance to be provided in the form of a list of coefficients and associated row
and column indices. Creating such a representation from a model and a given data set
was time-consuming and error-prone. Furthermore, changing and refining models was
cumbersome, to say the least, as it required modifying the input generation programs.

An important step forward in the development of mathematical programming tools
was the definition of the Mathematical Programming System (MPS) format by IBM in the
early sixties. The MPS format resembles the internal data structures of the algorithms; it
represents the components of an instance sequentially. An MPS file is processed in batch
mode. In the early eighties, matrix generation languages were developed to facilitate the
generation of MPS files. The most popular were DATAFORM (from Ketron), OMNI

96 ATAMTÜRK AND SAVELSBERGH

(from Haverly Systems), and MGG (from Scion). Even though it is lengthy and rather
cryptic to the human eye, the MPS format became a standard for specifying and exchang-
ing mathematical programming problems, and it is still supported by modern commercial
mathematical programming systems.

In order to enable practitioners to update and maintain their models more easily,
however, more flexible languages were needed. The algebraic formulation became the
basis of the next generation of modeling languages. These algebraic modeling languages
are declarative in nature, allow a concise representation of the model, and provide for
separation of model and data, which is extremely important for maintainability of the
models. Examples of algebraic modeling languages include GAMS, AMPL, LINGO,
and mp-model. Many large-scale practical applications have been developed using these
algebraic modeling languages.

The availability of modeling languages and improved solvers has led to an increase
in the use of mathematical programming in practice. As a result, the demand for better
and tighter integration of modeling tools and solvers has increased. This demand has been
addressed in two ways. One approach has been the development of scripting languages,
such as OPL script. Another has been the development of programming language inter-
faces, such as EMOSL. However, the repeated execution of complete models after small
modifications and/or communication of problem matrices via files can be expensive in
terms of execution times. Recently completely integrated modeling and solving languages
(that avoid intermediate file storage) have been developed, for example Xpress-Mosel.

8.1. Lot sizing application

We illustrate the value of these modern mathematical programming modeling and op-
timization tools in the development of a customized branch-and-cut program for the
solution of the classical Lot-Sizing Problem. The lot-sizing problem considers produc-
tion planning over a horizon of N T time periods. In period t ∈ {1, 2, . . . , N T }, a given
demand dt must be satisfied by production in that period and by inventory carried over
from earlier periods. The unit production cost in period t is equal to ct and there is a
set-up cost ft associated with production in period t . The objective is to determine how
much to produce in each period so as to minimize the total costs over the horizon. Let
the production in period t be denoted by yt ∈ IR+, and let xt ∈ {0, 1} indicate whether
the plant operates during period t . Letting dik = ∑k

t=i dt , the lot-sizing (LS) problem
can be formulated as

min
n∑

t=1

(ft xt + ct yt)

t∑

s=1

ys ≥ d1t , t ∈ 1, 2, . . . , N T , (1)

yt ≤ dtnxt , t ∈ 1, 2, . . . , N T , (2)

xt ∈ {0, 1}, yt ∈ IR+, t ∈ 1, 2, . . . , N T .

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 97

A well-known class of inequalities for the lot-sizing problem is the (�, S)-inequalities
described as

∑

t∈{1,2,...,�}\S

yt +
∑

t∈S

dt�xt ≥ d1� ∀ S ⊆ {1, 2, . . . , �}, � ∈ {1, 2, . . . , N T }.

Adding these inequalities to the basic formulation strengthens the formulation signifi-
cantly. In fact, it has been shown (Barany, Van Roy, and Wolsey, 1984) that replacing (1)
with the more general (�, S)-inequalities will make the LP relaxation integral, i.e., it will
always have an integral optimal solution. Thus it suffices to solve just the LP relaxation
with (�, S)-inequalities for finding an optimal solution to LS.

Unfortunately, the number of (�, S)-inequalities is very large—an exponential func-
tion of N T . Consequently, it is impossible, except for very small instances, to explic-
itly add all the (�, S)-inequalities to the formulation. Therefore, we have to handle the
(�, S)-inequalities implicitly. Fortunately, identifying violated (�, S)-inequalities is easy.
Given a solution (x̄, ȳ), for a fixed � ∈ {1, 2, . . . , n}, the left hand side of the (�, S)-
inequality

∑

t∈{1,2,...,�}\S

ȳt +
∑

t∈S

dt� x̄t ,

is minimized by letting t ∈ S if dt� x̄t < ȳt and t �∈ S, otherwise. Hence for each �, we
can easily check whether there is a violated (�, S)-inequality. This leads to the simple
Algorithm 2.

Algorithm 2 Cutting plane algorithm for LS
1: Read the model to obtain the current formulation
2: Solve the LP relaxation of the current formulation and let (x, y) be an optimal solution
3: for � = 1 to N T do
4: S = ∅, lhsval = 0
5: for t = 1 to � do
6: if dt�xt < yt then
7: lhsval = lhsval + dt�xt

8: S = S ∪ {t}
9: else

10: lhsval = lhsval + yt

11: end if
12: end for
13: if lhsval < d1� then
14: Add

∑
t∈{1,2,...,�}\S yt + ∑

t∈S d�t xt ≥ d1� to the current formulation
15: Go to Step 2
16: end if
17: end for

98 ATAMTÜRK AND SAVELSBERGH

In the next four sections, we show how Algorithm 2 can be implemented
using Xpress-Mosel and Xpress-BCL, and using ILOG OPL/OPL script and ILOG
Concert Technology. In our discussions, we focus on the key concepts and the
relevant portions of the implementation. Complete source codes are provided in the
appendices.

The two implementations discussed in Sections 8.2 and 8.3 demonstrate that more
sophisticated and involved solution approaches for classes of difficult integer programs
can relatively easily be implemented using modeling languages that are tightly coupled
with the underlying optimization engines.

Even though modern modeling languages provide data manipulation capabilities,
often necessary when setting up the integer program to be solved and when processing the
solution produced by the solver, there are situations where lower level control is desired.
Lower level control is often available through object oriented libraries that are part of the
integer-programming software suite. These object oriented libraries allow users to build
integer programs step-by-step within their C/C++ or Java programs, with functions to
add variables and constraints. Once the integer program is completely defined, it is solved
using the underlying optimizer. The libraries also provide a variety of functions to access
the solution directly from within their program.

The two implementations discussed in Sections 8.4 and 8.5 illustrate the relative
ease with which sophisticated and involved solution approaches for classes of difficult
integer programs can be implemented using such object oriented libraries.

A major advantage of object-oriented libraries, as in XPRESS-BCL and ILOG-
Concert, over traditional callable libraries is that variable and constraint indexing is
completely taken over by the libraries. This allows the user to refer to model vari-
able and constraint names when implementing an algorithm, just like in Mosel and
OPL/OPL script, without having to worry about the indexing scheme of the underlying
solver.

Application development and maintenance with modeling and optimization lan-
guages is easier than with object-oriented libraries. Therefore, using modeling and op-
timization languages may be the method choice for users for which time-to-market is
critical. On the other hand, even though implementations using object-oriented libraries
take a little more time to develop and maintain, they have the advantage of faster run
times and the flexibility provided by greater control, such as access to the preprocessed
formulation and the LP tableau.

8.2. Lot sizing using Xpress-Mosel

Here we describe the basics of Xpress-Mosel implementation of Algorithm 2. The com-
plete Xpress-Mosel code can be found in Appendix A. As a first step, we need to specify
the LS model in the Mosel language. A model specification in the Mosel language starts
with a declaration of the model entities.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 99

declarations

...

DEMAND: array(T) of integer ! Demand per period

SETUPCOST: array(T) of integer ! Setup cost per period

PRODCOST: array(T) of integer ! Production cost per period

D: array(T,T) of integer ! Total demand in periods t1 - t2

...

product: array(T) of mpvar ! Variables representing production

in period t

setup: array(T) of mpvar ! Variables representing a setup in

period t ...

end-declarations

We introduce arrays DEMAND, SETUPCOST, and PRODCOST, to hold the instance data,
a 2-dimensional array D to contain all partial sums of period demands, and two arrays
product and setup of continuous variables. The instance data arrays can be instantiated in
different ways, for example by direct assignment or by importing data from spreadsheets
of databases.

A powerful feature of modern modeling languages is that they allow data ma-
nipulations to be carried out directly within the model specification. For example, the
2-dimensional array D is instantiated using the following statement.

forall(s,t in T) D(s,t) := sum(k in s..t) DEMAND(k)

Once the declaration and instance data instantiation portions of the model have
been completed, we continue with the specification of the objective, the constraints, and
the variable types. (Note the separation of model and data.)

MinCost := sum(t in T) (SETUPCOST(t) * setup(t) + PRODCOST(t) *

product(t))

forall(t in T) Demand(t) := sum(s in 1..t) product(s) >= sum

(s in 1..t)

DEMAND(s)

forall(t in T) Production(t) := product(t) <= D(t,NT) * setup(t)

forall(t in T) setup(t) is binary

After the model has been specified, we can define the cutting plane procedure. The
procedure also starts with a declaration part. In this case, we define two arrays to hold
the values of the variables after an LP has been solved, and we define an array to hold
the violated cuts that are generated.

procedure cutgen

declarations

...

100 ATAMTÜRK AND SAVELSBERGH

solprod, solsetup: array(T) of real

...

cut: array(range) of linctr

...

end-declarations

The remainder of the procedure is fairly straightforward. After solving the LP relax-
ation, the solution values are retrieved, and violated cuts, if they exist, are
identified.

...

repeat

minimize(...)

forall(t in T) do

solprod(t) := getsol(product(t))

solsetup(t) := getsol(setup(t))

end-do

forall(l in T) do

lhsval := 0

forall(t in 1..l)

if (solprod(t) > D(t,l)*solsetup(t) + EPS)

then lhsval += D(t,l)*solsetup(t)

else lhsval += solprod(t)

end-if

if (lhsval < D(1,l) - EPS) then

cut(..) := sum(t in 1..l)

if (solprod(t)<(D(t,l)*solsetup(t))+EPS, product(t), D(t,l)

*setup(t)) >= D(1,l)

end-if

end-do

until (...)

...

For a detailed description of Dash Optimization’s Xpress-Mosel please refer to
Dash Optimization (2004c).

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 101

8.3. Lot sizing using ILOG OPL/OPL script

Modeling with ILOG’s optimization programming language (OPL) is done in a fashion
similar to the Mosel implementation. The first step is the declaration of data and variables.
For LS, this is done as follows:

int NT = ...;

range T 1..NT;

int DEMAND[T] = ...;

int D[s in T, t in T] = sum (k in [s..t]) DEMAND[k];

...

var float+ product[T];

var float+ setup[T] in 0..1;

NT and DEMAND will be initialized later when specifying data. The variable product

is declared as a nonnegative array over the range of integers 1..NT, whereas setup is a
0-1 array with the same range. The next step is to declare the constraints as

constraint prodsetup[T];

constraint meetdemand[T];

Then the model can be completed by defining the objective function and the constraints.
For LS, the OPL model is specified as

minimize sum(t in T) (SETUPCOST[t]*setup[t] + PRODCOST[t] * product[t]);

subject to {

forall(t in T)

meetdemand[t] : sum(s in 1..t) product[s] >= sum (s in 1..t)

DEMAND[s];

forall(t in T)

prodsetup[t] : product[t] <= D[t,NT] * setup[t];

}

In order to implement the cutting plane algorithm for LS, we use OPL Script, which
is a procedural language that allows combining models and solutions. First we extend
the model with the constraints

forall(c in 0..ncuts) {

Cuts[c] : sum (t in pcut[c]) product[t] +

sum (t in scut[c]) D[t,Lval[c]]*setup[t] >= D[1,Lval[c]];

}

The arrays Lval, pcut, and scut are declared in OPL script as

Open int Lval[int+];

Open setof(int) pcut[int+];

102 ATAMTÜRK AND SAVELSBERGH

and imported to the model file as

import Open Lval;

import Open pcut;

Since the number of cuts that will be added is unknown, these are declared as open arrays,
whose size will be incremented during execution using the addh function (method). The
cut generation loop is straightforward.

Model m("ELScuts.mod");

...

repeat {

m.solve();

forall (l in 1..NT) {

value := 0;

setof(int) Scut:= t |t in 1..l: m.product[t] > m.D[t,l]*m.setup[t]+eps;

setof(int) Pcut := t |t in 1..l diff Scut;

value := sum (t in Pcut) m.product[t] + sum(t in Scut) m.D[t,l]

*m.setup[t];

if (value < m.D[1,l] - eps) then {

pcut.addh();

scut.addh();

Lval.addh();

pcut[ncuts-1] := Pcut;

scut[ncuts-1] := Scut;

Lval[ncuts-1] := l;

}

}

}until (...);

After the model m is solved, the optimal LP solution values m.product and m.setup

are checked to see whether an (�, S) inequality is violated. If so, the indices of the
integer and continuous variables for the corresponding (�, S)-inequality are stored in
scut[ncuts-1] and scut[ncuts-1] to be used in the model.

The complete OPL script code for Algorithm 2 can be found in Appendix B. For a
detailed description of ILOG’s OPL/OPL script see (ILOG, 2002).

8.4. Lot sizing using Xpress-BCL

In our presentation, we will focus on the objects and functions that specifically deal with
integer-programming concepts, such as variables, objective, and constraints.

The basic objects in Xpress-BCL relating to integer programs are: problem, variable,
and linear expression. For the lot-sizing example, we start by creating a problem object

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 103

p, creating variable objects for production and setup, and associate the variable objects
with the problem object.

XPRBprob p("Els"); /* Initialize a new problem in BCL */

XPRBvar prod[T]; /* Production in period t */

XPRBvar setup[T]; /* Setup in period t */

for(t=0;t<T;t++) {

prod[t]=p.newVar(xbnewname(‘‘prod %d",t+1));

setup[t]=p.newVar(xbnewname(‘‘setup %d",t+1), XPRB BV);

}

The actual integer program is built by defining linear expressions over the vari-
ables. To build the objective, we create a linear expression object cobj, define the linear
expression representing the objective function, and associate the linear expression object
with the problem object.

XPRBlinExp cobj;

for(t=0;t<T;t++) {

cobj += SETUPCOST[t]*setup[t] + PRODCOST[t]*prod[t];

}

p.setObj(cobj);

Similarly, to build the constraints, we create a linear expression object le, define the
linear expression representing the constraint, and associate the linear expression object
with the problem object.

XPRBlinExp le;

for(t=0;t<T;t++) {

le=0;

for(s=0;s<=t;s++) {

le += prod[s];

}

p.newCtr("Demand", le >= D[0][t]);

}

for(t=0;t<T;t++) {

p.newCtr("Production", prod[t] <= D[t][T-1]*setup[t]);

}

Note that it is also possible to associate a linear expression representing a constraint
with the problem object without explicitly creating a linear expression object first.

104 ATAMTÜRK AND SAVELSBERGH

Once the integer program has been completely defined, we can invoke the solve

method of the problem object to solve the instance. In case of the lot sizing example we
want to solve the linear programming relaxation.

p.solve("lp");

Once a solution has been found, it can be accessed using the methods provided by
the objects.

objVal = p.getObjVal();

for(t=0;t<T;t++) {

solProd[t]=prod[t].getSol();

solSetup[t]=setup[t].getSol();

}

The remainder of the solution procedure is straightforward to implement as it
involves similar steps.

The complete C++ implementation of Algorithm 2 using Xpress-BCL can be found
in Appendix C. For a detailed description of Xpress-BCL refer to Dash Optimization
(2004b).

8.5. Lot sizing using ILOG concert technology

Using ILOG Concert Technology is very similar to using Xpress-BCL. The basic objects
relating to integer programs are: model, variable, and linear expression.

IloModel model(env);

IloNumVarArray product(env, NT, 0, IloInfinity, ILOFLOAT);

IloNumVarArray setup(env, NT, 0, 1, ILOINT);

Linear expressions are used to build a model. For example, the objective function
obj is constructed and added to the model as follows:

IloExpr obj(env);

obj = IloScalProd(SETUPCOST,setup) + IloScalProd(PRODCOST,product);

model.add(IloMinimize(env,obj));

Here IloScalProd is a Concert function to represent the scalar product of two
arrays (sum(t in T) (SETUPCOST[t]*setup[t]) in OPL syntax).

Constraints can be added using a syntax very much like in an algebraic modeling
language:

for(t = 0; t < NT; t++) {

model.add(product[t] <= D[t][NT-1]*setup[t]);

}

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 105

Also, expressions can be built iteratively, which is useful when defining complicated
constraints as illustrated below

for(t = 0; t < NT; t++){

IloExpr lhs(env), rhs(env);

for(s = 0; s <= t; s++){

lhs += product[s];

rhs += DEMAND[s];

}

model.add(lhs >= rhs);

lhs.end(); rhs.end();

}

Here, expressions lhs and rhs are augmented conveniently, before they are used to define
a constraint.

Once the integer program has been completely defined, we can load it into the
solver, solve the instance, and access the solution.

IloCplex cplex(model);

cplex.solve();

cplex.getObjValue()

cplex.getValue(product[t])

The complete C++ implementation of Algorithm 2 using ILOG’s Concert Technol-
ogy can be found in Appendix D. For a detailed description of ILOG Concert Technology
refer to ILOG (2003).

9. Challenges

Even though the algorithmic developments of the past decades have resulted in far more
powerful integer-programming solvers, there are still many practical integer programs
that cannot be solved in a reasonable amount of time. In this section, we will dis-
cuss a few model characteristics and substructures that are known to pose difficulties
for modern integer-programming solvers. This knowledge is useful for practitioners, of
course, but it also identifies potentially rewarding research topics in the area of integer
programming.

9.1. Symmetry

An integer program is considered to be symmetric if its variables can be permuted with-
out changing the structure of the problem (Margot, 2003). Symmetry is a phenomenon

106 ATAMTÜRK AND SAVELSBERGH

occurring in scheduling problems, graphs problems, and many other classes of opti-
mization problems (Sherali and Smith, 2001). Symmetry poses a problem for integer-
programming solvers as there are many assignments of values to variables that represent
the same solution, causing branching to become ineffective.

To illustrate, consider the scheduling problem of minimizing the makespan on
identical parallel machines. Given m machines and n jobs with processing times p j ,
j = 1, . . . , n, the objective is to assign the jobs to the machines so that the latest
completion time among all machines is minimized. Letting xi j equal 1 if job j is assigned
to machine i , and 0 otherwise, the problem can be formulated as

min z

s.t.
n∑

j=1

p j xi j ≤ z i = 1, . . . , m (3)

m∑

i=1

xi j = 1 j = 1, . . . , n (4)

xi j ∈ {0, 1} i = 1, . . . , m; j = 1, . . . , n.

Now, since the machines are identical, permuting the machine indices does not
affect the structure of the problem. For example, switching the assignment of all jobs
assigned to machine 1 and those assigned to machine 2 will result in essentially the same
solution. As a consequence, it is no longer possible to improve the linear programming
bound by simply fixing a fractional variable to either 0 or 1.

Several methods for dealing with symmetric integer programs have been proposed
in the literature. Sherali and Smith (2001) suggest breaking the symmetry by adding
constraints to the problem. In the case of our scheduling problem, for example, the
symmetry can be broken by imposing an arbitrary order on the machines, which can be
accomplished by replacing constraints (3) with

n∑

j=1

p j x1 j ≤
n∑

j=1

p j x2 j ≤ · · · ≤
n∑

j=1

p j xmj ≤ z. (5)

Note that switching the assignment of all jobs assigned to machine 1 and those assigned
to machine 2 will no longer be possible (unless sum of the processing times on both
machines happen to be the same), and that the latest completed job will always be on
machine m.

Margot proposes tree pruning and variable fixing procedures that exploit isomor-
phisms in symmetry groups if the symmetry group is given. Promising computations
with symmetric set covering problems are given in Margot.

As symmetric integer programs pose significant difficulties for integer-programming
solvers, users should try to include symmetry-breaking constraints when modeling a
problem. It remains to be seen to what extent automatic detection of symmetry and
methods addressing symmetry can be incorporated in integer-programming solvers.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 107

9.2. Logical statements

One of the most common uses of binary variables is to represent logical statements
such as “if . . . is true, then . . . holds,” “either . . . is true or . . . is true,” “at most/least k
activities are positive,” “k out of m constraints must hold,” etc. If such statements involve
continuous variables, one typically introduces auxiliary binary variables to represent the
nonconvexities implicit in such statements.

To illustrate, a typical disjunctive constraint that arises in scheduling problems is
the following: either the start time of job i is after the completion time of job j or the
start time of job j is after the completion time of job i , since both cannot be processed
at the same time. If si and s j denote the start times and pi and p j the processing times
of jobs i and j , then the statement can be written as

either si ≥ s j + p j or s j ≥ si + pi . (6)

Introducing a binary variable xi j that equals 1 if job i precedes job j and 0 otherwise,
the disjunctive statement (6) can be put into the form of a MIP as

si ≥ s j + p j − Mxi j ,

s j ≥ si + pi − M(1 − xi j)

where M is a big constant such that M ≥ max{max{s j + p j −si }, max{si + pi −s j }}. The
computational difficulty with this “big M” formulation is that the LP relaxation often
gives a fractional value for xi j even if the original disjunctive statement (6) is satisfied,
which leads to superfluous branching. An alternative approach would be to drop the
disjunctive constraints (6) and enforce them by branching on the disjunction only when
they are violated.

A similar situation arises in dealing with semi-continuous variables, which are
generalizations of 0-1 variables and continuous variables. Variable y is semi-continuous
if it is required to be either 0 or between two positive bounds a < b. A standard way of
formulating such non-convex decisions is to introduce an auxiliary binary variable x and
specify the domain of variable y with constraints

ax ≤ y ≤ bx . (7)

Again, in the LP relaxation even when the requirement a ≤ y ≤ b is satisfied, x can
be fractional, resulting in unnecessary branching. A better approach is to not explicitly
model the disjunction, but enforce it by branching, i.e., require only 0 ≤ y ≤ b and
enforce the disjunction by branching as y = 0 or a ≤ y ≤ b if it is violated (when
y ∈ (0, a) in the relaxation).

A third example concerns problems with cardinality constraints on continuous
variables. Such constraints specify that at least/at most k variables can be positive in
any feasible solution. For a set of nonnegative bounded continuous variables, i.e., 0 ≤
y j ≤ u j , introducing auxiliary binary variables x j will allow an MIP formulation of a

108 ATAMTÜRK AND SAVELSBERGH

cardinality constraint as follows

∑

j

x j ≥ (≤) k, 0 ≤ y j ≤ u j x j ∀ j.

Again, the linear programming relaxation of this formulation will tend to be fractional
even when the cardinality constraint is satisfied. Effective branching rules that work
directly on the continuous variables are given in Bienstock (1996) for this case.

Although small sized instances of formulations involving such auxiliary variables
can be solved with the standard IP solvers, specialized branching techniques avoiding the
need for auxiliary variables or alternative stronger IP formulations are usually required
for solving large-scale instances. Barring a few exceptions4 the burden of implementing
specialized branching schemes and strengthening formulations in these situations is
currently on the users of IP solvers.

Recent research on strengthening formulations with logical constraints by means of
cutting planes (Farias, Johnson, and Nemhauser, 2001; Farias, Johnson, and Nemhauser,
2003) and automatic reformulations (Codato and Fischetti, 2004) may help to improve
the solvability of these problems.

9.3. General integer variables

Most of the theoretical as well as algorithmic research of the past decades has fo-
cused on 0-1 and mixed 0-1 programming problems. As a result, many of the cutting
planes, specialized search strategies, and preprocessing techniques embedded in integer-
programming software are only effective on instances in which integer variables are
restricted to values 0 and 1. Methods that work well for mixed 0-1 instances typically do
not have generalizations that are as effective for general integer programs. As IP solvers
do not have the appropriate tools to attack problems that contain general integer variables
effectively, such problems continue to be significantly harder to solve than 0-1 problems.
Examples of small integer programs with general integer variables that are very hard
to solve with state-of-the-art IP solvers are given in Cornuejols and Dawande (1998),
Aardal and Lenstra (2002).

In the hope of overcoming this known shortcoming of IP solvers, users of IP solvers
sometimes formulate IPs involving general integer variables as 0-1 programs by using
the 0-1 expansion of bounded integer variables. However, this is generally a poor and
counterproductive strategy for several reasons, including the symmetry and weak LP
bounds of expanded formulations (Owen and Mehrotra, 2002).

Research on polyhedral analysis of general mixed-integer knapsacks (Atamtürk,
2003a) and on lattice–based methods for pure integer programs (Aardal, Hurkens, and
Lenstra, 2000; Louveaux and Wolsey, 2002) are ongoing and may lead to more powerful
techniques for handling instances with general integer variables.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 109

10. Future

Computational integer programming is a rapidly advancing field. The availability of fast
and reliable optimization software systems has made integer programming an effec-
tive paradigm for modeling and optimizing strategic, tactical, and operational decisions
in organizations in a variety of industries, ranging from finance to health care, from
telecommunications to defense.

The adoption of the integer-programming paradigm continues to spread, leading
to new applications in areas such as fiber-optic telecommunication network design, ra-
diotherapy, genetics, financial/commodity exchanges. These new applications frequently
pose new challenges, which in turn result in improved technology.

The progress of integer-programming software has resulted, to a large extent, from
identifying and exploiting problem structure. Automatic classification of the constraints
and the effective use of this classification in preprocessing, primal heuristics, and cut
generation has significantly increased the power of general purpose integer-programming
solvers. (We have seen dramatic improvements for 0-1 and mixed 0-1 problems containing
knapsack, set packing, and fixed-charge structures.) We expect to see further exploitation
of problem structure by IP solvers in the future.

We anticipate the creation of dedicated integer-programming solvers for common
problem classes, such as set-partitioning, fixed-charge network flow, multi–commodity
flow, and time-indexed production planning problems. Furthermore, we anticipate the
construction of specialized techniques for embedded combinatorial structures that arise
frequently, such as disjunctive constraints, cardinality constraints, specially ordered sets,
and semi–continuous variables (Farias, Johnson, and Nemhauser, 2001; Farias, Johnson,
and Nemhauser, 2003). Some of these structures are already exploited during branching,
but we believe they can also be exploited in other components of an integer-programming
solver.

As we have seen in the preceding sections, the behavior of the basic branch-and-
cut algorithm can be altered dramatically by the parameter settings that control crucial
components of the algorithms, such as when to cut, when to branch, how many cuts to add,
which node to branch on, etc. It is a rather arduous task to determine the proper parameter
settings for a particular problem. Furthermore, what is appropriate at the beginning of the
solution process may not be so at later stages. There is a need for integer-programming
systems to dynamically adjust parameter settings based on an analysis of the solution
process.

Constraint programming has proven to be an effective enumerative paradigm, es-
pecially for tightly constrained combinatorial problems. Consequently, the integration
of LP based branch-and-cut methods and constraint programming techniques seems de-
sirable. Initial efforts along these lines are promising (Harjunkoski, Jain, and Grossman,
2000; Hooker et al., 2000; Jain and Grossmann, 2001). Partial enumeration at the nodes
of branch-and-bound tree using constraint programming and LP reduced-cost informa-
tion may help to identify good heuristic solutions early in the search process. Constraint

110 ATAMTÜRK AND SAVELSBERGH

programming may also be useful in column generation subproblems that are modeled as
shortest path problems with side constraints.

Today’s IP systems allow users to dynamically add constraints to the formulation in
the branch-and-bound tree, thus turning the branch-and-bound algorithm into a branch-
and-cut algorithm. We expect that in the future they will also allow the users add variables
to the formulation in the tree and facilitate easy implementation of branch-and-price
algorithms.

In most practical situations, one is usually satisfied with good feasible solutions
(preferably provably within a few percent from optimality). Although tremendous
amounts of time and effort have been dedicated to developing techniques for finding
strong LP relaxations in order to reduce the size of the search tree (and thus solution
time), far less work has been done on finding good quality feasible solutions quickly,
even though having high quality incumbent solutions early on in the search is equally
valuable in pruning the branch-and-bound tree. Most efforts have focused on enhancing
search strategies and on relatively simple linear programming based rounding heuristics.
Fortunately, several researchers have produced promising computational results using
novel ideas, such as local branching (Fischetti and Lodi, 2003) and its variants (Danna,
Rothberg, and Pape, 2003; Fischetti, Glover, and Lodi, 2005).

As more powerful IP technology becomes a practical tool to solve real–life opti-
mization problems, there is an increasing demand for approaches that can effectively han-
dle uncertainty of data. The research community is responding to this need by increased
efforts in the area of robust and stochastic optimization (Atamtürk, 2003b; Atamtürk
and Zhang, 2004; Bertsimas and Sim, 2003; Birge and Louveaux, 1997; van der Vlerk,
2003). These efforts will stimulate advances in integer programming as large-scale struc-
tured instances need to be solved efficiently. In the future, integer-programming software
may even be enhanced with features specifically designed to handle uncertainty of the
objective or technology coefficients.

Appendix A. Lot sizing using Xpress-Mosel

model LS ! Start a new model

uses ‘‘mmxprs",‘‘mmsystem" ! Load the optimizer library

forward procedure cutgen ! Declare a procedure that is

! defined later

declarations

EPS=1e-6 ! Zero tolerance

NT=6 ! Number of time periods

T=1..NT ! Range of time

DEMAND: array(T) of integer ! Demand per period

SETUPCOST: array(T) of integer ! Setup cost per period

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 111

PRODCOST: array(T) of integer ! Production cost per period

D: array(T,T) of integer ! Total demand in periods t1 - t2

product: array(T) of mpvar ! Production in period t

setup: array(T) of mpvar ! Setup in period t

end-declarations

DEMAND := [1, 3, 5, 3, 4, 2]

SETUPCOST := [17,16,11, 6, 9, 6]

PRODCOST := [5, 3, 2, 1, 3, 1]

! Calculate D(.,.) values

forall(s,t in T) D(s,t) := sum(k in s..t) DEMAND(k)

! Objective: minimize total cost

MinCost := sum(t in T) (SETUPCOST(t) * setup(t) + PRODCOST(t) *

product(t))

! Production in periods 0 to t must satisfy the total demand

! during this period of time

forall(t in T) Demand(t) :=

sum(s in 1..t) product(s) >= sum (s in 1..t) DEMAND(s)

! Production in period t must not exceed the total demand for the

! remaining periods; if there is production during t then there

! is a setup in t

forall(t in T) Production(t) := product(t) <= D(t,NT) * setup(t)

forall(t in T) setup(t) is binary

! Solve by cut generation

cutgen ! Solve by cut generation

! Print solution

forall(t in T)

writeln("Period ", t,": prod ", getsol(product(t))," (demand: ",

112 ATAMTÜRK AND SAVELSBERGH

DEMAND(t),

", cost: ", PRODCOST(t), "), setup ", getsol(setup(t)),

" (cost: ", SETUPCOST(t), ")")

!**

! Cut generation loop at the top node:

! solve the LP and save the basis

! get the solution values

! identify and set up violated constraints

! load the modified problem and load the saved basis

!**

procedure cutgen

declarations

ncut,npass,npcut: integer ! Counters for cuts and passes

solprod,solsetup: array(T) of real ! Sol. values for var.s product

& setup

objval,starttime,lhsval: real

cut: array(range) of linctr

end-declarations

starttime := gettime

setparam("XPRS CUTSTRATEGY", 0) ! Disable automatic cuts

setparam("XPRS PRESOLVE", 0) ! Switch presolve off

ncut := 0

npass := 0

repeat

npass += 1

npcut := 0

minimize(XPRS LIN+XPRS PRI, MinCost) ! Solve the LP using primal

simplex

savebasis(1) ! Save the current basis

objval := getobjval ! Get the objective value

forall(t in T) do ! Get the solution values

solprod(t) := getsol(product(t))

solsetup(t):= getsol(setup(t))

end-do

! Search for violated constraints:

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 113

forall(l in T) do

lhsval := 0

forall(t in 1..l)

if(solprod(t) > D(t,l)*solsetup(t) + EPS)

then lhsval += D(t,l)*solsetup(t)

else lhsval += solprod(t)

end-if

! Add the violated inequality: the minimum of the actual

production

! prod(t) and the maximum potential production D(t,l)*setup(t)

! in periods 1 to l must at least equal the total demand in

periods

! 1 to l.

!

! sum(t=1:l) min(product(t), D(t,l)*setup(t)) >= D(1,l)

!

if(lhsval < D(1,l) - EPS) then

ncut += 1

npcut += 1

cut(ncut):= sum(t in 1..l)

if(solprod(t)<(D(t,l)*solsetup(t))+EPS, product(t), D(t,l)*

setup(t)) >= D(1,l)

end-if

end-do

if(npcut=0) then

writeln("Optimal integer solution found:")

else

loadprob(MinCost) ! Reload the problem

loadbasis(1) ! Load the saved basis

end-if

until (npcut <= 0)

end-procedure

end-model

Appendix B. Lot sizing using OPL/OPL Script

% OPL model file: ELScuts.mod

114 ATAMTÜRK AND SAVELSBERGH

int NT = ...;

range T 1..NT;

int DEMAND[T] =...;

int SETUPCOST[T] = ...;

int PRODCOST[T] = ...;

int D[s in T, t in T] = sum (k in [s..t]) DEMAND[k];

import Open pcut;

import Open scut;

import Open Lval;

int ncuts = pcut.up;

var float+ product[T];

var float+ setup[T] in 0..1;

constraint prodsetup[T];

constraint meetdemand[T];

constraint Cuts[0..ncuts];

minimize sum(t in T) (SETUPCOST[t]*setup[t] + PRODCOST[t] * product[t])

subject to {

forall(t in T)

meetdemand[t] : sum(s in 1..t) product[s] >= sum (s in 1..t)

DEMAND[s];

forall(t in T)

prodsetup[t] : product[t] <= D[t,NT] * setup[t];

forall(c in 0..ncuts) {

Cuts[c] : sum (t in pcut[c]) product[t] +

sum (t in scut[c]) D[t,Lval[c]]*setup[t] >= D[1,Lval[c]];

};

};

data {

NT = 6;

DEMAND = [1, 3, 5, 3, 4, 2];

SETUPCOST = [17,16,11, 6, 9, 6];

PRODCOST = [5, 3, 2, 1, 3, 1];

};

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 115

% OPL script file: ELScuts.osc

int ncuts := 0;

Open setof(int) pcut[int+];

Open setof(int) scut[int+];

Open int Lval[int+];

Model m("ELScuts.mod");

int NT := m.NT;

float eps := 1.0e-6;

int cuts := 0;

float value := 0;

int itcnt := 0;

repeat {

cuts := 0;

m.solve();

cout << " Iter " << itcnt << " Cuts " << ncuts << " Obj " <<

m.objectiveValue()

<< " Iters " << m.getNumberOfIterations() << endl;

forall(l in 1..NT) {

value := 0;

setof(int) Scut := t |t in 1..l: m.product[t] > m.D[t,l]

*m.setup[t] + eps;

setof(int) Pcut := t |t in 1..l diff Scut;

value := sum (t in Pcut) m.product[t] + sum(t in Scut) m.D[t,l]

*m.setup[t];

if (value < m.D[1,l] - eps) then {

cuts := cuts + 1;

ncuts := ncuts + 1;

pcut.addh();

scut.addh();

Lval.addh();

pcut[ncuts-1] := Pcut;

scut[ncuts-1] := Scut;

Lval[ncuts-1] := l;

}

}

Basis b(m);

if (cuts > 0) then {

m.reset();

116 ATAMTÜRK AND SAVELSBERGH

m.setBasis(b);

}

itcnt := itcnt + 1;

}until (cuts = 0);

forall(t in 1..NT) {

cout << "Time " << t << " product " << m.product[t] << " setup "

<< m.setup[t] << endl;

}

Appendix C. Lot sizing using Xpress-BCL

#include <stdio.h>

#include "xprb cpp.h"

#include "xprs.h"

using namespace ::dashoptimization;

#define EPS 1e-6

#define T 6 /* Number of time periods */

/****DATA****/

int DEMAND[] = 1, 3, 5, 3, 4, 2; /* Demand per period */

int SETUPCOST[] = 17,16,11, 6, 9, 6; /* Setup cost per period */

int PRODCOST[] = 5, 3, 2, 1, 3, 1; /* Production cost per period */

int D[T][T]; /* Total demand in periods t1 -

t2 */

XPRBvar prod[T]; /* Production in period t */

XPRBvar setup[T]; /* Setup in period t */

XPRBprob p("Els"); /* Initialize a new problem in

BCL */

void modEls() {

int s,t,k;

XPRBlinExp cobj,le;

for(s=0;s<T;s++)

for(t=0;t<T;t++)

for(k=s;k<=t;k++)

D[s][t] += DEMAND[k];

/****VARIABLES****/

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 117

for(t=0;t<T;t++) {

prod[t]=p.newVar(xbnewname("prod%d",t+1));

setup[t]=p.newVar(xbnewname("setup%d",t+1), XPRB BV);

}

/****OBJECTIVE****/

for(t=0;t<T;t++)

cobj += SETUPCOST[t]*setup[t] + PRODCOST[t]*prod[t];

p.setObj(cobj);

/****CONSTRAINTS****/

/* Production in period t must not exceed the total demand for

the remaining periods; if there is production during t then

there is a setup in t */

for(t=0;t<T;t++)

p.newCtr("Production", prod[t] <= D[t][T-1]*setup[t]);

/* Production in periods 0 to t must satisfy the total demand

during this period of time */

for(t=0;t<T;t++)

{

le=0;

for(s=0;s<=t;s++) le += prod[s];

p.newCtr("Demand", le >= D[0][t]);

}

}

/* Cut generation loop at the top node:

solve the LP and save the basis

get the solution values

identify and set up violated constraints

load the modified problem and load the saved basis

*/

void solveEls() {

double objval; /* Objective value */

int t,l;

int starttime;

int ncut, npass, npcut; /* Counters for cuts and passes */

double solprod[T], solsetup[T]; /* Solution values for var.s prod &

setup */

double ds;

118 ATAMTÜRK AND SAVELSBERGH

XPRBbasis basis;

XPRBlinExp le;

starttime=XPRB::getTime();

XPRSsetintcontrol(p.getXPRSprob(), XPRS CUTSTRATEGY, 0);

/* Disable automatic cuts - we use our own

*/

XPRSsetintcontrol(p.getXPRSprob(), XPRS PRESOLVE, 0);

/* Switch presolve off */

ncut = npass = 0;

do

{

npass++;

npcut = 0;

p.solve("lp"); /* Solve the LP */

basis = p.saveBasis(); /* Save the current basis */

objval = p.getObjVal(); /* Get the objective value */

/* Get the solution values: */

for(t=0;t<T;t++)

{

solprod[t]=prod[t].getSol();

solsetup[t]=setup[t].getSol();

}

/* Search for violated constraints: */

for(l=0;l<T;l++)

{

for (ds=0.0, t=0; t<=l; t++)

{

if(solprod[t] < D[t][l]*solsetup[t] + EPS) ds += solprod[t];

else ds += D[t][l]*solsetup[t];

}

/* Add the violated inequality: the minimum of the actual production

prod[t] and the maximum potential production D[t][l]*setup[t]

in periods 0 to l must at least equal the total demand in periods

0 to l.

sum(t=1:l) min(prod[t], D[t][l]*setup[t]) >= D[0][l]

*/

if(ds < D[0][l] - EPS)

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 119

{

le=0;

for(t=0;t<=l;t++)

{

if (solprod[t] < D[t][l]*solsetup[t] + EPS)

le += prod[t];

else

le += D[t][l]*setup[t];

}

p.newCtr(xbnewname("cut%d",ncut+1), le >= D[0][l]);

ncut++;

npcut++;

}

}

printf("Pass %d (%g sec), objective value %g, cuts added: %d

(total %d)\n",
npass, (XPRB::getTime()-starttime)/1000.0, objval, npcut, ncut);

if(npcut==0)

printf("Optimal integer solution found:\n");
else

{

p.loadMat(); /* Reload the problem */

p.loadBasis(basis); /* Load the saved basis */

basis.reset(); /* No need to keep the basis any longer */

}

}while(npcut>0);

/* Print out the solution: */

for(t=0;t<T;t++)

printf("Period %d: prod %g (demand: %d, cost: %d), setup %g

(cost: %d)\n",
t+1, prod[t].getSol(), DEMAND[t], PRODCOST[t], setup[t].getSol(),

SETUPCOST[t]);

}

int main(int argc, char **argv) {

modEls(); /* Model the problem */

solveEls(); /* Solve the problem */

}

120 ATAMTÜRK AND SAVELSBERGH

Appendix D. Lot sizing using ILOG Concert

#include <ilcplex/ilocplex.h>

ILOSTLBEGIN

typedef IloArray<IloNumArray> NumArray2;

int main(int argc, char **argv) {

IloEnv env;

try {

IloInt s,t,k;

IloInt NT = 6;

IloNumArray DEMAND(env, NT, 1, 3, 5, 3, 4, 2);

IloNumArray SETUPCOST(env, NT, 17, 16, 11, 6, 9, 6);

IloNumArray PRODCOST(env, NT, 5, 3, 2, 1, 3, 1);

IloNumVarArray product(env, NT, 0, IloInfinity, ILOFLOAT);

IloNumVarArray setup(env, NT, 0, 1, ILOINT);

NumArray2 D(env, NT);

IloModel model(env);

for(s = 0; s < NT; s++){

D[s] = IloNumArray(env, NT);

for(t = 0; t < NT; t++)

for(k = s; k <= t; k++)

D[s][t] += DEMAND[k];

}

IloExpr obj(env);

obj = IloScalProd(SETUPCOST,setup) + IloScalProd(PRODCOST,product);

model.add(IloMinimize(env, obj));

for(t = 0; t < NT; t++){

IloExpr lhs(env), rhs(env);

for(s = 0; s <= t; s++){

lhs += product[s];

rhs += DEMAND[s];

}

model.add(lhs >= rhs);

lhs.end(); rhs.end();

}

for(t = 0; t < NT; t++)

model.add(product[t] <= D[t][NT-1]*setup[t]);

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 121

IloCplex cplex(model);

IloNum eps = cplex.getParam(IloCplex::EpInt);

model.add(IloConversion(env, setup, ILOFLOAT));

ofstream logfile("cplex.log");

cplex.setOut(logfile);

cplex.setWarning(logfile);

IloInt cuts;

do {

cuts = 0;

if(!cplex.solve()){

env.error() << "Failed" << endl;

throw(-1);

}

env.out() << "Objective: " << cplex.getObjValue() << endl;

for(IloInt l = 0; l < NT; l++){

IloExpr lhs(env);

IloNum value = 0;

for(t = 0; t <= l; t++){

if(cplex.getValue(product[t]) > D[t][l] * cplex.getValue

(setup[t])+eps){

lhs += D[t][l] * setup[t];

value += D[t][l]* cplex.getValue(setup[t]);

}

else {

lhs += product[t];

value += cplex.getValue(product[t]);

}

}

if(value < D[0][l]-eps){

model.add(lhs >= D[0][l]);

env.out() << "** add cut " << endl;

cuts++;

}

lhs.end();

}

}while (cuts);

env.out() << endl << "Optimal value: " << cplex.getObjValue() << endl;

for(t = 0; t < NT; t++)

if (cplex.getValue(setup[t]) >= 1 - eps)

env.out() << "At time " << t << " produced " <<

122 ATAMTÜRK AND SAVELSBERGH

cplex.getValue(product[t]) << " " << cplex.getValue(setup[t])

<< endl;

}

catch(IloException& e) {

cerr << " ERROR: " << e << endl;

}

catch(...) {

cerr << " ERROR" << endl;

}

env.end();

return 0;

}

Acknowledgment

We are grateful to Lloyd Clark (ILOG, Inc.), Linus Schrage (LINDO Systems, Inc.), and
James Tebboth (Dash Optimization) for their help and to two anonymous referees for
their valuable suggestions for improving the original version of the paper.

Notes

1. CPLEX is a trademark of ILOG, Inc.
2. LINDO is a trademark of LINDO Systems, Inc.
3. Xpress-MP is a trademark of Dash Optimization Ltd.
4. XPRESS supports specialized branching for semi-continuous variables.

References

Aardal, K., C.A.J. Hurkens, and A.K. Lenstra. (2000). “Solving a System of Linear Diophantine Equations
with Lower and Upper Bounds on the Variables.” Mathematics of Operations Research 25(3), 427–442.

Aardal, K. and A. Lenstra. (2002). “Hard Equality Constrained Integer Knapsacks.” In W. Cook and A.
Schultz (eds.), Proc. 9th International IPCO Conference Springer-Verlag, pp. 350–366.

Anderson, E.D. and K.D. Anderson. (1995). “Presolving in Linear Programming.” Mathematical Program-
ming 71, 221–225.

Atamtürk, A. (2003a). “On the Facets of Mixed-Integer Knapsack Polyhedron.” Mathematical Programming
98, 145–175.

Atamtürk, A. (2003b). “Strong Formulations of Robust Mixed 0-1 Programming.” Research Report
BCOL.03.04. Available at http://ieor.berkeley.edu/∼atamturk (To appear in Mathemati-
cal Programming).

Atamtürk, A. and M. Zhang. (2004). “Two-Stage Robust Network Flow and Design for Demand Uncertainty.”
Research Report BCOL.04.03. Available at http://ieor.berkeley.edu/∼atamturk.

Balas, E. (1975). “Facets of the Knapsack Polytope.” Mathematical Programming 8, 146–164.
Balas, E., S. Ceria, G. Cornuéjols, and N. Natraj. (1996). “Gomory Cuts Revisited.” Operations Research

Letters 19, 1–9.

INTEGER-PROGRAMMING SOFTWARE SYSTEMS 123

Balas, E. and E. Zemel. (1978). “Facets of the Knapsack Polytope from Minimal Covers.” SIAM Journal of
Applied Mathematics 34, 119–148.

Barany, I., T.J. Van Roy, and L.A. Wolsey. (1984). “Uncapacitated lot Sizing: The Convex Hull of Solutions.”
Mathematical Programming Study 22, 32–43.

Beale, E.M.L. (1979). “Branch and Bound Methods for Mathematical Programming Systems.” In P.L.
Hammer, E.L. Johnson, and B.H. Korte (eds.), Discrete Optimization II, North Holland Publishing Co,
pp. 201–219.

Bénichou, M., J.M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and O. Vincent. (1971). “Experiments in
Mixed-Integer Linear Programming.” Mathematical Programming 1, 76–94.

Bertsimas, D. and M. Sim. (2003). “Robust Discrete Optimization and Network Flows.” Mathematical
Programming 98, 49–71.

Bienstock, D. (1996). “Computational Study of a Family of Mixed-Integer Quadratic Programming Prob-
lems.” Mathematical Programming 74, 121–140.

Birge, J.R. and F. Louveaux. (1997). Introduction to Stochastic Programming. New York: Springer Verlag.
Bixby, R.E., M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. (2002). Mixed–integer programming: A

progress report.
Codato, G. and M. Fischetti. (2004). “Combinatorial Benders’ Cuts.” In D. Bienstock, and G.L. Nemhauser

(eds.), Proc. 10th International IPCO Conference Springer-Verlag; pp. 178–195.
Cornuejols, G. and M. Dawande. (1998). “A Class of Hard Small 0-1 Programs.” In R.E. Bixby, E.A. Boyd,

and R.Z. Rios-Mercado (eds.), Proc. 6th International IPCO Conference Springer-Verlag, pp. 284–
293.

Crowder, H., E.L. Johnson, and M.W. Padberg. (1983). “Solving Large–Scale Zero-One Linear Programming
Problems.” Operations Research 31, 803–834.

Danna, E., E. Rothberg, and C.L. Pape. (2003). “Exploring Relaxation Induced Neighborhoods to Improve
MIP Solutions.” Technical report, ILOG, Inc.

Dash Optimization, L. (2004a). Proctor and Gamble Case Study.
Dash Optimization, L. (2004b). XPRESS-BCL Reference Manual—Release 2.6.
Dash Optimization, L. (2004c). XPRESS-Mosel Language Reference Manual—Release 1.4.
Dash Optimization, L. (2004d). XPRESS-Optimizer Reference Manual—Release 15.
Farias, I.R.D., E.L. Johnson, and G.L. Nemhauser. (2001). “Branch-and-Cut for Combinatorial Optimisation

Problems without Auxiliary Binary Variables.” Knowledge Engineering Review 16, 25–39.
Farias, I.R.D., E.L. Johnson, and G.L. Nemhauser. (2003). “A Polyhedral Study of the Cardinality Con-

strained Knapsack Problem.” Mathematical Programming 96, 439–467.
Fischetti, M. and A. Lodi. (2003). “Local Branching.” Mathematical Programming 98, 23–47.
Fischetti, M., F. Glover, and A. Lodi. (2005). ‘The Feasibility Pump.” Mathematical Programming 104,

91–104.
Forrest, J.J.H., J.P.H. Hirst, and J.A. Tomlin. (1974). “Practical Solution of Large Scale Mixed Integer

Programming Problems with UMPIRE.” Management Science 20, 736–773.
Gomory, R.E. (1960). “An Algorithm for the Mixed Integer Problem.” Technical Report RM-2597, The

Rand Corporation.
Gondzio, J. (1997). “Presolve Analysis of Linear Programs Prior to Applying an Interior Point Method.”

INFORMS Journal on Computing 9, 73–91.
Gu, Z., G.L. Nemhauser, and M.W.P. Savelsbergh. (1998). “Lifted Cover Inequalities for 0-1 Integer Pro-

grams: Computation.” INFORMS Journal on Computing 10, 427–437.
Gu, Z., G.L. Nemhauser, and M.W.P. Savelsbergh. (1999). “Lifted Flow Cover Inequalities for Mixed 0-1

Integer Programs.” Mathematical Programming 85, 439–467.
Guignard, M. and K. Spielberg. (1981). “Logical Reduction Methods in Zero–One Programming.” Opera-

tions Research 29, 49–74.
Hammer, P.L., E.L. Johnson, and U.N. Peled. (1975). “Facets of Regular 0-1 Polytopes.” Mathematical

Programming 8, 179–206.

124 ATAMTÜRK AND SAVELSBERGH

Harjunkoski, I., V. Jain, and I.E. Grossman. (2000). “Hybrid Mixed-Integer/Constraint Logic Programming
Strategies for Solving Scheduling and Combinatorial Optimization Problems.” Computers and Chemical
Engineering 24, 337–343.

Hirst, J.P.H. (1969). “Features Required in Branch and Bound Algorithms for (0-1) Mixed Integer Linear
Programming.” Privately circulated manuscript.

Hooker, J.N., G. Ottosson, E.S. Thornsteinsson, and H.-J. Kim. (2000). “A Scheme for Unifying Optimization
and Constraint Satisfaction Methods.” Knowledge Engineering Review 15, 11–30.

ILOG, I. (2002). ILOG OPL User’s Manual.
ILOG, I. (2003). ILOG CPLEX 9.0 Reference Manual.
Jain, V. and I.E. Grossmann. (2001). “Algorithms for Hybrid MILP/CP Methods.” INFORMS Journal on

Computing 13, 258–276.
Land, A. and S. Powell. (1979). “Computer Codes for Problems of Integer Programming.” In P.L. Hammer,

E.L. Johnson, and B.H. Korte (eds.), Discrete Optimization II North Holland Publishing Co, pp. 221–269.
LINDO Systems, I. (2002). LINDO API User’s Manual.
Louveaux, Q. and L.A. Wolsey. (2002). “Combining Problem Structure with Basis Reduction to Solve a

Class of Hard Integer Programs.” 27, 470–484.
Marchand, H. and L.A. Wolsey. (2001). “Aggregation and Mixed Integer Rounding to Solve MIPs.” Oper-

ations Research 49, 363–371.
Margot, F. (2003). “Exploiting Orbits in Symmetric Ilp.” Mathematical Programming 98, 3–21.
Martin, A., T. Achterberg, and T. Koch. (2003). MIPLIB 2003. http://miplib.zib.de/.
Mitra, G. (1973). “Investigation of Some Branch and Bound Strategies for the Solution of Mixed Integer

Linear Programs.” Mathematical Programming 4, 155–170.
Mittelman, H. (2002). “Benchmarks for Optimization Software.” http://plato.asu.edu/bench.html.
Nemhauser, G.L. and L.A. Wolsey. (1988). Integer and Combinatorial Optimization. New York: John Wiley

& Sons.
Nemhauser, G.L. and L.A. Wolsey. (1990). “A Recursive Procedure for Generating all Cuts for 0-1 Mixed

Integer Programs.” Mathematical Programming 46, 379–390.
Owen, J.H. and S. Mehrotra. (2002). “On the Value of Binary Expansions for General Mixed-Integer Linear

Programs.” Operations Research 50(5), 810–819.
Padberg, M.W. (1973). “On the Facial Structure of Set Packing Polyhedra.” Mathematical Programming 5,

199–215.
Padberg, M.W. (1979). “Covering, Packing and Knapsack Problems.” Annals of Discrete Mathematics 4,

265–287.
Padberg, M.W., T.J.V. Roy, and L.A. Wolsey. (1985). “Valid Linear Inequalities for Fixed Charge Problems.”

Operations Research 33, 842–861.
Savelsbergh, M.W.P. (1994). “Preprocessing and Probing Techniques for Mixed Integer Programming Prob-

lems.” ORSA Journal on Computing 6, 445–454.
Sherali, H.D. and J.C. Smith. (2001). “Improving Discrete Model Representations via Symmetry Consider-

ations.” Management Science 47, 1396–1407.
van der Vlerk, M.H. (1996–2003). “Stochastic Integer Programming Bibliography.”http://mally.eco.

rug.nl/biblio/stoprog.html.
Van Roy, T.J. and L.A. Wolsey. (1987). “Solving Mixed Integer Programming Problems using Automatic

Reformulation.” Operations Research 35, 45–57.
Wolsey, L.A. (1998). Integer Programming. New York: John Wiley & Sons.

