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Abstract. Traditional color appearance modeling has recently ma-
tured to the point that available, internationally recommended mod-
els such as CIECAMOZ2 are capable of making a wide range of pre-
dictions, to within the observer variability in color matching and color
scaling of stimuli, in somewhat simplified viewing conditions. It is
proposed that the next significant advances in the field of color ap-
pearance modeling and image quality metrics will not come from
evolutionary revisions of colorimetric color appearance models
alone. Instead, a more revolutionary approach will be required to
make appearance and difference predictions for more complex
stimuli in a wider array of viewing conditions. Such an approach can
be considered image appearance modeling, since it extends the
concepts of color appearance modeling to stimuli and viewing envi-
ronments that are spatially and temporally at the level of complexity
of real natural and man-made scenes, and extends traditional image
quality metrics into the color appearance domain. Thus, two previ-
ously parallel and evolving research areas are combined in a new
way as an attempt to instigate a significant advance. We review the
concepts of image appearance modeling, present i(CAM as one ex-
ample of such a model, and provide a number of examples of the
use of ICAM in image reproduction and image quality
evaluation. © 2004 SPIE and IS&T. [DOIl: 10.1117/1.1635368]

the inks as well as measures of the dot area coverage for
halftone systems. In electronic systems like television, sys-
tem measurements such as signal voltages were used to
colorimetrically quantify the imaging systenit should be
noted that vision-based measurements of imaging systems
for image quality do have a long history, as illustrated by
the example of Schade’s pioneering wérks imaging sys-
tems evolved in complexity and openness, the need for
device-independent image measures became clear.

1.1 Image Colorimetry

Electronic imaging systems, specifically the development
of color television, prompted the first application of device-
independent color measurements of images. Wright, in fact,
points out that color television could not have been in-
vented without colorimetry. Device-independent color
measurements are based on the internationally standardized
CIE system of colorimetry first developed in 1931. CIE
colorimetry specifies a color stimulus with numbers propor-
tional to the stimulation of the human visual system, inde-

1 Introduction pendent of how the color stimulus was produced. The CIE

The fundamental theme of this research can be consideredystém was used very successfully in the design and stan-
image measurement, and the application of those measuredardization of color television systemcluding recent
ments to image rendering and image quality evaluation.digital television systems o
Consideration of the history of image measurement helps Application of CIE colorimetry to imaging systems be-
set the context for the formulation and application of image €@me much more prevalent with the advent of digital im-
appearance models, a somewhat natural evolution of colo@9ing systems and, in particular, the use of computer sys-
appearance, spatial vision, and temporal vision modelst€ms to generate and proof content ultimately destined for
when they are considered in a holistic sense, rather than agther media, such as print. As color-capable digital imaging
individual research fields. Early imaging systems were ei- Systems(from scanners and cameras, through displays, to
ther not scientifically measured at all, or measured with Various hardcopy output technologiesecame commer-
systems designed to specify the variables of the imagingC'a”}’ available in the last two decades, it was quickly rec-
system itself. For example, densitometers were developed®dnized that device-dependent color coordindtegh as
for measuring photographic materials with the intent of Monitor RGB and printer CMYK could not be used to
specifying the amounts of dye or silver produced in the spgmfy and re_p_roduce color images with accuracy and pre-
film. In printing, similar measurements would be made for ¢ision. An additional factor was the open-systems nature of
digital imaging in which the input, display, and output de-
vices might be produced by different manufacturers, and

- , ) ) one source could not control color through the entire pro-
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cess. The use of CIE colorimetry to specify images across
various devices promised to solve some of the new color
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reproduction problems created by open, digital systems.color. A pixel-by-pixel color difference calculation between
The flexibility of digital systems also made it possible and a continuous image and a halftone image would result in
practical to perform colorimetric transformations on image very large errors, while the perceived difference might in
data in attempts to match the colors across disparate defact be small. The spatial preprocessing would blur the
vices and media. halftone image, so that it more closely resembles the con-
Research on imaging device calibration and character-tinuous tone image.
ization has spanned the range from fundamental color mea- S-CIELAB represents the first incarnation of an image
surement techniques to the specification of a variety of de-difference model based on the CIELAB color space and
vices including CRT, LCD, and projection displays, color difference equations. Recently, this model has been
scanners and digital cameras, and various film recordingrefined and extended into a modular framework for image
and print media. Some of the concepts and results of thiscolor difference calculation®. This framework refines the
research have been summarized by Bér8sich capabili- CSF equations from the S-CIELAB model, and adds mod-
ties are a fundamental requirement for research and develules for spatial frequency adaptation, spatial localization,
opment in color and image appearance. Research on devicand local and global contrast detection. This framework is
characterization and calibration provides a means to tacklediscussed in more detail below.
more fundamental problems in device-independent color
imaging. For example, conceptual research on desigﬁn and.4 Color Appearance
implementation of device-independent color imaging, ynfortunately, fundamental CIE colorimetry does not pro-
gamut mapping algorithms to deal with the reproduction of
desired colors that fall outside the range that can be ob
tained with a given imaging deviéend computer graphics
rendering of high-quality spectral images that significantly
improve the potential for accurate color in rendered
scenes. This type of research built on, and contributed to,
research on the development and testing of color appear
ance models for cross-media image reproduction.

vide a complete solution for image specification. CIE colo-
rimetry is only strictly applicable to situations in which the
original and reproduction are viewed in identical condi-
tions. By their very nature, the images produced or cap-
tured by various digital systems are examined in widely
disparate viewing conditions, from the original captured
Scene, to a computer display in a dim room, to printed
media under a variety of light sources, to projection dis-
. . plays in dark rooms. Thus color appearance models were
1.2 Color Difference Equations developed to extend CIE colorimetry to the prediction of
Color difference research has culminated with the recentlycolor appearanc@ot just color matchesacross changes in
published CIEDE2000 color difference formdla color media and viewing conditionot just within a single con-
difference equation allows for the mapping of physically dition). Color appearance modeling research applied to
measured stimuli into perceived differences. At the heart of digital imaging systems was very active throughout the
such color difference equations lies some form of uniform 1990s, culminating with the recommendation of the
color space. The CIE initially recommended two such color CIECAM97s model in 199% and its revision, CIECAMO2,
spaces in 1976, CIELAB and CIELUV. Both spaces were in 200212 Details on the evolution, formulation, and appli-
initially described as interim color spaces, with the knowl- cation of color appearance models can be found in
edge that they were far from complete. More than 25 yearsFairchild!® The development of these models was also en-
later, these spaces are still the CIE recommendations, alabled by visual experiments performed to test the perfor-
though CIELUV has fallen out of favor. mance of published color-appearance models in realistic
With a truly uniform color space, color differences can image reproduction situatiot$ Such research on color ap-
then be taken to be a simple measure of distance betweepearance modeling in imaging applications naturally high-
two colors in the space, such as CME},. The CIE rec- lighted the areas that are not adequately addressed for spa-
ognized the nonuniformity of the CIELAB color space, and tially complex image appearance and image quality
formulated more advanced color difference equations suchproblems.
as CIE DE94 and CIEDE2000. These more complicated
equations are very capable of predicting perceived colorl.5 Image Appearance and Image Quality

differences of simple color patches. Color appearance models account for many changes in
. viewing conditions, but are mainly focused on changes in
1.3 Image Difference the color of the illuminatior(white poind, the illumination
The CIE color difference formulas were developed using level (luminance, and surround relative luminance. Such
simple color patches in controlled viewing conditions. models do not directly incorporate any of the spatial or
There is no reason to believe that they are adequate fotemporal properties of human vision and the perception of
predicting color difference for spatially complex image images. They essentially treat each pixel of an imagel
stimuli. The S-CIELAB model was designed as a spatial each frame of a videoas completely independent stimuli.
preprocessor to the standard CIE color difference equa-A review of some current work in the area provides con-
tions, to account for complex color stimuli such as halftone text.

patterns’ Spatial preprocessing uses separable convolution Visual adaptation to scenes and images is not only spa-
kernels to approximate the contrast sensitivity functions tially localized according to some low-pass characteristics,
(CSH of the human visual system. The CSF serves to re-but also temporally localized in a similar manner. To pre-
move information that is imperceptible to the visual sys- dict the appearance of digital video sequences, particularly
tem. For instance, when viewing halftone dots at a certainthose of high-dynamic range, the temporal properties of
distance, the dots tend to blur and integrate into a singlelight and chromatic adaptation must be considered. To pre-
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dict the quality(or image differencesof video sequences, probability of detection of artifacts in images. These are
temporal filtering to remove imperceptible high-frequency threshold changes in images often referred to as just notice-
temporal modulationémperceptible flickermust be added  able differences, or JNDs. The Sarnoff JND model has no
to the spatial filtering that removes imperceptible spatial mechanisms of chromatic and luminance adaptation, as are
artifacts(e.g., noise or compression artifacts included in the iICAM model. The input to the Sarnoff

It is easy to illustrate that adaptation has a significant model must first be normalized, which can be considered a
temporal low-pass characteristic. For example, if one sud-very rudimentary form of adaptation. The temporal aspects
denly turns on the lights in a darkened rodas when first  of the Sarnoff model are also not aimed at predicting the
awakening in the morningthe increased illumination level appearance of video sequences, but rather at predicting the
is at first dazzling to the visual system, essentially overex- detectability of temporal artifacts. As such, the model only
posing it. After a short period of time, the visual system uses two framegfour fields in its temporal processing.
adapts to the new, higher level of illumination and normal Thus, while it is capable of predicting the perceptibility of
visual perception becomes possible. The same is true whemelatively high-frequency temporal variation in the video
going from high levels of illumination to low levelsmag- (flicker), it cannot predict the visibility of low-frequency
ine driving into a tunnel in the daytimeFairchild and  variations that would require an appearance-oriented, rather
Reniff® and Rinner and Gegenfurtf®have made detailed than JND-oriented, model. The Sarnoff model also is not
measurements of the time course of chromatic adaptationdesigned for rendering video. This is not a criticism of the
These results suggest temporal integration functions thatmodel formulation, but an illustration of how the objective
could be used in models of moving image appearance, anaf the Sarnoff JIND model is significantly different from
also illustrate one of the mechanisms for spatially low-passthat of the iCAM model. While it is well accepted in the
adaptation stimuli due to the influence of ever-present eyevision science literature that JND predictions are not lin-
movements. Such adaptation stimuli are used in the modekarly related to suprathreshold appearance differences, it is
described in this work. certainly possible to use a JND model to try to predict

There has been significant research on video quality andsuprathreshold image differences, and the Sarnoff JND
video quality metrics, often aimed at the creation and opti- model has been applied with some success to such data.
mization of encoding/compression/decoding algorithms A similar model, the DVQ2 metric has been published by
such as MPEG2 and MPEGA4. 2{ analogy, the still-image Watson, Hu, and McGowah?*of NASA. The DVQ metric
visible differences predictor of Dal{is quite applicable to  is similar in concept to the Sarnoff JIND model, but signifi-
the prediction of the visibility of artifacts introduced into cantly different in implementation. Its spatial decomposi-
still images by JPEG image compression. The Daly modeltion is based on the coefficients of a discrete cosine trans-
was designed to predict the probability of detecting an ar-formation (DCT), making it amenable to hardware
tifact (i.e., is the artifact above the visual threshol@ihe implementation, and likely making it particularly good at
iCAM work reviewed here and elsewhé?é® has had a  detecting artifacts introduced by DCT-based video com-
different objective with respect to image quality. Instead of pression algorithms. It also has a more robust temporal fil-
focusing on threshold differences in quality, the focus haster that should be capable of predicting a wider array of
been on the prediction of image quality scaleg., scales temporal artifacts. Like the Sarnoff model, the DVQ metric
of sharpness, contrast, graininef® images with changes is aimed at predicting the probability of detection of thresh-
well above threshold. Such suprathreshold image differ-old image differences. The DVQ model also includes no
ences are a different domain of image quality research,explicit appearance processing through spatial or temporal
based on image appearance that separate the iCAM modeddaptation, or correlates of appearance attributes, and there-
from previous image quality models. fore also cannot be used for video rendering. Again, this is

Likewise, a similar situation exists in the area of video not a shortcoming, but rather a property of the design ob-
quality metrics. Metrics have been published to examine jectives for the DVQ model.
the probability of detection of artifacts in vid€e., thresh- While color appearance modeling has been successful in
old metricg, but there appears to be no models of video facilitating device-independent color imaging and is incor-
image appearance designed for rendering video and preporated into modern color management systems, there re-
dicting the magnitudes of perceived differences in video mains significant room for improvement and extension of
sequences. The latter is one of the ultimate goals of thecapabilities. To address these issues with respect to spatial
development of iCAM. Two well-known video image qual- properties of vision and image perceptifacalized adap-
ity models, the Sarnoff just noticeable differenGEND) tation and spatial filteringand image quality, the concept

model and the NASA digital video qualittpVQ) model, of image appearance models has been recently introduced
are briefly described next to contrast their capabilities with and implemented2° These models combine attributes of
the proposed extensions to the iCAM model. color appearance models with attributes of spatial vision

The Sarnoff IND model is the basis of the JNDmetrix models that have been previously used for image quality
software packaggsee www.jndmetrix.comnand related  metrics in an attempt to further extend the capabilities of
video quality hardware. The model is briefly described in a color-appearance models. Historically, color-appearance
technical report published by Sarndffand is more fully models largely ignored spatial visidee.g., CIECAM97§,
disclosed in other publicatiorfS.It is based on the multi-  while spatial vision models for image quality largely ig-
scale model of spatial vision published by LuBirf with nored colort”?! One notable exception, and the theme of
some extensions for color processing and temporal varia-this special issue of théournal of Electronic Imaginghas
tion. The Lubin model is similar in nature to the Daly been the Retinex modér*® and its various
model mentioned before, in that it is designed to predict thederivatives’*~3 The spatial ATD modéf and the
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S-CIELAB mode! also address some of these issues tosource code can be found at www.cis.rit.edu/mcsl/iCAM.
various extents. While the Retinex model was never de-For input, the model requires colorimetrically characterized
signed as a complete model of image appearance and quabata for the imagéor sceng and surround in absolute lu-
ity, its spatially variable mechanisms of chromatic adapta- minance units. The image is specified in terms of relative
tion and color constancy serve some of the same purpose€IE XYZ tristimulus values. The adapting stimulus is a
in image rendering, and provide some of the critical low-pass filtered version of the CIE XYZ image that is also
groundwork for image-appearance modeling. tagged with absolute luminance information necessary to
The goal in developing an image appearance model hagpredict the degree of chromatic adaptation. The absolute
been to bring these research areas together to create a singleminances Y) of the image data are also used as a second
model applicable to image appearance, image renderinglow-pass image to control various luminance-dependant as-
and image quality specifications and evaluations. One suclpects of the model intended to predict the Hunt efi@at
model for still images, referred to as ICAM, has recently crease in perceived colorfulness with luminaneed the
been published by Fairchild and John&band is detailed  Stevens effectincrease in perceived image contrast with
in this work. This model was built on previous research in juminancg. Last, a low-pass, luminancé&) image of sig-
uniform 6C0|0f .space§5, the importance of image nificantly greater spatial extent is used to control the pre-
surround?® algorithms_for image difference and image diction of image contrast that is well established to be a
quality measuremenrtt;*’insights into observers eye move- function of the relative luminance of the surrounding con-
ments while performing various visual imaging tasks and ditions (Bartleson and Breneman equatipnfRefer to
adaptation to natural scen&s)’ and an earlier model of  Fairchild® for a full discussion of the various image ap-

spatial and color vision applied to color appearance prob-pearance effects mentioned earlier and detailed specifica-

lems and high-dynamic-rangelDR) imaging:™ The struc-  tjons of the data required. The specific low-pass filters used
ture of the iCAM model and examples of its implementa- for the adapting images depend on viewing distance and

tion for image appearance are presented next. application. Additionally, in some image rendering circum-
stances, it might be desirable to have different low-pass
1.6 Color and Image Appearance Models adapting images for luminance and chromatic information,

A model capable of predicting perceived color difference to avoid desaturation of the rendered images due to local
between complex image stimuli is a useful tool, but has chromatic adaptatiotidecrease in visual sensitivity to the
some limitations. Just as a color appearance model is neccolor of the stimulus This is one example of application
essary to fully describe the appearance of color stimuli, andependence. Local chromatic adaptation might be appropri-
image appearance model is necessary to describe spatiall§te for image difference or image quality measurements,
complex color stimuli. Color appearance models allow for but inappropriate for image rendering situations.

the description of attributes such as lightness, brightness, The first stage of processing in iCAM is to account for
colorfulness, chroma, and hue. Image appearance modelshromatic adaptation. The chromatic adaptation transform
extend on this to also predict such attributes as sharpnessmbedded in the recently published CIECAM02 maotiel
graininess, contrast, and resolution. has been adopted in iCAM, since it was well researched

A uniform color space also lies in the heart of an image and established to have excellent performance with all
appearance model. The modular image difference frame-@vailable visual data. It is also a relatively simple chromatic
work allows for great flexibility in the choice of color @adaptation model, amenable to image processing applica-
spaces. Examples are the CIELAB color space, similar totions. The chromatic adaptation model, given in Eds-
S-CIELAB, the CIECAMO2 color appearance model, or the (6), is a linear von Kries normalization of RGB image sig-
IPT color spacé?® Thus the modular image difference nals to the RGB adaptation signals derived from
framework can be implemented within the iCAM model, as
described in this work, to create a full image appearance| R X
and image difference model. It could also be implemented| G Y
in other color spaces if desired. This is one of the main | g | =Mcaroz
benefits of its modularity.

Models of image appearance can be used to formulate
multidimensional models of image quality. For example, it
is possible to take weighted sums of various appearance 0.7328  0.4296 —0.1624
attributes to determine a metric of overall image quality, as Mecaroo=| —0.7036 1.6975 0.0061, 2
described by Keeldh and Engledrunt? Essentially, these
models can augment or replace human observations to 0.0030 0.0136 0.983
weight image attributes with overall appearances of quality.

: .Y

For instance, a model of quality might involve weighted |, (1} —La—42 3
sums of tonal balance, contrast, and sharpness. A first ste;?_ 3.6 € 92 '
toward this type of model is illustrated in more detail later.

D
2 iCAM Framework R;[(lOOR—) +(1—D)}R, (4)
Figure 1 presents a flow chart of the general framework for W
the ICAM image appearance model as applied to still im- D
ages originally presented by Fairchild and JohrSoRu- Gcz[( 100— +(1—D)}G, (5)
ture updates to the model, along with example images and Gw
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Fig. 1 Flowchart of the iCAM image appearance model. Inputs to the model are CIE tristimulus values
XYZ for the stimulus image or scene and a low-pass version used as an adapting stimulus and
absolute luminance information for the low-pass image and surround. Adapted signals are computed
using the linear chromatic adaptation transform from CIECAMO02, and are then converted into an
opponend space IPT using the luminance information to modulate a compressive nonlinearity. The
rectangular IPT coordinates are then converted to cylindrical correlates of lightness J, chroma C, and
hue h. The lightness and chroma correlates can then be scaled by a function of the absolute lumi-
nance information to provide correlates of brightness Q and colorfulness M. If desired, a saturation
correlate can be computed as the ratio of chroma to lightness (or colorfulness to brightness).

D iICAM for computation ofD as a function of adapting Iu-

Bcz{(looa\l B, (6) minancelL , for various viewing conditions. Alternatively,
the D factor can be established manually. The chromatic

with the low-pass adaptation image at each pixel locationadaptation model is used to compute corresponding colors
(RwGwBw). The RGB signals are computed using a linear for CIE Illluminant D65, which are then used in the later
transformation from XYZ to RGB, derived by CIE TC8-01 stages of the iCAM model. This is accomplished by taking
in the formulation of CIECAMO2. This matrix transforma- the adapted signals for the viewing conditiop& B and
tion has come to be called th o, Matrix, where CAT  then inverting Egs(1)—(6) for an illuminant D65 adapting
stands for chromatic adaptation transform. The von Kries white point, and wittD = 1.0. It should be noted that, while
normalization is further modulated with a degree-of- the adaptation transformation is identical to that in
adaptation factob that can vary from 0.0 for no adaptation CIECAMO02, the iCAM model is already significantly dif-
to 1.0 for complete chromatic adaptation. Equati@n is ferent, since it uses spatially modulated image data as input
provided in the CIECAMO2 formulation, and is used in rather than single color stimuli and adaptation points. It

+(1-D)
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also differs completely in the remainder of the formulation, | 0.4000 0.4000 0.200 L

although using CIECAMO02 equations where appropriate.

One example of this is the modulation of the absolute lu- | P|= 4.4550 —4.8510  0.3960|| ) (12
minance image and surround luminance image usingthe T 0.8056 0.3572 —1.1628|| &

function from CIECAMO2 given in Eq(7). This function,
slowly varying with luminance, has been

The power function nonlinearities in the IPT transformation
are a critical aspect of the iCAM model. First, they are
necessary to predict response compression that is prevalent
42 in most human sensory systems. This res.ponse.compre.ssion
] (5L )13 7) helpe to convert'from S|gnels that are Imeer in physmal
' metrics (e.g., luminanceto signals that are linear in per-
ceptual dimensions(e.g., lightness The CIECAMO02

established to predict a variety of luminance-dependent ap-Mmodel uses a hyperbolic nonlinearity for this purpose. The
pearance effects in CIECAMO2 and earlier models. SincebPehavior is that of a power function over the practical
the function has been established and understood, it waganges of luminance levels encountered. Second, and a key
also adopted for the early stages of iCAM. However, the cOmMponent of iCAM, the exponents are modulated accord-
manner in which thee, factor is used in CIECAMO2 and N9 to the luminance of the imagéow-pass filtereg and
iCAM are quite different. the surround. This is essentially accomplished by multiply-
The next stage of the model is to convert from RGB ing the base exponent in the IPT formglatlon by the image-
signals (roughly analogous to cone signals in the human Wise computed_:L factors with appropriate normallza_tlon.
visual system to opponent-color signaliight-dark, red- These modulations of the.IP_T exponents allow the iCAM
green, and yellow-blue; analogous to higher level encodinngde| to be used for predictions of the Hunt, Stevens, and
in the human visual systenthat are necessary for con- Bartleson/Breneman effects mer)tloned 'before. They also
structing a uniform perceptual color space and correlates of?@Ppen to enable the tone mapping of high-dynamic-range
various appearance attributes. In choosing this transformalmages into low-dynamic range display systems in a visu-
tion, simplicity, accuracy, and applicability to image pro- ally meaningful way. , _ . o
cessing were the main considerations. The color space cho- For image difference and image quality predictions, it is
sen was the IPT space previously published by Ebner andflSO necessary to apply spatial filtering to the image data to
Fairchild3® The IPT space was derived specifically for im- €liminate any image variations at spatial frequencies too
age processing applications to have a relatively simple for-high to be perceived. For example, the dots in a printed
mulation, and specifically, to have a hue-angle componenthalftone image are not visible if the viewing distance is
with good prediction of constant perceived himportant eufflc!ently large. 'I_'hls computation is dependent on view-
in gamut mapping applicationsMore recent work on per- N9 distance and is based on filters derived from human
ceived hue has validated the applicability of the IPT space.contrast sensitivity functions. Since the human contrast sen-
The transformation from RGB to the IPT opponent space is Sitivity functions vary for luminanc¢bandpass with sensi-
far simpler than the transformations used in CIECAMO2. tivity to high frequenciesand chromatidlow pass infor-
The process, expressed in E@—(12), involves a linear ~ Mation, it is appropriate to apply these filters in an
transformation to a different cone response spaceiffer- opponent space. Thus in image quality applications of
ent RGB, application of power function nonlinearities, and ICAM, spatial filters are applied in the IPT space. Since it is
then a final linear transformation to the IPT opponent space@PPropriate to apply spatial filters in a linear signal space,

(I'is light-dark, P is red-green, and T is yellow-bjue they are applied in a linear version of IPT prior to conver-
sion into the nonlinear version of IPT for appearance pre-

4
(5L )

1
FL:O'Z{(SLAJrl)

+0.5y1—

(5LA+1)

dictions. Johnson and Fairchild have recently discussed

L 0.4002  0.7075 —0.0807 Xpes some of the important considerations for this type of filter-
M|=| —0.2280 1.1500 0.0617| Ypes]|, (8 ing in image difference applications, and have specified the
S 0.0 00 09184l Zoss filters used based on available visual d&t% Since the
' ' ' spatial filtering effectively blurs the image data, it is not
desirable for image rendering applications in which observ-
L'=L% L=0 ers might view the images more closely than the specified
(9) viewing distance. The result would be a blurrier image than
L'=—|L|%® L=<, the original. The contrast sensitivity functions used to de-
fine spatial filters currently used for image difference com-
) 0.43 putations are given in Eq13) for the luminance | channel
M'=M"" M=0 and Eq.(14) for the chromatic P and T channéfsespec-
(10 tively.
M’=—[M[*%  M=O,
§=504 5= csfym(f)=a-f¢ exp(—b-f), (13
(11
S'=-19/%% s<0, cShpon( ) =a;- exp(—b;- 1) +a,- exp(—b,-%2). (14)
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Equations(13) and(14) were derived from fits to a collec-
tion of experimental dat. The parametera, b, andc in

For image rendering applications, it is necessary to take the
computed appearance correlatekCh) and then render

Eq. (13) are set to 75, 0.2, and 0.8, respectively, for the them to the viewing conditions of a given display. The dis-

luminance CSF, applied to the | channel. In E(s3) and
(14), spatial frequency is defined in terms of cycles per

play viewing conditions set the parameters for the inversion
of the IPT model and the chromatic adaptation transform

degree of visual angl6CPD). For the red-green chromatic (all for an assumed spatially uniform display adaptation

CSF, applied to the P dimension, the parameteass p;,

Ci, @y, by, C,) in Eq. (14) are set t0(109.14,—0.00038,
3.424, 93.60,-0.00367, 2.168 For the blue-yellow chro-
matic CSF, applied to the T dimension, they are set to
(7.033, 0.000004, 4.258, 40.69,0.10391, 1.648)

It is only appropriate to apply these spatial filters when
the goal is to compute perceived image differen¢asd
ultimately image quality This is an important distinction
between spatially localized adaptatit@ood for rendering
and image quality metrigsand spatial filtering(good for
image quality metrics, bad for renderingn image quality
applications, the spatial filtering is typically broken down
into multiple channels for various spatial frequencies and
orientations. For example, Daly,Lubin,?? and Pattanaik

typical of low-dynamic-range output medid his inversion

allows the appearance of original scenes or images from
disparate viewing conditions to be rendered for the ob-
server viewing a given display. One important application
of such rendering is the display of high-dynamic-range
(HDR) image data on typical displays.

3 Modular Image Difference Model

A framework for a color image difference metric has re-

cently been describéd:**In this work, the modular image
difference metric is incorporated into the iCAM appearance
model to address both image appearance and differences/
quality within a single model. The image difference frame-
work was designed to be modular in nature, to allow for

et al?° describe such models. More recent results Suggesﬂ‘lexibility and adaptation. The framework itself is based on

that while such multiscale and multiorientation filtering
might be critical for some threshold metrics, it is often not

necessary for data derived from complex images and for

the S-CIELAB spatial extension to the CIELAB color
space. S-CIELAB merges traditional color difference equa-
tions with spatial properties of the human visual system.

suprathreshold predictions of perceived image differences! NiS Was accomplished as a spatial filtering preprocessing,

(one of the main goals of ICAM.%***5Thus, to preserve
the simplicity and ease of use of the iCAM model, single-
scale spatial filtering with anisotropic filters was adopted.

Once the IPT coordinates are computed for the image
data, a simple coordinate transformation from rectangular

to cylindrical coordinates is applied to obtain image-wise
predictors of lightnessJ), chroma C), and hue angle
(h), as shown in Eqs(15), (16), and(17). Differences in

these dimensions can be used to compute image differenc

statistics and those used to derive image quality metrics
The overall Euclidean difference in IPT is referred to as
A Im (Eg. 20 for image difference, to distinguish it from a
traditional color difference metriaE, which includes no
spatial filtering. In some instances, correlates of the abso
lute appearance attributes of brightne§¥) (and colorful-
ness M) are required. These are obtained by scaling the
relative attributes of lightness and chroma with the appro-
priate function ofF| (based on CIECAMOR derived from

the image-wise luminance map, as shown in Ef8) and
(29.

J=I, (15)
C=\P?+T?, (16)
h=tan ! ;) (17
Q="F.y, (18)
M=4F,C, (19
Alm=(AI?+AP?+AT?)Y2 (20)

132/ Journal of Electronic Imaging / January 2004 / Vol. 13(1)

before a pixel-by-pixel color difference calculation.

The modular framework further extends this idea by
adding several processing steps, in addition to the spatial
filtering. These processing steps are contained in indepen-
dent modules, so they can be tested and refined. Several
modules have been defin&and include spatial filtering,
adaptation, and localization, as well as local and global
contrast detection. Figure 2 shows a general flowchart with
several distinct modules. These modules and their origins

%re described briefly in the following.

3.1 Spatial Filtering

The behavior of the human visual system in regards to spa-
tially complex stimuli has been well studied over the years,
dating back to the seminal work of Campbell and RoB8on
and Mullen*” Summaries of current knowledge and tech-
niques for quantifying spatial vision can be found in several
books*~%°The contrast sensitivity function describes this
behavior in relation to spatial frequency. Essentially, the
CSF is described in a postretinal opponent color space, with
a bandpass nature for the luminance channel and low-pass
nature for the chrominance channels. S-CIELAB uses sepa-
rable convolution kernels to approximate the CSF, and
modulate image details that are imperceptible. More com-
plicated contrast sensitivity functions, that include both
modulation and frequency enhancement, were discussed in
detail by Johnson and Fairchifd Other models with simi-

lar features include the previously mentioned Lufin,
Daly,}” MOM,*® S-CIELAB,? and spatial ATB* models.
Other relevant discussions and models can be found in the
work of Li,> Taylor et al,*>*3and Brill's extension of the
Lubin/Sarnoff modef?

3.2 Spatial Frequency Adaptation

The contrast sensitivity function in this framework serves
to modulate spatial frequencies that are not perceptible, and
enhance certain frequencies that are most perceptible. Gen-
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Reproduction Since spatial frequency adaptation cannot be avoided in

— real world viewing conditiongas it often is in the contrived
psychophysical stimuli used to study spatial vigiseveral
models of spatial frequency adaptation have been described
for practical application4® These models alter the nature of
the CSF based on either assumptions of the viewing condi-
tions, or based on the information contained in the images
themselves.

3.3 Spatial Localization

The bandpass and low-pass contrast sensitivity serve to
modulate high-frequency information, including high-
frequency edges. The human visual system is generally ac-
knowledged to be very adept at detecting edges. To accom-
modate this behavior, a module of spatial localization has
been developed. This module can be as simple as an image
processing edge-enhancing kernel, although that kernel
must change as a function of viewing distance. Alterna-
tively, the CSF can be modified to boost certain high-
frequency information. The formulation and utility of edge-
detection algorithms in vision applications has been well
described by Mart®

Local Contrast Detection 3.4 Local Contrast Detection

This module serves to detect local and global contrast
changes between images. The utility of such processing in
real visual systems has been described by Tolhurst and
Heeger’ The current implementation is based on the non-

linear mask-based local contrast enhancement described by
i Moroney®® Essentially, a low-pass image mask is used to

generate a series of tone-reproduction curves. These curves
are based on the global contrast of the image, as well as the
relationship between a single pixel and its local neighbor-
hood.

Uniform Color Space

3.5 Color Difference Map

The output of the modular framework is a map of color

differences Im, corresponding to the perceived magnitude

Color Difference Map of error at each pixel location. This map can be very useful

: for determining specific causes of error, or for detecting

systematic errors in a color imaging system. Often, it is
useful to reduce the error map into a more manageable
dataset. This can be accomplished using image statistics, so
long as care is taken. Such statistics can be image mean,

max, median, or standard deviation. Different statistics
Fig. 2 Flowchart of a modular image difference metric. might be more valuable than others, depending on the ap-
plication, as perhaps the mean error better describes overall

. . . ... difference, while the max might better describe threshold
erally, CSFs are measured using simple grating stimuli, §itferences.

with care taken to avoid spatial frequency adaptation. Spa-
tial frequency adaptation essentially decreases sensitivity to — .
certain frequencies based on information present in the vi-4 Mage Appearance Applications  (Rendering )

sual field. An early and classic description of spatial fre- Figure 3 illustrates implementation of the ICAM frame-
quency adaptation was published by Blakemore andwork required to complete an image rendering process nec-
Campbelf® It should be noted that a multiscale, or multi- essary for HDR image tone mapping. The components es-
channel, spatial vision model is not required to predict spa-sential in this process are the inversion of the IPT model for
tial frequency adaptation. Instead, all that is required is thata single set of spatially constant viewing conditiaftise

the CSF functions be allowed to change shape as a functiorisplay, and the establishment of spatial filters for the
of adaptation(clearly indicating multiscale mechanisms in adapting stimuli used for local luminance adaptation and
the human visual system not necessary for practical mod-modulation of the IPT exponential nonlinearity. While the
eling). derivation of optimal model settings for HDR image ren-
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Gaussian Low-Pass
2-sigma = 1/4 Image Width

Luminance

Adaptation
Only
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IPT to RGB
(fixed exponent)
RGB to XYZ
(fixed adaptation)
XYZ 1o Display RGB
(characterization) (

Norm. to 10 at 1000 cd/m?
Clipped to Min. of 0.3
Multiplied by IPT Exp. (0.43)

Fig. 3 Implementation of iCAM for tone mapping of HDR images.

dering is still underway, quite satisfactory results have beenin iCAM are very good and comparable with the best color
obtained using the settings outlined in Fig. 3. appearance models in typical viewing conditions. The
The iICAM model has been successfully applied to pre- brightness and colorfulness scales will also perform as well
diction of a variety of color appearance phenomena, such ass any other model for typical conditions. In more extreme
chromatic adaptatiofcorresponding colojscolor appear-  viewing conditions, the performance of iCAM and other
ance scales, constant hue perceptions, simultaneous comnodels will begin to deviate. It is in these conditions that
trast, crispening, spreading, and image rendefing. the potential strengths of iCAM will become evident. Fur-
Since iCAM uses the same chromatic adaptation trans-ther visual data must be collected to evaluate the model's
form as CIECAMO2, it performs identically for situations relative performance in such situations.
in which only a change in state of chromatic adaptation is  The color difference performance of ICAM will be simi-
present(i.e., change in white point onlyCIE TC8-01 has lar to that of CIELAB, since the space is very similar under
worked very hard to arrive at this adaptation transform, andthe reference viewing conditions. Thus, color difference
it is clear that no other model currently exists with better computations will be similar to those already commonly
performance, although there are several with equivalentused, and the space can be easily extended to have a more
performance. Thus the chromatic adaptation performanceaccurate difference equation following the successful for-
of iCAM is as good as possible at this juncture. mat of the CIE94 equationgFollowing the CIEDE2000
The appearance scales of iCAM are identical to the IPT equations in iCAM is not recommended, since they are
scales for the reference viewing conditions. The IPT spaceextremely complex and fitted to particular discrepancies of
has the best available performance for constant hue conthe CIELAB space, such as poor constant hue contpurs.
tours, and thus this feature is retained in iCAM. This fea-  Simultaneous contragbr induction causes a stimulus
ture makes accurate implementation of gamut mapping al-to shift in appearance away from the color of the back-
gorithms far easier in iCAM than in other appearance ground in terms of opponent dimensions. Figure 4 illus-
spaces. In addition, the predictions of lightness and chromatrates a stimulus that exhibits simultaneous contrast in

(a)

Fig. 4 (a) Original stimulus and (b) iCAM lightness J image illustrating the prediction of simultaneous
contrast.
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Fig. 5 (a) Original stimulus and (b) iCAM chroma C image illustrating the prediction of chroma crisp-
ening. Original image from www.hpl.hp.com/personal/Nathan_Moroney/.

lightness(the gray square is physically identical on all three tracing or radiosity algorithmsor through the calibration
backgroundsand its prediction by iCAM, as represented and registration of images obtained through multiple expo-
by the iCAM lightness predictor. This prediction is facili- sures. Real scenes, especially those with visible light
tated by the local adaptation features of iCAM. sources, often have luminance ranges of up to six orders of
Crispening is the phenomenon whereby the color differ- magnitude. More recently, industrial digital imaging sys-
ences between two stimuli are perceptually larger whentems have become commercially available that can more
viewed on a background that is similar to the stimuli. Fig- easily capture HDR image data. It is also apparent that
ure 5 illustrates a stimulus that exhibits chroma crispening, consumer digital cameras will soon be capable of capturing
and its prediction by the iCAM chroma predictor. This pre- g eater dynamic ranges. Unfortunately, display and use of
Q|ct|on is also facilitated by the local adaptation features of such data are difficult and will remain so, since even the
ICAS'\pAﬁeading is a spatial color appearance phenomenon irt1igheSt quality displays are ge”efa”y limited in dy”a"."c
which the apparent hue of spatially complex image areas 219¢ to aboufc two orders of magnitude. One app_roach Is to
appears to fill various spatially coherent regions. Figure 6|ntere_1ct|vely View the image and S?"eCt areas of_mterest to
provides an example of spreading in which the red hue ofbe. v!ewed OP“ma”Y within the dlsplay dynamic range.
the annular region spreads significantly from the lines to ' NS is only applicable to computer displays and not appro-
the full annulus. The ICAM prediction of spreading is illus- Priate for pictorial imaging and printed output. Another
trated through reproduction of the hue prediction. The pre- limitation is the need for capability to work with greater
diction of spreading in iCAM is facilitated by spatial filter- than 24-bit(and often floating pointimage data. It is de-
ing of the stimulus image. sirable to render HDR pictorial images onto a display that
One of the most interesting and promising applications can be viewed directlyno interactive manipulatiorby the
of iCAM is to the rendering of HDR images to low- observer, and appear similar to what the observer would
dynamic-range display systems. HDR image data areperceive if the original scene was viewed. For printed im-
quickly becoming more prevalent. Historically, HDR im- ages, it is not just desirable, but necessary. Pattagtaak*
ages were obtained through computer graphics simulationgeview several such HDR rendering algorithms, and it is
computed with global illumination algorithmée.g., ray  worth noting that several papers were presented on the

@) gazes (o)

Fig. 6 (a) Original stimulus and (b) iCAM hue h image illustrating the prediction of spreading.
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images shows the output of the iCAM model with spatially
localized adaptation and contrast contfa$ shown in Fig.

3). These images both render the dynamic range of the
scene to make shadow areas visible and retain the colorful-
ness of the scene. The resulting ICAM images are quite
acceptable as reproductions of the HDR sceegsivalent

to the result of dodging and burning historically done in
photographic printing It is also noteworthy that the
iCAM-rendered images were all computed with an auto-
mated algorithm mimicking human perception with no user
interaction.

5 Image Quality Applications  (Difference
Perceptibility )

A slightly different implementation of iCAM is required for

image quality applications to produce image maps repre-
senting the magnitude of perceived differences between a
pair of images. In these applications, viewing-distance-
dependent spatial filtering is applied in a linear IPT space,

Fig. 7 Three HDR images from www.debevec.org. The leftmost col-

umn illustrates linear rendering of the image data, the middle col- and then diﬁereﬂces are Comp_UtEd in the nor_mal nonlinear
umn illustrates manually optimized power function transformations, IPT space. Euclidean summations of these differences can
and the rightmost column represents the automated output of the be used as an overall image difference map, and then vari-

ICAM model implemented for HDR rendering (see Fig. 3). ous summary statistics can be used to predict different at-

tributes of image difference and quality. This process is
outlined in Fig. 8 and detailed in Johnson and Faircfiild.

topic at SIGGRAPH 2002°~%jllustrating continued inter- Image quality metrics can be derived from image differ-
est in the topic. ence metrics that are based on normal color difference for-

Since iCAM includes spatially localized adaptation and Mulas applied to properly spatially filtered images. This

spatially localized contrast control, it can be applied to the @PProach has been used to successfully predict various
problem of HDR image rendering. This is not surprising, YP€S of image quality datd. Figure 9 illustrates the pre-

since the fundamental problem in HDR rendering is to re- diction of perceived sharpnéSsand contra$f differences
images through a single summary statigtieean image

roduce the appearance of an HDR image or scene on &, ; . ,
b PP g ifferencg. This performance is equivalent to, or better

low-dynamic-range display. Since the encoding in our vi- . . -
sual system is of a rather low dynamic range, this is essenthan, that obtained using other color spaces optimized for

- e : - he task'®
tially a replication of the image appearance processing that - . .
goes on in the human observer and is being modeled by The contrast results in Fig(& were obtained by asking

iCAM. Figure 7 illustrates application of the iCAM model observers to scalg perceived image.contrast for a cqllection
to HDR images obtained from Debevésee www.debey-  Of images of various content, subjected to a variety of
ec.org. The images in the left column of Fig. 7 are linear transformationS” The resulting interval scaldaverage
renderings of the original HDR data normalized to the d&td is plotted as perceived contrast in FigaP and the

maximum presented, simply to illustrate how the range of M0del prediction of image difference from the origirat-

the original data exceeds a typical 24-t8tbits per RGB bitrarily selected is compa_lred Wlth it. Ideally, the data
channel image display. For example, the memorial image Would follow a V' shape with two line segments of equal
data (top row) have a dynamic range covering about six absolute slope on either S|_de of the origin. The percglved
orders of magnitude, since the sun was behind one of thecontrast data are well predicted by the iCAM image differ-
stained-glass windows. The middle column of images rep-€MNce- _ N

resents a typical image processing solution to rendering the 1h€ Perceived sharpness results in Figo)9vere ob-
data. One might consider a logarithmic transformation of tained na similar manner using a significantly larger num-
the data, but that would do little to change the rendering in P€" Of image manipulations and contéhDbservers were

the first column. Instead, the middle column was generatedSMP!Y asked to scale perceived sharpness, and the results
interactively by finding the optimum power function trans- W€ converted fo an mterval.scale, again with the or |g|_n.al
formation(also sometimes referred to as gamma correction;!Mag€ as an arbltrgry Zero point. .Thefe is greater variability
note that the linear images in the first column are alreadyn these data, but it can be seen in Figh)ahat the results
gamma corrected For these images, transformations with &r¢ again well predicted by a fairly simple mean image
exponents, or gammas, of approximately 6 opposed to  difference metric.

1/1.8 to 1/2.2 for typical displayswvere required to make . o
the image data in the shadow areas visible. While these® Conclusions and Future Directions

power function transformations do make more of the image Advances in imaging and computing technologies, along
data visible, they required user interaction, tend to wash outwith increased knowledge of the function and performance
the images in a way not consistent with the visual impres- of the human visual system, have allowed for the integra-
sion of the scenes, and introduce potentially severe quantition of models of color, spatial, and temporal vision to cre-
zation artifacts in shadow regions. The rightmost column of ate a new type of color appearance model, referred to as an
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| RGB to IPT (linear)
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Variance, etc.

Fig. 8 Implementation of iCAM for image difference and image quality metrics.

image appearance model. Such models show promise in appearance model, referred to as ICAM, and illustrates its
variety of applications, ranging from image difference and applicability to HDR image tone mapping and image qual-
image quality metrics to the rendering of image data. This ity metrics. Recently, initial efforts have been made to in-
work describes the framework of one example of an imagecorporate psychophysical data on the time course of chro-
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Fig. 9 iCAM image differences as a function of (a) perceived image
contrast and (b) perceived image sharpness for a variety of image
transformations. (Note that desired predictions are V-shaped data
distributions, since the perceptual differences are signed and the
calculated differences are unsigned.)

matic adaptatiol? to extend the model to video appearance
and quality application& Future efforts will be directed at
completion of the spatio-temporal filters required for video
difference metrics, the collection of more psychophysical
data on image and video appearance and differences, and
the formulation of specific iCAM algorithms for various
applications. The iCAM model is not proprietary. Source
code and updates are freely available at www.cis.rit.edu/
mcsl/iCAM for those interested in evaluating the model and
potentially suggesting improvements.
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