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Abstract. Traditional color appearance modeling has recently ma-
tured to the point that available, internationally recommended mod-
els such as CIECAM02 are capable of making a wide range of pre-
dictions, to within the observer variability in color matching and color
scaling of stimuli, in somewhat simplified viewing conditions. It is
proposed that the next significant advances in the field of color ap-
pearance modeling and image quality metrics will not come from
evolutionary revisions of colorimetric color appearance models
alone. Instead, a more revolutionary approach will be required to
make appearance and difference predictions for more complex
stimuli in a wider array of viewing conditions. Such an approach can
be considered image appearance modeling, since it extends the
concepts of color appearance modeling to stimuli and viewing envi-
ronments that are spatially and temporally at the level of complexity
of real natural and man-made scenes, and extends traditional image
quality metrics into the color appearance domain. Thus, two previ-
ously parallel and evolving research areas are combined in a new
way as an attempt to instigate a significant advance. We review the
concepts of image appearance modeling, present iCAM as one ex-
ample of such a model, and provide a number of examples of the
use of iCAM in image reproduction and image quality
evaluation. © 2004 SPIE and IS&T. [DOI: 10.1117/1.1635368]

1 Introduction

The fundamental theme of this research can be consid
image measurement, and the application of those meas
ments to image rendering and image quality evaluati
Consideration of the history of image measurement he
set the context for the formulation and application of ima
appearance models, a somewhat natural evolution of c
appearance, spatial vision, and temporal vision mod
when they are considered in a holistic sense, rather tha
individual research fields. Early imaging systems were
ther not scientifically measured at all, or measured w
systems designed to specify the variables of the imag
system itself. For example, densitometers were develo
for measuring photographic materials with the intent
specifying the amounts of dye or silver produced in t
film. In printing, similar measurements would be made
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the inks as well as measures of the dot area coverage
halftone systems. In electronic systems like television, s
tem measurements such as signal voltages were use
colorimetrically quantify the imaging system.1 It should be
noted that vision-based measurements of imaging syst
for image quality do have a long history, as illustrated
the example of Schade’s pioneering work.2 As imaging sys-
tems evolved in complexity and openness, the need
device-independent image measures became clear.

1.1 Image Colorimetry

Electronic imaging systems, specifically the developm
of color television, prompted the first application of devic
independent color measurements of images. Wright, in f
points out that color television could not have been
vented without colorimetry.3 Device-independent colo
measurements are based on the internationally standard
CIE system of colorimetry first developed in 1931. C
colorimetry specifies a color stimulus with numbers prop
tional to the stimulation of the human visual system, ind
pendent of how the color stimulus was produced. The C
system was used very successfully in the design and s
dardization of color television systems~including recent
digital television systems!.

Application of CIE colorimetry to imaging systems be
came much more prevalent with the advent of digital i
aging systems and, in particular, the use of computer s
tems to generate and proof content ultimately destined
other media, such as print. As color-capable digital imag
systems~from scanners and cameras, through displays
various hardcopy output technologies! became commer-
cially available in the last two decades, it was quickly re
ognized that device-dependent color coordinates~such as
monitor RGB and printer CMYK! could not be used to
specify and reproduce color images with accuracy and p
cision. An additional factor was the open-systems nature
digital imaging in which the input, display, and output d
vices might be produced by different manufacturers, a
one source could not control color through the entire p
cess. The use of CIE colorimetry to specify images acr
various devices promised to solve some of the new co
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iCAM framework for image appearance . . .
reproduction problems created by open, digital syste
The flexibility of digital systems also made it possible a
practical to perform colorimetric transformations on ima
data in attempts to match the colors across disparate
vices and media.

Research on imaging device calibration and charac
ization has spanned the range from fundamental color m
surement techniques to the specification of a variety of
vices including CRT, LCD, and projection display
scanners and digital cameras, and various film record
and print media. Some of the concepts and results of
research have been summarized by Berns.4 Such capabili-
ties are a fundamental requirement for research and de
opment in color and image appearance. Research on de
characterization and calibration provides a means to ta
more fundamental problems in device-independent co
imaging. For example, conceptual research on design
implementation of device-independent color imagin5

gamut mapping algorithms to deal with the reproduction
desired colors that fall outside the range that can be
tained with a given imaging device,6 and computer graphic
rendering of high-quality spectral images that significan
improve the potential for accurate color in render
scenes.7 This type of research built on, and contributed
research on the development and testing of color app
ance models for cross-media image reproduction.

1.2 Color Difference Equations

Color difference research has culminated with the rece
published CIEDE2000 color difference formula.8 A color
difference equation allows for the mapping of physica
measured stimuli into perceived differences. At the hear
such color difference equations lies some form of unifo
color space. The CIE initially recommended two such co
spaces in 1976, CIELAB and CIELUV. Both spaces we
initially described as interim color spaces, with the know
edge that they were far from complete. More than 25 ye
later, these spaces are still the CIE recommendations
though CIELUV has fallen out of favor.

With a truly uniform color space, color differences ca
then be taken to be a simple measure of distance betw
two colors in the space, such as CIEDEab* . The CIE rec-
ognized the nonuniformity of the CIELAB color space, a
formulated more advanced color difference equations s
as CIE DE94 and CIEDE2000. These more complica
equations are very capable of predicting perceived co
differences of simple color patches.

1.3 Image Difference

The CIE color difference formulas were developed us
simple color patches in controlled viewing condition
There is no reason to believe that they are adequate
predicting color difference for spatially complex imag
stimuli. The S-CIELAB model was designed as a spa
preprocessor to the standard CIE color difference eq
tions, to account for complex color stimuli such as halfto
patterns.9 Spatial preprocessing uses separable convolu
kernels to approximate the contrast sensitivity functio
~CSF! of the human visual system. The CSF serves to
move information that is imperceptible to the visual sy
tem. For instance, when viewing halftone dots at a cer
distance, the dots tend to blur and integrate into a sin
.
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color. A pixel-by-pixel color difference calculation betwee
a continuous image and a halftone image would resul
very large errors, while the perceived difference might
fact be small. The spatial preprocessing would blur
halftone image, so that it more closely resembles the c
tinuous tone image.

S-CIELAB represents the first incarnation of an ima
difference model based on the CIELAB color space a
color difference equations. Recently, this model has b
refined and extended into a modular framework for ima
color difference calculations.10 This framework refines the
CSF equations from the S-CIELAB model, and adds mo
ules for spatial frequency adaptation, spatial localizati
and local and global contrast detection. This framework
discussed in more detail below.

1.4 Color Appearance

Unfortunately, fundamental CIE colorimetry does not pr
vide a complete solution for image specification. CIE co
rimetry is only strictly applicable to situations in which th
original and reproduction are viewed in identical cond
tions. By their very nature, the images produced or c
tured by various digital systems are examined in wid
disparate viewing conditions, from the original captur
scene, to a computer display in a dim room, to print
media under a variety of light sources, to projection d
plays in dark rooms. Thus color appearance models w
developed to extend CIE colorimetry to the prediction
color appearance~not just color matches! across changes in
media and viewing conditions~not just within a single con-
dition!. Color appearance modeling research applied
digital imaging systems was very active throughout t
1990s, culminating with the recommendation of t
CIECAM97s model in 199711 and its revision, CIECAM02,
in 2002.12 Details on the evolution, formulation, and app
cation of color appearance models can be found
Fairchild.13 The development of these models was also
abled by visual experiments performed to test the per
mance of published color-appearance models in reali
image reproduction situations.14 Such research on color ap
pearance modeling in imaging applications naturally hig
lighted the areas that are not adequately addressed for
tially complex image appearance and image qua
problems.

1.5 Image Appearance and Image Quality

Color appearance models account for many change
viewing conditions, but are mainly focused on changes
the color of the illumination~white point!, the illumination
level ~luminance!, and surround relative luminance. Suc
models do not directly incorporate any of the spatial
temporal properties of human vision and the perception
images. They essentially treat each pixel of an image~and
each frame of a video! as completely independent stimul
A review of some current work in the area provides co
text.

Visual adaptation to scenes and images is not only s
tially localized according to some low-pass characterist
but also temporally localized in a similar manner. To pr
dict the appearance of digital video sequences, particul
those of high-dynamic range, the temporal properties
light and chromatic adaptation must be considered. To p
Journal of Electronic Imaging / January 2004 / Vol. 13(1) / 127



,
cy

tial

ant
ud

l
ex
m
al
he

tion
tha
an
ass
eye
de

an
pti-
ms
ge

o
de
ar-

of
as

fer
rch
od

eo
ine

eo
pre
eo
th
l-

ith

rix

a

ria
ly
the

re
tice-
no
are

ff
d a
cts
the

the
ly

.
of
o

ther
not
he
e

e
in-
it is
ict
ND
ta.
by

fi-
si-
ns-
e
at
m-
fil-
of

ric
h-
no
oral
ere-
is

ob-

ul in
r-
re-

of
atial

t
ced

of
ion
lity
of

nce

-
of

Fairchild and Johnson
dict the quality~or image differences! of video sequences
temporal filtering to remove imperceptible high-frequen
temporal modulations~imperceptible flicker! must be added
to the spatial filtering that removes imperceptible spa
artifacts~e.g., noise or compression artifacts!.

It is easy to illustrate that adaptation has a signific
temporal low-pass characteristic. For example, if one s
denly turns on the lights in a darkened room~as when first
awakening in the morning!, the increased illumination leve
is at first dazzling to the visual system, essentially over
posing it. After a short period of time, the visual syste
adapts to the new, higher level of illumination and norm
visual perception becomes possible. The same is true w
going from high levels of illumination to low levels~imag-
ine driving into a tunnel in the daytime!. Fairchild and
Reniff15 and Rinner and Gegenfurtner16 have made detailed
measurements of the time course of chromatic adapta
These results suggest temporal integration functions
could be used in models of moving image appearance,
also illustrate one of the mechanisms for spatially low-p
adaptation stimuli due to the influence of ever-present
movements. Such adaptation stimuli are used in the mo
described in this work.

There has been significant research on video quality
video quality metrics, often aimed at the creation and o
mization of encoding/compression/decoding algorith
such as MPEG2 and MPEG4. By analogy, the still-ima
visible differences predictor of Daly17 is quite applicable to
the prediction of the visibility of artifacts introduced int
still images by JPEG image compression. The Daly mo
was designed to predict the probability of detecting an
tifact ~i.e., is the artifact above the visual threshold!. The
iCAM work reviewed here and elsewhere18,19 has had a
different objective with respect to image quality. Instead
focusing on threshold differences in quality, the focus h
been on the prediction of image quality scales~e.g., scales
of sharpness, contrast, graininess! for images with changes
well above threshold. Such suprathreshold image dif
ences are a different domain of image quality resea
based on image appearance that separate the iCAM m
from previous image quality models.

Likewise, a similar situation exists in the area of vid
quality metrics. Metrics have been published to exam
the probability of detection of artifacts in video~i.e., thresh-
old metrics!, but there appears to be no models of vid
image appearance designed for rendering video and
dicting the magnitudes of perceived differences in vid
sequences. The latter is one of the ultimate goals of
development of iCAM. Two well-known video image qua
ity models, the Sarnoff just noticeable difference~JND!
model and the NASA digital video quality~DVQ! model,
are briefly described next to contrast their capabilities w
the proposed extensions to the iCAM model.

The Sarnoff JND model is the basis of the JNDmet
software package~see www.jndmetrix.com! and related
video quality hardware. The model is briefly described in
technical report published by Sarnoff,19 and is more fully
disclosed in other publications.20 It is based on the multi-
scale model of spatial vision published by Lubin,21,22 with
some extensions for color processing and temporal va
tion. The Lubin model is similar in nature to the Da
model mentioned before, in that it is designed to predict
128 / Journal of Electronic Imaging / January 2004 / Vol. 13(1)
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probability of detection of artifacts in images. These a
threshold changes in images often referred to as just no
able differences, or JNDs. The Sarnoff JND model has
mechanisms of chromatic and luminance adaptation, as
included in the iCAM model. The input to the Sarno
model must first be normalized, which can be considere
very rudimentary form of adaptation. The temporal aspe
of the Sarnoff model are also not aimed at predicting
appearance of video sequences, but rather at predicting
detectability of temporal artifacts. As such, the model on
uses two frames~four fields! in its temporal processing
Thus, while it is capable of predicting the perceptibility
relatively high-frequency temporal variation in the vide
~flicker!, it cannot predict the visibility of low-frequency
variations that would require an appearance-oriented, ra
than JND-oriented, model. The Sarnoff model also is
designed for rendering video. This is not a criticism of t
model formulation, but an illustration of how the objectiv
of the Sarnoff JND model is significantly different from
that of the iCAM model. While it is well accepted in th
vision science literature that JND predictions are not l
early related to suprathreshold appearance differences,
certainly possible to use a JND model to try to pred
suprathreshold image differences, and the Sarnoff J
model has been applied with some success to such da

A similar model, the DVQ metric has been published
Watson, Hu, and McGowan23,24of NASA. The DVQ metric
is similar in concept to the Sarnoff JND model, but signi
cantly different in implementation. Its spatial decompo
tion is based on the coefficients of a discrete cosine tra
formation ~DCT!, making it amenable to hardwar
implementation, and likely making it particularly good
detecting artifacts introduced by DCT-based video co
pression algorithms. It also has a more robust temporal
ter that should be capable of predicting a wider array
temporal artifacts. Like the Sarnoff model, the DVQ met
is aimed at predicting the probability of detection of thres
old image differences. The DVQ model also includes
explicit appearance processing through spatial or temp
adaptation, or correlates of appearance attributes, and th
fore also cannot be used for video rendering. Again, this
not a shortcoming, but rather a property of the design
jectives for the DVQ model.

While color appearance modeling has been successf
facilitating device-independent color imaging and is inco
porated into modern color management systems, there
mains significant room for improvement and extension
capabilities. To address these issues with respect to sp
properties of vision and image perception~localized adap-
tation and spatial filtering! and image quality, the concep
of image appearance models has been recently introdu
and implemented.25,26 These models combine attributes
color appearance models with attributes of spatial vis
models that have been previously used for image qua
metrics in an attempt to further extend the capabilities
color-appearance models. Historically, color-appeara
models largely ignored spatial vision~e.g., CIECAM97s!,
while spatial vision models for image quality largely ig
nored color.17,21 One notable exception, and the theme
this special issue of theJournal of Electronic Imaging, has
been the Retinex model27–30 and its various
derivatives.31–33 The spatial ATD model34 and the
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iCAM framework for image appearance . . .
S-CIELAB model9 also address some of these issues
various extents. While the Retinex model was never
signed as a complete model of image appearance and
ity, its spatially variable mechanisms of chromatic adap
tion and color constancy serve some of the same purp
in image rendering, and provide some of the critic
groundwork for image-appearance modeling.

The goal in developing an image appearance model
been to bring these research areas together to create a s
model applicable to image appearance, image rende
and image quality specifications and evaluations. One s
model for still images, referred to as iCAM, has recen
been published by Fairchild and Johnson25 and is detailed
in this work. This model was built on previous research
uniform color spaces,35 the importance of image
surround,36 algorithms for image difference and imag
quality measurement,19,37 insights into observers eye move
ments while performing various visual imaging tasks a
adaptation to natural scenes,38,39 and an earlier model o
spatial and color vision applied to color appearance pr
lems and high-dynamic-range~HDR! imaging.40 The struc-
ture of the iCAM model and examples of its implemen
tion for image appearance are presented next.

1.6 Color and Image Appearance Models

A model capable of predicting perceived color differen
between complex image stimuli is a useful tool, but h
some limitations. Just as a color appearance model is
essary to fully describe the appearance of color stimuli,
image appearance model is necessary to describe spa
complex color stimuli. Color appearance models allow
the description of attributes such as lightness, brightn
colorfulness, chroma, and hue. Image appearance mo
extend on this to also predict such attributes as sharpn
graininess, contrast, and resolution.

A uniform color space also lies in the heart of an ima
appearance model. The modular image difference fra
work allows for great flexibility in the choice of colo
spaces. Examples are the CIELAB color space, simila
S-CIELAB, the CIECAM02 color appearance model, or t
IPT color space.12,35 Thus the modular image differenc
framework can be implemented within the iCAM model,
described in this work, to create a full image appeara
and image difference model. It could also be implemen
in other color spaces if desired. This is one of the m
benefits of its modularity.

Models of image appearance can be used to formu
multidimensional models of image quality. For example
is possible to take weighted sums of various appeara
attributes to determine a metric of overall image quality,
described by Keelen41 and Engledrum.42 Essentially, these
models can augment or replace human observation
weight image attributes with overall appearances of qua
For instance, a model of quality might involve weighte
sums of tonal balance, contrast, and sharpness. A first
toward this type of model is illustrated in more detail lat

2 iCAM Framework

Figure 1 presents a flow chart of the general framework
the iCAM image appearance model as applied to still i
ages originally presented by Fairchild and Johnson.25 Fu-
ture updates to the model, along with example images
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source code can be found at www.cis.rit.edu/mcsl/iCA
For input, the model requires colorimetrically characteriz
data for the image~or scene! and surround in absolute lu
minance units. The image is specified in terms of relat
CIE XYZ tristimulus values. The adapting stimulus is
low-pass filtered version of the CIE XYZ image that is al
tagged with absolute luminance information necessary
predict the degree of chromatic adaptation. The abso
luminances (Y) of the image data are also used as a sec
low-pass image to control various luminance-dependant
pects of the model intended to predict the Hunt effect~in-
crease in perceived colorfulness with luminance! and the
Stevens effect~increase in perceived image contrast w
luminance!. Last, a low-pass, luminance (Y) image of sig-
nificantly greater spatial extent is used to control the p
diction of image contrast that is well established to be
function of the relative luminance of the surrounding co
ditions ~Bartleson and Breneman equations!. Refer to
Fairchild13 for a full discussion of the various image ap
pearance effects mentioned earlier and detailed speci
tions of the data required. The specific low-pass filters u
for the adapting images depend on viewing distance
application. Additionally, in some image rendering circum
stances, it might be desirable to have different low-p
adapting images for luminance and chromatic informati
to avoid desaturation of the rendered images due to lo
chromatic adaptation~decrease in visual sensitivity to th
color of the stimulus!. This is one example of applicatio
dependence. Local chromatic adaptation might be appro
ate for image difference or image quality measureme
but inappropriate for image rendering situations.

The first stage of processing in iCAM is to account f
chromatic adaptation. The chromatic adaptation transfo
embedded in the recently published CIECAM02 mode12

has been adopted in iCAM, since it was well research
and established to have excellent performance with
available visual data. It is also a relatively simple chroma
adaptation model, amenable to image processing app
tions. The chromatic adaptation model, given in Eqs.~1!–
~6!, is a linear von Kries normalization of RGB image si
nals to the RGB adaptation signals derived from

F R
G
BG5MCAT02F X

Y
ZG , ~1!

MCAT025F 0.7328 0.4296 20.1624

20.7036 1.6975 0.0061

0.0030 0.0136 0.9834
G , ~2!

D5FF12S 1

3.6DexpS 2LA242

92 D G , ~3!

Rc5F S 100
D

RW
D1~12D !GR, ~4!

Gc5F S 100
D

GW
D1~12D !GG, ~5!
Journal of Electronic Imaging / January 2004 / Vol. 13(1) / 129



Fairchild and Johnson

130 / Journal of Ele
Fig. 1 Flowchart of the iCAM image appearance model. Inputs to the model are CIE tristimulus values
XYZ for the stimulus image or scene and a low-pass version used as an adapting stimulus and
absolute luminance information for the low-pass image and surround. Adapted signals are computed
using the linear chromatic adaptation transform from CIECAM02, and are then converted into an
opponend space IPT using the luminance information to modulate a compressive nonlinearity. The
rectangular IPT coordinates are then converted to cylindrical correlates of lightness J, chroma C, and
hue h. The lightness and chroma correlates can then be scaled by a function of the absolute lumi-
nance information to provide correlates of brightness Q and colorfulness M. If desired, a saturation
correlate can be computed as the ratio of chroma to lightness (or colorfulness to brightness).
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It
Bc5F S 100
D

BW
D1~12D !GB, ~6!

with the low-pass adaptation image at each pixel locat
(RWGWBW). The RGB signals are computed using a line
transformation from XYZ to RGB, derived by CIE TC8-0
in the formulation of CIECAM02. This matrix transforma
tion has come to be called theMCAT02 matrix, where CAT
stands for chromatic adaptation transform. The von Kr
normalization is further modulated with a degree-o
adaptation factorD that can vary from 0.0 for no adaptatio
to 1.0 for complete chromatic adaptation. Equation~3! is
provided in the CIECAM02 formulation, and is used
ctronic Imaging / January 2004 / Vol. 13(1)
iCAM for computation ofD as a function of adapting lu
minanceLA for various viewing conditions. Alternatively
the D factor can be established manually. The chroma
adaptation model is used to compute corresponding co
for CIE Illuminant D65, which are then used in the lat
stages of the iCAM model. This is accomplished by taki
the adapted signals for the viewing condition RCGCBC and
then inverting Eqs.~1!–~6! for an illuminant D65 adapting
white point, and withD51.0. It should be noted that, while
the adaptation transformation is identical to that
CIECAM02, the iCAM model is already significantly dif
ferent, since it uses spatially modulated image data as in
rather than single color stimuli and adaptation points.
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iCAM framework for image appearance . . .
also differs completely in the remainder of the formulatio
although using CIECAM02 equations where appropria
One example of this is the modulation of the absolute
minance image and surround luminance image using theFL
function from CIECAM02 given in Eq.~7!. This function,
slowly varying with luminance, has been

FL50.2F 1

~5LA11!G
4

~5LA!

10.1H 12F 1

~5LA11!G
4J 2

~5LA!1/3, ~7!

established to predict a variety of luminance-dependent
pearance effects in CIECAM02 and earlier models. Sin
the function has been established and understood, it
also adopted for the early stages of iCAM. However,
manner in which theFL factor is used in CIECAM02 and
iCAM are quite different.

The next stage of the model is to convert from RG
signals ~roughly analogous to cone signals in the hum
visual system! to opponent-color signals~light-dark, red-
green, and yellow-blue; analogous to higher level encod
in the human visual system! that are necessary for con
structing a uniform perceptual color space and correlate
various appearance attributes. In choosing this transfor
tion, simplicity, accuracy, and applicability to image pr
cessing were the main considerations. The color space
sen was the IPT space previously published by Ebner
Fairchild.35 The IPT space was derived specifically for im
age processing applications to have a relatively simple
mulation, and specifically, to have a hue-angle compon
with good prediction of constant perceived hue~important
in gamut mapping applications!. More recent work on per-
ceived hue has validated the applicability of the IPT spa
The transformation from RGB to the IPT opponent spac
far simpler than the transformations used in CIECAM0
The process, expressed in Eqs.~9!–~12!, involves a linear
transformation to a different cone response space~a differ-
ent RGB!, application of power function nonlinearities, an
then a final linear transformation to the IPT opponent sp
~I is light-dark, P is red-green, and T is yellow-blue!.

F L
M
S
G5F 0.4002 0.7075 20.0807

20.2280 1.1500 0.0612

0.0 0.0 0.9184
G FXD65

YD65

ZD65

G , ~8!

L85L0.43; L>0
~9!

L852uLu0.43; L<0,

M 85M0.43; M>0
~10!

M 852uM u0.43; M<0,

S85S0.43; S>0
~11!

S852uSu0.43; S<0,
.

-

s

f
-

o-
d

-
t

.

F I
P
T
G5F 0.4000 0.4000 0.2000

4.4550 24.8510 0.3960

0.8056 0.3572 21.1628
G F L8

M 8
S8

G . ~12!

The power function nonlinearities in the IPT transformati
are a critical aspect of the iCAM model. First, they a
necessary to predict response compression that is prev
in most human sensory systems. This response compres
helps to convert from signals that are linear in physi
metrics ~e.g., luminance! to signals that are linear in per
ceptual dimensions~e.g., lightness!. The CIECAM02
model uses a hyperbolic nonlinearity for this purpose. T
behavior is that of a power function over the practic
ranges of luminance levels encountered. Second, and a
component of iCAM, the exponents are modulated acco
ing to the luminance of the image~low-pass filtered! and
the surround. This is essentially accomplished by multip
ing the base exponent in the IPT formulation by the ima
wise computedFL factors with appropriate normalization
These modulations of the IPT exponents allow the iCA
model to be used for predictions of the Hunt, Stevens,
Bartleson/Breneman effects mentioned before. They a
happen to enable the tone mapping of high-dynamic-ra
images into low-dynamic range display systems in a vi
ally meaningful way.

For image difference and image quality predictions, it
also necessary to apply spatial filtering to the image dat
eliminate any image variations at spatial frequencies
high to be perceived. For example, the dots in a prin
halftone image are not visible if the viewing distance
sufficiently large. This computation is dependent on vie
ing distance and is based on filters derived from hum
contrast sensitivity functions. Since the human contrast s
sitivity functions vary for luminance~bandpass with sensi
tivity to high frequencies! and chromatic~low pass! infor-
mation, it is appropriate to apply these filters in a
opponent space. Thus in image quality applications
iCAM, spatial filters are applied in the IPT space. Since it
appropriate to apply spatial filters in a linear signal spa
they are applied in a linear version of IPT prior to conve
sion into the nonlinear version of IPT for appearance p
dictions. Johnson and Fairchild have recently discus
some of the important considerations for this type of filte
ing in image difference applications, and have specified
filters used based on available visual data.18,43 Since the
spatial filtering effectively blurs the image data, it is n
desirable for image rendering applications in which obse
ers might view the images more closely than the speci
viewing distance. The result would be a blurrier image th
the original. The contrast sensitivity functions used to d
fine spatial filters currently used for image difference co
putations are given in Eq.~13! for the luminance I channe
and Eq.~14! for the chromatic P and T channels,10 respec-
tively.

csflum~ f !5a• f c
• exp~2b• f !, ~13!

csfchrom~ f !5a1• exp~2b1• f c1!1a2• exp~2b2• f c2!. ~14!
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Fairchild and Johnson
Equations~13! and~14! were derived from fits to a collec
tion of experimental data.10 The parametersa, b, andc in
Eq. ~13! are set to 75, 0.2, and 0.8, respectively, for t
luminance CSF, applied to the I channel. In Eqs.~13! and
~14!, spatial frequencyf is defined in terms of cycles pe
degree of visual angle~CPD!. For the red-green chromati
CSF, applied to the P dimension, the parameters (a1 , b1 ,
c1 , a2 , b2 , c2) in Eq. ~14! are set to~109.14,20.00038,
3.424, 93.60,20.00367, 2.168!. For the blue-yellow chro-
matic CSF, applied to the T dimension, they are set
~7.033, 0.000004, 4.258, 40.69,20.10391, 1.6487!.

It is only appropriate to apply these spatial filters wh
the goal is to compute perceived image differences~and
ultimately image quality!. This is an important distinction
between spatially localized adaptation~good for rendering
and image quality metrics! and spatial filtering~good for
image quality metrics, bad for rendering!. In image quality
applications, the spatial filtering is typically broken dow
into multiple channels for various spatial frequencies a
orientations. For example, Daly,17 Lubin,22 and Pattanaik
et al.40 describe such models. More recent results sugg
that while such multiscale and multiorientation filterin
might be critical for some threshold metrics, it is often n
necessary for data derived from complex images and
suprathreshold predictions of perceived image differen
~one of the main goals of iCAM!.10,44,45Thus, to preserve
the simplicity and ease of use of the iCAM model, sing
scale spatial filtering with anisotropic filters was adopte

Once the IPT coordinates are computed for the im
data, a simple coordinate transformation from rectangu
to cylindrical coordinates is applied to obtain image-w
predictors of lightness (J), chroma (C), and hue angle
(h), as shown in Eqs.~15!, ~16!, and ~17!. Differences in
these dimensions can be used to compute image differ
statistics and those used to derive image quality metr
The overall Euclidean difference in IPT is referred to
D Im ~Eq. 20! for image difference, to distinguish it from
traditional color difference metricDE, which includes no
spatial filtering. In some instances, correlates of the ab
lute appearance attributes of brightness (Q) and colorful-
ness (M ) are required. These are obtained by scaling
relative attributes of lightness and chroma with the app
priate function ofFL ~based on CIECAM02!, derived from
the image-wise luminance map, as shown in Eqs.~18! and
~19!.

J5I , ~15!

C5AP21T2, ~16!

h5tan21S P

T D , ~17!

Q5A4 FLJ, ~18!

M5A4 FLC, ~19!

D Im5~DI 21DP21DT2!1/2. ~20!
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For image rendering applications, it is necessary to take
computed appearance correlates~JCh! and then render
them to the viewing conditions of a given display. The d
play viewing conditions set the parameters for the invers
of the IPT model and the chromatic adaptation transfo
~all for an assumed spatially uniform display adaptati
typical of low-dynamic-range output media!. This inversion
allows the appearance of original scenes or images f
disparate viewing conditions to be rendered for the o
server viewing a given display. One important applicati
of such rendering is the display of high-dynamic-ran
~HDR! image data on typical displays.

3 Modular Image Difference Model

A framework for a color image difference metric has r
cently been described.10,43 In this work, the modular image
difference metric is incorporated into the iCAM appearan
model to address both image appearance and differen
quality within a single model. The image difference fram
work was designed to be modular in nature, to allow
flexibility and adaptation. The framework itself is based
the S-CIELAB spatial extension to the CIELAB colo
space. S-CIELAB merges traditional color difference equ
tions with spatial properties of the human visual syste
This was accomplished as a spatial filtering preprocess
before a pixel-by-pixel color difference calculation.9

The modular framework further extends this idea
adding several processing steps, in addition to the spa
filtering. These processing steps are contained in indep
dent modules, so they can be tested and refined. Sev
modules have been defined,45 and include spatial filtering,
adaptation, and localization, as well as local and glo
contrast detection. Figure 2 shows a general flowchart w
several distinct modules. These modules and their orig
are described briefly in the following.

3.1 Spatial Filtering

The behavior of the human visual system in regards to s
tially complex stimuli has been well studied over the yea
dating back to the seminal work of Campbell and Robso46

and Mullen.47 Summaries of current knowledge and tec
niques for quantifying spatial vision can be found in seve
books.48–50 The contrast sensitivity function describes th
behavior in relation to spatial frequency. Essentially, t
CSF is described in a postretinal opponent color space, w
a bandpass nature for the luminance channel and low-
nature for the chrominance channels. S-CIELAB uses se
rable convolution kernels to approximate the CSF, a
modulate image details that are imperceptible. More co
plicated contrast sensitivity functions, that include bo
modulation and frequency enhancement, were discusse
detail by Johnson and Fairchild.43 Other models with simi-
lar features include the previously mentioned Lubin21

Daly,17 MOM,40 S-CIELAB,9 and spatial ATD34 models.
Other relevant discussions and models can be found in
work of Li,51 Taylor et al.,52,53 and Brill’s extension of the
Lubin/Sarnoff model.54

3.2 Spatial Frequency Adaptation

The contrast sensitivity function in this framework serv
to modulate spatial frequencies that are not perceptible,
enhance certain frequencies that are most perceptible. G
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iCAM framework for image appearance . . .
erally, CSFs are measured using simple grating stim
with care taken to avoid spatial frequency adaptation. S
tial frequency adaptation essentially decreases sensitivi
certain frequencies based on information present in the
sual field. An early and classic description of spatial f
quency adaptation was published by Blakemore a
Campbell.55 It should be noted that a multiscale, or mul
channel, spatial vision model is not required to predict s
tial frequency adaptation. Instead, all that is required is t
the CSF functions be allowed to change shape as a func
of adaptation~clearly indicating multiscale mechanisms
the human visual system not necessary for practical m
eling!.

Fig. 2 Flowchart of a modular image difference metric.
,
-
o
-

-
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-

Since spatial frequency adaptation cannot be avoide
real world viewing conditions~as it often is in the contrived
psychophysical stimuli used to study spatial vision!, several
models of spatial frequency adaptation have been descr
for practical applications.43 These models alter the nature
the CSF based on either assumptions of the viewing co
tions, or based on the information contained in the ima
themselves.

3.3 Spatial Localization

The bandpass and low-pass contrast sensitivity serv
modulate high-frequency information, including high
frequency edges. The human visual system is generally
knowledged to be very adept at detecting edges. To acc
modate this behavior, a module of spatial localization h
been developed. This module can be as simple as an im
processing edge-enhancing kernel, although that ke
must change as a function of viewing distance. Altern
tively, the CSF can be modified to boost certain hig
frequency information. The formulation and utility of edg
detection algorithms in vision applications has been w
described by Marr.56

3.4 Local Contrast Detection

This module serves to detect local and global contr
changes between images. The utility of such processin
real visual systems has been described by Tolhurst
Heeger.57 The current implementation is based on the no
linear mask-based local contrast enhancement describe
Moroney.58 Essentially, a low-pass image mask is used
generate a series of tone-reproduction curves. These cu
are based on the global contrast of the image, as well as
relationship between a single pixel and its local neighb
hood.

3.5 Color Difference Map

The output of the modular framework is a map of col
differences" Im, corresponding to the perceived magnitu
of error at each pixel location. This map can be very use
for determining specific causes of error, or for detecti
systematic errors in a color imaging system. Often, it
useful to reduce the error map into a more managea
dataset. This can be accomplished using image statistic
long as care is taken. Such statistics can be image m
max, median, or standard deviation. Different statist
might be more valuable than others, depending on the
plication, as perhaps the mean error better describes ov
difference, while the max might better describe thresh
differences.

4 Image Appearance Applications „Rendering …

Figure 3 illustrates implementation of the iCAM frame
work required to complete an image rendering process n
essary for HDR image tone mapping. The components
sential in this process are the inversion of the IPT model
a single set of spatially constant viewing conditions~the
display!, and the establishment of spatial filters for th
adapting stimuli used for local luminance adaptation a
modulation of the IPT exponential nonlinearity. While th
derivation of optimal model settings for HDR image re
Journal of Electronic Imaging / January 2004 / Vol. 13(1) / 133
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Fig. 3 Implementation of iCAM for tone mapping of HDR images.
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dering is still underway, quite satisfactory results have b
obtained using the settings outlined in Fig. 3.

The iCAM model has been successfully applied to p
diction of a variety of color appearance phenomena, suc
chromatic adaptation~corresponding colors!, color appear-
ance scales, constant hue perceptions, simultaneous
trast, crispening, spreading, and image rendering.25

Since iCAM uses the same chromatic adaptation tra
form as CIECAM02, it performs identically for situation
in which only a change in state of chromatic adaptation
present~i.e., change in white point only!. CIE TC8-01 has
worked very hard to arrive at this adaptation transform, a
it is clear that no other model currently exists with bet
performance, although there are several with equiva
performance. Thus the chromatic adaptation performa
of iCAM is as good as possible at this juncture.

The appearance scales of iCAM are identical to the I
scales for the reference viewing conditions. The IPT sp
has the best available performance for constant hue
tours, and thus this feature is retained in iCAM. This fe
ture makes accurate implementation of gamut mapping
gorithms far easier in iCAM than in other appearan
spaces. In addition, the predictions of lightness and chro
ctronic Imaging / January 2004 / Vol. 13(1)
s
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t
e
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a

in iCAM are very good and comparable with the best co
appearance models in typical viewing conditions. T
brightness and colorfulness scales will also perform as w
as any other model for typical conditions. In more extrem
viewing conditions, the performance of iCAM and oth
models will begin to deviate. It is in these conditions th
the potential strengths of iCAM will become evident. Fu
ther visual data must be collected to evaluate the mod
relative performance in such situations.

The color difference performance of iCAM will be sim
lar to that of CIELAB, since the space is very similar und
the reference viewing conditions. Thus, color differen
computations will be similar to those already common
used, and the space can be easily extended to have a
accurate difference equation following the successful f
mat of the CIE94 equations.~Following the CIEDE2000
equations in iCAM is not recommended, since they a
extremely complex and fitted to particular discrepancies
the CIELAB space, such as poor constant hue contours!

Simultaneous contrast~or induction! causes a stimulus
to shift in appearance away from the color of the bac
ground in terms of opponent dimensions. Figure 4 illu
trates a stimulus that exhibits simultaneous contrast
Fig. 4 (a) Original stimulus and (b) iCAM lightness J image illustrating the prediction of simultaneous
contrast.
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Fig. 5 (a) Original stimulus and (b) iCAM chroma C image illustrating the prediction of chroma crisp-
ening. Original image from www.hpl.hp.com/personal/Nathan–Moroney/.
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lightness~the gray square is physically identical on all thr
backgrounds! and its prediction by iCAM, as represente
by the iCAM lightness predictor. This prediction is facil
tated by the local adaptation features of iCAM.

Crispening is the phenomenon whereby the color diff
ences between two stimuli are perceptually larger wh
viewed on a background that is similar to the stimuli. F
ure 5 illustrates a stimulus that exhibits chroma crispeni
and its prediction by the iCAM chroma predictor. This pr
diction is also facilitated by the local adaptation features
iCAM.

Spreading is a spatial color appearance phenomeno
which the apparent hue of spatially complex image ar
appears to fill various spatially coherent regions. Figur
provides an example of spreading in which the red hue
the annular region spreads significantly from the lines
the full annulus. The iCAM prediction of spreading is illu
trated through reproduction of the hue prediction. The p
diction of spreading in iCAM is facilitated by spatial filter
ing of the stimulus image.

One of the most interesting and promising applicatio
of iCAM is to the rendering of HDR images to low
dynamic-range display systems. HDR image data
quickly becoming more prevalent. Historically, HDR im
ages were obtained through computer graphics simulat
computed with global illumination algorithms~e.g., ray
,

in
s

f

-

s

tracing or radiosity algorithms! or through the calibration
and registration of images obtained through multiple ex
sures. Real scenes, especially those with visible li
sources, often have luminance ranges of up to six order
magnitude. More recently, industrial digital imaging sy
tems have become commercially available that can m
easily capture HDR image data. It is also apparent t
consumer digital cameras will soon be capable of captur
greater dynamic ranges. Unfortunately, display and use
such data are difficult and will remain so, since even
highest quality displays are generally limited in dynam
range to about two orders of magnitude. One approach
interactively view the image and select areas of interes
be viewed optimally within the display dynamic rang
This is only applicable to computer displays and not app
priate for pictorial imaging and printed output. Anoth
limitation is the need for capability to work with greate
than 24-bit~and often floating point! image data. It is de-
sirable to render HDR pictorial images onto a display th
can be viewed directly~no interactive manipulation! by the
observer, and appear similar to what the observer wo
perceive if the original scene was viewed. For printed i
ages, it is not just desirable, but necessary. Pattanaiket al.40

review several such HDR rendering algorithms, and it
worth noting that several papers were presented on
Fig. 6 (a) Original stimulus and (b) iCAM hue h image illustrating the prediction of spreading.
Journal of Electronic Imaging / January 2004 / Vol. 13(1) / 135
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Fairchild and Johnson
topic at SIGGRAPH 2002,59–61 illustrating continued inter-
est in the topic.

Since iCAM includes spatially localized adaptation a
spatially localized contrast control, it can be applied to
problem of HDR image rendering. This is not surprisin
since the fundamental problem in HDR rendering is to
produce the appearance of an HDR image or scene o
low-dynamic-range display. Since the encoding in our
sual system is of a rather low dynamic range, this is ess
tially a replication of the image appearance processing
goes on in the human observer and is being modeled
iCAM. Figure 7 illustrates application of the iCAM mode
to HDR images obtained from Debevec~see www.debev-
ec.org!. The images in the left column of Fig. 7 are line
renderings of the original HDR data normalized to t
maximum presented, simply to illustrate how the range
the original data exceeds a typical 24-bit~8-bits per RGB
channel! image display. For example, the memorial ima
data ~top row! have a dynamic range covering about s
orders of magnitude, since the sun was behind one of
stained-glass windows. The middle column of images r
resents a typical image processing solution to rendering
data. One might consider a logarithmic transformation
the data, but that would do little to change the rendering
the first column. Instead, the middle column was genera
interactively by finding the optimum power function tran
formation~also sometimes referred to as gamma correct
note that the linear images in the first column are alre
gamma corrected!. For these images, transformations w
exponents, or gammas, of approximately 1/6~as opposed to
1/1.8 to 1/2.2 for typical displays! were required to make
the image data in the shadow areas visible. While th
power function transformations do make more of the ima
data visible, they required user interaction, tend to wash
the images in a way not consistent with the visual impr
sion of the scenes, and introduce potentially severe qua
zation artifacts in shadow regions. The rightmost column

Fig. 7 Three HDR images from www.debevec.org. The leftmost col-
umn illustrates linear rendering of the image data, the middle col-
umn illustrates manually optimized power function transformations,
and the rightmost column represents the automated output of the
iCAM model implemented for HDR rendering (see Fig. 3).
136 / Journal of Electronic Imaging / January 2004 / Vol. 13(1)
a

-
t
y

e
-
e

d

;

e

t

i-

images shows the output of the iCAM model with spatia
localized adaptation and contrast control~as shown in Fig.
3!. These images both render the dynamic range of
scene to make shadow areas visible and retain the colo
ness of the scene. The resulting iCAM images are qu
acceptable as reproductions of the HDR scenes~equivalent
to the result of dodging and burning historically done
photographic printing!. It is also noteworthy that the
iCAM-rendered images were all computed with an au
mated algorithm mimicking human perception with no us
interaction.

5 Image Quality Applications „Difference
Perceptibility …

A slightly different implementation of iCAM is required fo
image quality applications to produce image maps rep
senting the magnitude of perceived differences betwee
pair of images. In these applications, viewing-distan
dependent spatial filtering is applied in a linear IPT spa
and then differences are computed in the normal nonlin
IPT space. Euclidean summations of these differences
be used as an overall image difference map, and then v
ous summary statistics can be used to predict different
tributes of image difference and quality. This process
outlined in Fig. 8 and detailed in Johnson and Fairchild45

Image quality metrics can be derived from image diffe
ence metrics that are based on normal color difference
mulas applied to properly spatially filtered images. Th
approach has been used to successfully predict var
types of image quality data.10 Figure 9 illustrates the pre
diction of perceived sharpness62 and contrast63 differences
in images through a single summary statistic~mean image
difference!. This performance is equivalent to, or bett
than, that obtained using other color spaces optimized
the task.10

The contrast results in Fig. 9~a! were obtained by asking
observers to scale perceived image contrast for a collec
of images of various content, subjected to a variety
transformations.63 The resulting interval scale~average
data! is plotted as perceived contrast in Fig. 9~a!, and the
model prediction of image difference from the original~ar-
bitrarily selected! is compared with it. Ideally, the dat
would follow a V shape with two line segments of equ
absolute slope on either side of the origin. The perceiv
contrast data are well predicted by the iCAM image diffe
ence.

The perceived sharpness results in Fig. 9~b! were ob-
tained in a similar manner using a significantly larger nu
ber of image manipulations and content.62 Observers were
simply asked to scale perceived sharpness, and the re
were converted to an interval scale, again with the origi
image as an arbitrary zero point. There is greater variab
in these data, but it can be seen in Fig. 9~b! that the results
are again well predicted by a fairly simple mean ima
difference metric.

6 Conclusions and Future Directions

Advances in imaging and computing technologies, alo
with increased knowledge of the function and performan
of the human visual system, have allowed for the integ
tion of models of color, spatial, and temporal vision to cr
ate a new type of color appearance model, referred to a
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Fig. 8 Implementation of iCAM for image difference and image quality metrics.
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image appearance model. Such models show promise
variety of applications, ranging from image difference a
image quality metrics to the rendering of image data. T
work describes the framework of one example of an ima

Fig. 9 iCAM image differences as a function of (a) perceived image
contrast and (b) perceived image sharpness for a variety of image
transformations. (Note that desired predictions are V-shaped data
distributions, since the perceptual differences are signed and the
calculated differences are unsigned.)
aappearance model, referred to as iCAM, and illustrates
applicability to HDR image tone mapping and image qu
ity metrics. Recently, initial efforts have been made to
corporate psychophysical data on the time course of ch
matic adaptation15 to extend the model to video appearan
and quality applications.64 Future efforts will be directed a
completion of the spatio-temporal filters required for vid
difference metrics, the collection of more psychophysi
data on image and video appearance and differences,
the formulation of specific iCAM algorithms for variou
applications. The iCAM model is not proprietary. Sour
code and updates are freely available at www.cis.rit.e
mcsl/iCAM for those interested in evaluating the model a
potentially suggesting improvements.
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