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Diagonal Block Space-Time Code Design
for Diversity and Coding Advantage

Over Flat Fading Channels
Meixia Tao, Member, IEEE, and Roger S. Cheng, Member, IEEE

Abstract—The potential promised by multiple transmit an-
tennas has raised considerable interest in space-time coding for
wireless communications. In this paper, we propose a systematic
approach for designing space-time trellis codes over flat fading
channels with full antenna diversity and good coding advantage.
It is suitable for an arbitrary number of transmit antennas
with arbitrary signal constellations. The key to this approach
is to separate the traditional space-time trellis code design into
two parts. It first encodes the information symbols using a
one-dimensional ( 1) nonbinary block code, with being
the number of transmit antennas, and then transmits the coded
symbols diagonally across the space-time grid. We show that
regardless of channel time-selectivity, this new class of space-time
codes always achieves a transmit diversity of order with a
minimum number of trellis states and a coding advantage equal
to the minimum product distance of the employed block code.
Traditional delay diversity codes can be viewed as a special
case of this coding scheme in which the repetition block code is
employed. To maximize the coding advantage, we introduce an
optimal construction of the nonbinary block code for a given
modulation scheme. In particular, an efficient suboptimal solution
for multilevel phase-shift-keying (PSK) modulation is proposed.
Some code examples with 2–6 bits/s/Hz and two to six transmit
antennas are provided, and they demonstrate excellent perfor-
mance via computer simulations. Although it is proposed for flat
fading channels, this coding scheme can be easily extended to
frequency-selective fading channels.

Index Terms—Block code, delay diversity, product distance,
space-time code, transmit diversity.

I. INTRODUCTION

THE design of future wireless communication systems is to
offer a variety of multimedia services that require reliable

transmissions at high data rates. This is a challenging task
due to multipath fading, multiple access interference, as well
as limited spectrum resource in wireless channels. Recently,
a considerable amount of research work on multiple-input
multiple-output (MIMO) antenna systems has been done using
variable signal processing techniques to achieve this design
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goal. This was motivated by the information-theoretic results,
studied by Foschini and Gans [1] and Telatar [2], that the
channel capacity of a multiple-antenna system substantially
exceeds that of a conventional single-antenna system. It is
now acknowledged that multiple antennas can provide spatial
diversity to combat fading and increase the degree of freedom
for high-speed transmissions. One of the important signal
processing solutions to achieve the great potential is space-time
coding. By performing coding across both temporal and spatial
dimensions, space-time codes can effectively utilize the max-
imum possible diversity advantage as well as coding advantage
without sacrificing channel bandwidth. The fundamental design
criteria for good space-time codes at high signal-to-noise ratio
(SNR) were derived by Tarokh et al. [3] and Guey et al. [4].
These criteria have been commonly used to construct many
classes of space-time codes.1 Several handcrafted space-time
trellis codes for systems with two transmit antennas were
provided in [3]. Subsequent computer searches were carried
out in [5]–[8] to find codes with enhanced error performance.
Instead of following the traditional design criteria in [3] and
[4], several efforts in [9]–[13] investigated different design
criteria, where, in particular, the role of the Euclidean distance
was studied. The corresponding codes in [10]–[13] with a large
minimum Euclidean distance and nonfull transmit diversity
perform well with enough receive antennas but poorly when
the number of receive antennas is small. It is noticed that all
of the above codes are limited to a small number of transmit
antennas and low-level modulation due to the extraordinary
complexity of exhaustive search. An algebraic approach to
construct space-time trellis codes for systems with an arbitrary
number of transmit antennas was presented in [14] and [15],
but it is only for binary phase shift keying (BPSK) and quadra-
ture phase shift keying (QPSK) modulation. Delay diversity
transmission, which was proposed in [16] and [17], is a simple
transmit diversity scheme. It transmits delayed copies of the
same information signal sequence on multiple antennas and
is seen at the receiver as a single-antenna transmission with
increased channel delay spread. The spatial diversity is, thus,
artificially transformed to multipath diversity, where the gain
can be realized at the receiver using the Viterbi-algorithm based
maximum likelihood sequence estimator (MLSE) [18]. This
transmission scheme can be designed for an arbitrary number
of transmit antennas with arbitrary signal constellations. From
a coding perspective, it can be viewed as a systematic approach

1We are primarily interested in space-time trellis codes in this paper.
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of designing space-time code and is, hence, referred to as the
delay diversity (DD) code in this paper. The drawback is that
the coding advantage is inefficient.

In this paper, we are interested in the case when the number of
receive antennas is limited so that transmit diversity is crucial.
We propose a systematic coding approach for achieving max-
imum transmit diversity and good coding advantage. The key
of this approach is to separate the traditional space-time code
design into two parts. It first encodes the information symbols
using a one-dimensional nonbinary block code, with
being the number of transmit antennas, and then transmits the
coded symbols through the antennas in a diagonal pattern.
Hence, we refer to this scheme as diagonal block space-time
(DBST) coding. By construction, a DBST code forms a regular
trellis diagram with states, where is the number of in-
formation bits per symbol. Delay diversity codes can be viewed
as a special example in this category where a repetition block
code is employed. Generally, based on the traditional criteria in
[3], the space-time code design for quasistatic fading and rapid
fading should be treated differently. Most of the previous work
has focused on the quasistatic fading case. The proposed DBST
coding is not only suitable for quasistatic fading but is suitable
for rapid fading as well. Specifically, we show that in both fading
models, DBST codes achieve a transmit diversity of order
and that its coding advantage is equal to the minimum product
distance of the employed block code over a chosen modulation
scheme. Therefore, the optimization of DBST codes reduces to
the design of sophisticated block codes. We introduce an op-
timal construction of the nonbinary block code: a per-
mutation optimization problem that requires computer search
with very high time complexity. Thus, we further propose an
efficient suboptimal solution, particularly for multilevel PSK
modulation.

Similar work on generalized delay diversity codes was done
in [19], but only the quasistatic fading was considered, and it is
not clear how to apply its design method to high-level modula-
tion. A recent work [20] suggested another systematic design of
space-time trellis codes for quasistatic fading involving manu-
ally assigning the channel output symbols for each trellis state
transition with certain rules. This scheme can achieve the max-
imum possible antenna diversity order, but its coding advantage
is less efficient, as will be shown in detail.

The rest of this paper is organized as follows. In Section II,
we review the channel model of a multiple-antenna system and
the fundamental performance criteria of space-time codes. In
Section III, we describe the proposed diagonal block space-time
code structure and discuss its pair-wise error probability. The
nonbinary block code construction is presented in Section IV,
along with some code examples. In Section V, the performance
of the proposed codes is evaluated and compared with that of
existing codes. Finally, Section VI concludes this paper.

II. BACKGROUND

A. Channel Model

We consider a point-to-point wireless communication link
equipped with transmit antennas and receive antennas.
Let denote the signal to be transmitted on antenna , for

1 , at discrete time index . It is chosen from a signal
constellation (e.g., PSK and QAM) with unit average energy.
The received signal on antenna , for , at time is
denoted by and modeled as

(1)

where denotes the average energy per symbol, de-
notes the channel coefficient from transmit antenna to re-
ceive antenna at time , and denotes the additive com-
plex white Gaussian noise with mean zero and variance .
It is assumed that the channel is flat Rayleigh fading and that
the channel coefficients for different transmit-receive antenna
pairs are statistically independent. Thus,
and are modeled as samples of independent com-
plex Gaussian random processes with zero mean and unit vari-
ance. In quasistatic fading, the channel coefficients remain un-
changed within each transmission frame and vary from frame to
frame. Hence, within a frame, time index in each can
be dropped. In rapid fading, the channel coefficients at different
time are independent.

B. Performance Criteria of Space-Time Codes

Consider a transmission frame of length symbol periods. A
space-time codeword is defined as an matrix , which
is formed as

...
...

. . .
...

(2)

in which the th column
(superscript “ ” denotes transpose operation) is the
space-time signal transmitted at time , and the th row

is the signal sequence transmitted
from antenna .

It is assumed that perfect channel state information (CSI)
is available at the receiver and that the maximum likelihood
(ML) decoder is applied. Then, the pair-wise error probability
(PWEP) of mistaking codeword E for is upper-bounded, at
high SNR, by [3] [4]

(3)

in which we have the following.

i) Quasistatic fading: is the rank of the codeword dif-
ference matrix , and is the product of nonzero
eigenvalues of matrix (superscript “ ”
denotes transpose conjugate operation)

ii) Rapid fading: is the size of the time index set of
with , which is denoted by , and

is the product of over (notation
denotes the squared Euclidean norm of a vector or

matrix).
In both cases, is called the effective Hamming distance, and

is called the effective product distance. These two param-
eters quantify the transmit (either in the space domain or time
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Fig. 1. Transmitter diagram of the diagonal block space-time codes, where
“D” denotes one symbol delay.

domain) diversity order and the coding advantage, respectively,
of a space-time code.

Thus, the classic design criteria of space-time codes are
twofold: First, make the minimum of over all pairs of
distinct codewords and as large as possible; then, at the
minimum of , let the minimum of be maximized.

III. DIAGONAL BLOCK SPACE-TIME CODES

A. Code Structure

Fig. 1 depicts the simplified transmission diagram of the pro-
posed diagonal block space-time codes in a system with
transmit antennas. Assume that the information bit stream is di-
vided into -bit long blocks, forming -ary source
symbols, denoted by at time

. As can be seen from Fig. 1, the encoding framework
can be separated into two parts. In the first part, each informa-
tion symbol is encoded using an nonbinary block code
with output codeword . In the second part, the
elements of each output codeword are transmitted using the
antennas in a diagonal pattern across the space-time grid. That
is, while the first element is transmitted by antenna one at
time , the second element is transmitted by antenna two at
time , the third one by antenna three at , and so
forth. As a consequence, the baseband version of the transmitted
signal at time on antenna is given by ,
for , where is the modulator mapping func-
tion, and when . Hence, the space-time
codeword pattern is formulated

...
...

...
. . .

...
...

(4)

The design criterion of the nonbinary block code will
be discussed in detail in the next subsection. It is noted here
that the Hamming distance between any two distinct block code
outputs is equal to , i.e., there is a one-to-one mapping from
each input symbol to every element in the output codeword [19].
The original delay diversity code falls within the special case
when this block code is a repetition code, i.e., for all

.
Note that the space-time signal transmitted at a given time

is governed by the current input and the most recent

inputs , and . The encoder thus forms a
finite-state-machine, and we define the trellis state at time as

Given that the information symbols are -ary, the total number
of trellis states is equal to , which is the minimum number
of states for a space-time trellis code to achieve full antenna di-
versity over a quasistatic fading channel [3]. During the transi-
tion from state to state produced by input , the en-
coder outputs channel symbol indices :
one for each transmit antenna. This procedure is illustrated as

———————

Therefore, the Viterbi algorithm can be applied at the receiver
to do ML decoding.

B. Performance Measure

Proposition: In both quasistatic fading and rapid fading
channels, the diagonal block space-time code with transmit
antennas satisfies

(5)

and

(6)

where and are the minimum effective Hamming
distance and the associated minimum effective product distance
in the PWEP formula (3), , and are the
two block code outputs generated by inputs and , respectively.

Note from this proposition that the proposed DBST codes al-
ways achieve a transmit diversity of order , and its coding ad-
vantage is governed by the minimum product distance
of the employed nonbinary block code over a chosen
modulation scheme.

Proof: Consider an error event in the Viterbi-algorithm-
based ML decoder. The correct and estimated trellis states are
denoted by and , respectively. Similarly, the transmitted in-
formation symbol sequence and the estimated sequence are de-
noted by and , respectively. Suppose without
loss of generality that, in this error event, the estimated path
through the trellis diverges from the correct path at time and
remerges with the correct path at time . Then, we have

and
for (7)

Because every single error in the information symbol sequence
propagates time intervals by the nature of diagonal trans-
mission, it follows that . The corresponding space-time
codeword difference matrix within this time period is of the
form

...
. . .

. . .
...

(8)
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where , for and
.

a) In quasistatic fading: Partition the codeword difference ma-
trix (8) into , where is an upper
triangular matrix, and is an matrix. Since
the inequality results in for all

is a full rank matrix. Then, is also a full
rank matrix. Hence, the effective Hamming distance is
equal to . This also yields

(9)

where “ ” holds directly from the Minkowski’s determinant
inequality [27] as a Hermitian matrix of the form is
non-negative definite. The equality in (9), indeed, holds if,
and only if, , i.e., the sequence pair and are dif-
ferent at time only. In the sequel, the final expression in (9)
corresponds to the product distance between the two block
code outputs and generated by input

and , respectively. Thus, the results for the quasistatic
fading case are proved.

b) In rapid fading: By definition, is now equal to the
number of nonzero columns in shown in (8) associated
with the sequence pair and . It is observed, based on (7),
that . Therefore, we have as .
Indeed, the minimum occurs if, and only if, and are
distinct at time only. In this circumstance, the effective
product distance is equal to

(10)

The results in rapid fading are also proved.
As in the proof, the of a DBST code in quasistatic fading

channels is always equal to for any distinct information se-
quences and , but is obtained if, and only if, there is
only one symbol error between and . While, in rapid fading
channels, depends on the error sequence, and it can be
greater than . Nevertheless, is still equal to , and
it occurs if, and only if, there is only one symbol error between

and as well. This is because, eventually, there is no outer
coding across the information symbols. The quasistatic fading
and the rapid fading are just the two extreme cases of a gen-
eral time-varying fading model. It is, therefore, reasonable to
expect that, regardless of channel time-selectivity, a DBST code
always achieves the diversity advantage and coding advantage,
as shown in (5) and (6), respectively. The simulation results pre-
sented in Section V demonstrate this statement.

With this proposition, the optimization of a DBST code
simply amounts to finding the optimal block code that maxi-
mizes the minimum product distance given in (6). In particular,
the minimum product distance of a repetition code is given
by PD rep , where is the minimum Euclidean
distance of the signal constellation. Later on, to characterize
the theoretical performance of our proposed coding scheme,

we treat delay diversity codes as references and define the
asymptotic improvement of a DBST code as

new
rep

dB (11)

C. Discussions on Diagonal Structure

The diagonal transmission pattern in the proposed DBST
coding has been frequently utilized for MIMO systems, as seen
in the literature. It first appeared in [21] as diagonally layered
space-time architecture (D-BLAST). Recent work includes
the trellis coded D-BLAST [22] and wrapped space-time
coding [23], [24]. Most of existing work is designed for
the case in which the number of receive antennas
relies on the diagonal structure to perform a simple ZF or
MMSE decision-feedback detection coupled with constituent
decoder at the receiver. This work, instead, applies the diagonal
structure to achieve the full transmit diversity that is essential
for reliable transmissions when . In the sequel, our
scheme achieves a far lower error probability than the variants
of D-BLAST when takes a small value (in particular,
in the downlink of most personal wireless communication
systems).

As another merit of the diagonal transmission pattern in this
work, the proposed DBST coding scheme can be easily ex-
tended to frequency-selective fading channels. As done in [25]
for delay diversity codes, we can change the delay step, shown
in Fig. 1, from one symbol period to symbol periods, with
being the number of the channel taps. Therefore, the maximum
possible combined transmit diversity of order LM is achieved,
as shown in [25].

IV. NONBINARY BLOCK CODE CONSTRUCTION

In the last section, we introduced the DBST code structure
and derived the minimum product distance criterion (6) for de-
signing the employed nonbinary block code with
transmit antennas. In this section, we discuss the construction
of this 1-D code in detail.

A. Optimal Construction for Given Constellations

We first consider the optimal code construction. Let
, which is the th element in the block code output corre-

sponding to input , with .
Due to the one-to-one mapping between and every , the

-long sequence forms a permu-
tation of the numbers . The ultimate code design
is, therefore, to find these permutations for
that give the largest minimum product distance over a given
modulator mapping function. As the numbers
can be arranged in different ways, the size of the exhaustive
search space is . As each transmit antenna is statistically
equivalent to every other in the space domain, the permutation
on the first antenna can be fixed. Without loss of generality, we
simply let it be the natural order and form a
systematic block code with . For constellations that are
symmetrical in shape, the size can be further reduced, as has
been done for QPSK modulation in [19]. Yet, with an increase
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TABLE I
OPTIMUM BLOCK CODES USED IN DBST CODING FOR

P = 4 AND 8 WITH PSK MODULATION

in and , the complexity of the exhaustive search still in-
creases prohibitively.

To solve this permutation optimization problem efficiently,
the general branch-and-bound algorithm [28] can be applied.
The thrust of this algorithm is to form a tree structure (branching
operation) and establish a lower bound (bounding operation).
We take , for example, to illustrate its application in our
problem. As discussed above, our problem is to find the permu-
tation on the second antenna that can give the largest minimum
product distance. In the first level of the tree, the root has chil-
dren, each denoting an integer number between . Each
node in the first level further has children, each denoting an
integer selected from . During the construction of the
tree, a child node must be distinct from its ancestor nodes. The
tree has levels. Each path from the root to a leaf corresponds
to a possible permutation, whereas the whole tree enumerates
all permutations. The algorithm then traverses the tree in the
depth-first manner. When reaching a node of the tree, a local
minimum product distance is calculated. If it is greater than a
given lower bound of the largest minimum product distance, the
search continues. If not, the remaining tree associated with this
node is pruned. Once a permutation is found, it is used to form,
or update, the lower bound of the largest minimum product dis-
tance. The extension to is straightforward. The height of
the tree is still , but the number of nodes in each level grows
exponentially with .

TABLE II
OPTIMUM BLOCK CODES USED IN DBST CODING FOR

P = 16 WITH PSK/QAM MODULATION

Fig. 2. 16QAM constellation.

Fig. 3. Trellis diagram for the DBST code with QPSK andM = 2.

Tables I and II list the search results. Due to space limitations,
only codes with 16 and are provided. Notice that
the solution for with BPSK modulation at any is
just the repetition code and that no more gain can be obtained
using other permutations. The modulator mapping function for

-ary PSK modulation is given by , whereas
the mapping for 16QAM modulation is shown in Fig. 2. For
each code, all the codewords are arranged in an matrix,
in which each column vector represents one codeword,
and is the total number of the codewords. To illustrate the
mapping of the nonbinary block codes onto the proposed DBST
codes, Fig. 3 gives an example of the trellis diagram for
(QPSK) and , in which the branch label xy denotes the
symbols on antenna 1 and 2, respectively.

Tables I and II also shows the asymptotic improvement ,
defined in (11), for comparison. In particular, the s of the
16QAM codes in Table II are over the 16PSK repetition codes.
As it can be seen, although no improvement is obtained in terms
of , the QPSK code with has less multiplicity
multi than the repetition code multi .

Notice that the optimal code for each pair of and listed
in these two tables is not unique due to the symmetric constella-
tions. As a result, the 8PSK code with is the same as the
8PSK 8-state code designed by Tarokh et al. for two transmit
antennas in [3].
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B. Linear Construction for PSK Modulation

The branch-and-bound algorithm can usually reduce the time
of searching for optimal codes. However, as the search space
grows exponentially, the search time could still be extremely
long for large and , and this renders this algorithm imprac-
tical. Hence, we propose an efficient approach that may produce
suboptimal solutions. This approach is particularly applied for
PSK modulation. By observing that the signal points in a -ary
PSK constellation are evenly distributed on a unit circle, we can
construct a linear block code over a ring of integers, which are
denoted by . The mapping from ring

onto the constellation is given by , for
. Let the generator be formed as a row vector

, in which for .
With input , the block code output
is generated by

mod (12)

The minimum product distance of this block code can thus be
written as

(13)

After simple manipulation, we further write as

(14)

Thus, designing the optimal linear code becomes finding the so-
lutions of that maximize (14), and this
can be done by performing a simple search in set for every

. The following four properties can be applied to further re-
duce the size of the search space. First, it is seen that (14) does
not change if is replaced by . Hence, the search can
be restricted in the new set . Second, to guar-
antee nonzero , each must be relatively prime to .
Third, since each transmit antenna is statistically equivalent to
every other in the space domain, we can impose the ordering

. Last, the codewords generated by
and are identical for any

that is relatively prime to . An exists in set such that
. By multiplying with this same ,

we can let .
Table III shows some of the search results for

(16PSK), 32 (32PSK), and 64 (64PSK) with .
Again, due to the symmetrical shapes of the constellations,
the optimum solution of the generator is not unique. From
this table, it is observed that this linear construction, though
suboptimal, provides reasonably good results, besides having
significantly low complexity of searching. It is further noticed
that the code with (16PSK) and is indeed
optimal in terms of , as compared with the one in
Table II.

Another suboptimal approach to combat the complexity of
searching global optimal block codes was recently reported in
[20]. This approach for QPSK modulation, as a matter of fact,

TABLE III
LINEAR BLOCK RING CODES USED IN DBST CODING FOR

P = 16; 32, AND 64 WITH PSK MODULATION

provides the optimal solution that maximizes , as indi-
cated in Table I. However, at higher level modulation , it
becomes much less efficient. For example, the 8PSK code with

in [20] only achieves , whereas the op-
timal code has new , as shown in Table I. Similarly,
the 16PSK code with in [20] only achieves

, whereas the linear code we present in Table III using our
proposed suboptimal approach has new .

C. Discussion

As can be seen from Tables I–III, the asymptotic improve-
ment of the new space-time codes over delay diversity codes
increases significantly as constellation size increases. This is
because the minimum product distance of a repetition code is
only a function of the minimum Euclidean distance of the given
constellation. Nevertheless, the minimum product distance of a
new code depends on the whole Euclidean distance profile, and
the wider the profile distributes, the more the degree of freedom
the new code can exploit. This also explains why no gain can
be obtained at BPSK modulation. From Table II, it is
also observed that the asymptotic advantage of using a 16QAM
constellation rather than a 16PSK constellation is not as much
as traditionally expected.

Generally, for a given constellation, the product distance pro-
file of the block code should be made as dense as possible in
order to maximize the minimum product distance. In the ideal
case, the product distance between any two distinct codewords
should be a constant. As a consequence, an upper bound of the
optimum minimum product distance (opt) can be ob-
tained. Suppose the signal constellation has the Euclidean dis-
tances with multiplicity , re-
spectively. Then, the (opt) of the block code is
upper bounded by

(15)

Up to now, we have only considered the block code design
over conventional constellations, e.g., PSK and QAM. Notice,
however, that our ultimate goal is to maximize the value in (6)
over an arbitrary constellation with unit average energy. There-
fore, a more general problem is to design the constellation shape
at a given size with unit average energy that achieves the max-
imum value of . This, however, is beyond the scope of
present research.
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Fig. 4. SER performance of 8PSK codes with M = 3 transmit antennas over
a quasistatic fading channel.

V. SIMULATION RESULTS

The analysis in the previous section demonstrates the asymp-
totic performance improvement of the proposed DBST codes
over DD codes. In this section, simulations are carried out to
evaluate the actual performance gain in practical SNR regions.
The channel is set to be flat Rayleigh fading, and the channel
state information is available at the receiver but not at the trans-
mitter. Unless specified otherwise, ML decoding is obtained by
the Viterbi algorithm. The performances are plotted versus the
total average transmitted SNR, which, by definition, is given as

.

A. Comparison With Delay Diversity Codes

We first take the 8PSK code with transmit antennas,
as shown in Table I for example. Simulation is performed with
three different channel autocorrelations in the time domain.
Since the frame error rate (FER) depends on the transmission
frame length and the bit error rate (BER) is a function of the
bit-to-symbol mapping,2 the information symbol error rate
(SER) is selected as the performance measure.

Fig. 4 plots the SER performance comparison over a qua-
sistatic fading channel (frame length ). It is observed
that the actual gain of the DBST code over the DD code at a
SER of is about 1.8 dB with one receive antenna. With
two receive antennas, the gain increases to 3.5 dB, which is less
than 1 dB away from the theoretically asymptotic improvement
of 4.33 dB shown in Table I.

Fig. 5 shows the SER performance comparison over a rapid
fading channel. Now, the actual gains at the SER of are
about 3.3 and 3.9 dB with one and two receive antennas, re-
spectively, closer to the asymptotic improvement.

The SER performance comparison over a time-varying
fading channel is illustrated in Fig. 6. The channel autocorre-
lation function is modeled as , where is the
maximum Doppler frequency, is the symbol period, is

2Gray mapping is not necessarily the optimal mapping in space-time codes.

Fig. 5. SER performance of 8PSK codes with M = 3 transmit antennas over
a rapid fading channel.

Fig. 6. SER performance of 8PSK codes with M = 3 transmit antennas over
a time-varying fading channel with f T = 0:05.

the discrete time index, and is the zeroth-order Bessel
function of the first kind. The parameter is set to 0.05 in
this simulation. First, it is observed that the gain of the DBST
code over the DD code at SER is around 2.5 dB with one
receive antenna. This is greater than the gain over a quasistatic
fading channel but less than that over rapid fading. It is also
observed that with the same number of receive antennas, the
performance curve of the DBST code over this time-varying
fading channel always lies somewhere between the curve in
quasistatic fading and that in rapid fading. This observation
demonstrates clearly the robustness of DBST codes over the
time-selectivity of a fading channel.

To illustrate the performance enhancement of other DBST
codes in Tables I–III over DD codes, we select the ones with

transmit antennas and evaluate their required operating
SNRs, respectively, at a specified SER of over a rapid
fading channel. The results are reported in Table IV, from which
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TABLE IV
OPERATING SNR [dB] AT SER = FOR CODES WITH M = 2

TRANSMIT ANTENNAS OVER A RAPID FADING CHANNEL

suboptimal code from Table III

Fig. 7. FER performance of 8PSK codes with M = 3; 4 transmit antennas
over a quasistatic fading channel.

it is seen that the asymptotic improvement predicts the ac-
tual SNR reduction very well, especially when there is more
than one receive antenna.

B. Comparison with Other Existing Codes

Through exhaustive search, the authors of [13] provided
several QPSK and 8PSK codes with three and four transmit
antennas for quasistatic flat fading channels based on the
Euclidean distance criterion. In particular, they designed 8PSK
codes with up to 32 trellis states with the order of transmit
antenna diversity equal to 2. In this subsection, we discuss a
comparison made between the 32-state 8PSK codes in [13]
and our 8PSK codes at the same number of transmit antennas.
The transmission rate is the same for all the codes, that is,
3 bits/s/Hz, but the number of trellis states is different. Our
8PSK codes with and 4 have 64 and 512 trellis states,
respectively. To make a fair comparison, a suboptimal tree
decoding algorithm is applied in the simulation of our 512-state
code: the M-algorithm [26]. In this algorithm, only a certain
number of most likely states, denoted as , are kept, and the
remaining states are deleted at each decoding stage. Thus, the
decoding complexity is . In our case, . Fig. 7
illustrates the FER performance comparison over a quasistatic
fading channel with frame length . As can be seen
in this figure, a higher diversity order is achieved using our
DBST codes. As a result, even though our codes perform less

well with two receive antennas, a superior performance is
achieved with one receive antenna. This is because full transmit
diversity is necessary at high SNR with a limited number of
receive antennas, whereas the minimum Euclidean distance
is the dominating factor at low SNR with a high enough total
diversity order, as claimed in [10] and [13]. The codes in [13]
have a much larger minimum Euclidean distance but a smaller
transmit diversity order than our codes. Hence, the observation
in Fig. 7 is not surprising.

VI. CONCLUSION

In this paper, we proposed an efficient and systematic
space-time coding scheme: diagonal block space-time coding.
It is basically a two-step approach: First, construct a 1-D
nonbinary block code; then, apply the diagonal transmission
pattern to send the block code outputs through multiple transmit
antennas. It was shown that the diagonal transmission pattern
promises a transmit (spatial and temporal) diversity of order
in a system with transmit antennas under both quasistatic
and rapid flat fading channels, whereas a carefully designed
nonbinary block code assures good coding advantage. The
conventional delay diversity code is a special case of this
coding scheme when the block code is a repetition code. To
design the optimal block code that maximizes the coding
advantage, two general problems were formulated, namely, the
permutation optimization for a given constellation and the con-
stellation optimization. In particular, we proposed an efficient
linear block code construction over rings for multilevel PSK
modulation. Through simple computer search, we obtained
some optimal and suboptimal code examples using PSK and
QAM modulations with 2–6 bits/s/Hz transmission rate and
two to six transmit antennas. Simulation results showed that
they possess a significant advantage over the original delay
diversity codes in not only quasistatic fading and rapid fading
channels but also general time-varying fading channels. They
also demonstrate superior performance over existing codes
that are optimally designed based on the Euclidean distance
criterion with one receive antenna.

The proposed coding scheme is suitable for an arbitrary
number of transmit antennas with arbitrary signal constella-
tions. It can also be easily extended to frequency-selective
fading channels. The transmission efficiency, which is defined
as the number of information symbols transmitted per signaling
interval, is equal to 1 symbol/s/Hz. The edge effect due to the
diagonal transmission pattern is only , with being
the length of the transmission frame, and can be ignored when

. Finally, by changing the rate of the employed block
code, this two-step design approach is of high flexibility for
future developments with various combinations of transmission
efficiency and diversity order.
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