
  
Abstract—A fundamental challenge to successful 

deployment of DRAMs is the availability of a flexible and 
scalable DRAM interface. This is exacerbated by the 
application specific nature of the logic-side DRAM interface. 
This paper presents a study that attempts to overcome this 
challenge for networking application domain. We quantify the 
various challenges and present techniques that were 
implemented to build a flexible and scalable interface to an 
existing multi-port memory controller for DDR DRAM using 
a FPGA. We demonstrate the deployment of this new 
interface in two example applications. We present two novel 
techniques that enable us to reduce the latency of DRAM 
related memory accesses and improve throughput. We believe 
our techniques enable harnessing maximum throughput from 
existing memory controllers with least possible latency. 
 

Index Terms—Memory architecture, Memory 
management, Routing, Parallel processing  
 

I. INTRODUCTION 
HE search for application-specific solutions with ever 
decreasing time-to-market is pushing system designers 

away from the risky time-consuming ASIC design process 
towards programmable platforms, such as FPGAs. In 
addition, network line cards require external memories, 
such as DRAM, for many reasons (e.g. storing look up 
tables, shunting packet payloads, storing packet statistics, 
etc). In practice a complete network line card could require 
a dozen or more such external memory chips. Thus, 
integrating a malleable memory interface into an FPGA-
based networking application design flow is essential. 

FPGAs are well suited for interfacing with external 
memory(-ies). The logic-side interfaces for such memory 
controllers are application specific and need to be adapted 
for different applications as well as for integration within 
an overall design. Due to their programmability, FPGAs 
are an attractive choice. However, integrating memory 
controllers for a given application scenario becomes 
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tedious, error-prone, and time consuming due to the lack of 
a flexible and scalable interface. In fact, the memory 
interface becomes a design bottleneck if appropriate care is 
not taken in the overall design process. Building a scalable 
and extensible interface is non trivial because of two 
aspects: first, there is a vast variety of external memories 
available in the market today, and second, different 
application domains have different characteristics that 
impacts the type of optimizations one can apply.  

SRAM and DRAM memories have synchronous 
interfaces for the control and data buses. Internally these 
memories have multiple memory banks and the 
input/output data bus is shared between different memory 
banks. DRAM architectures support varying degrees of 
control over concurrency internally. For example there are 
control instructions that allow activation of a row to 
perform consecutive read or write operation or allowing 
combined read or write operation with pre-charge 
operation, etc. An efficient memory controller matches the 
concurrency required by the application to that available in 
the DRAM architecture.  

Application domains also have a significant impact on 
the logic-side interface to DRAM controllers. For example, 
in network processing, the interface needs to support 
signals for start, pause, or end of a packet. Another 
example of application specific characteristic is the elastic 
buffer requirement for network processing. Sizes of 
network packets on a network vary, whereas sizes of 
frames for a segment of video do not. In addition, the 
amount of concurrency one can exploit for network 
processing is much higher than e.g. video processing. Such 
concerns significantly impact the design and scaling of a 
logic-side interface for servicing varying number of 
(concurrent) state machines. One of the main motivations 
for our study is the need for domain specific considerations 
and optimizations of the logic-side interface. In this paper 
we focus on network processing as an example application 
domain.  

 The design productivity gap is widening with every new 
process generation. To close this gap, we need methods and 
tools that can transform higher-level concurrent semantics 
into efficient HDL implementations. This work contributes 
to building a flexible and scaleable DRAM memory 
interface. Such an interface can be easily incorporated in to 
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different networking application scenarios specified using a 
domain specific language such as Click [1]. Specifically, it 
should a) allow an arbitrary number of threads of control to 
access DRAM,b) harness maximum throughput from the 
DRAM bus, and c) support different quality of service to 
different ports tunable to different application scenarios. 

In the remainder of the paper, we will present related 
prior work, an extensible interface that we have 
implemented, and experimental results on an Internet 
Protocol routing application. In particular we provide a 
detailed analysis of various latencies in the pipeline and 
approaches to reduce them. We end the paper with the 
main conclusions and directions for future work. 

 

II. BACKGROUND AND RELATED WORK 
Memory controllers have received significant attention 

in the research domain [2], [3], [4], [11]. The majority of 
the existing efforts have been targeted at maximization of 
DRAM throughput by re-ordering of memory accesses 
based on the target address within the DRAM. In particular 
most of the mainstream effort has been on optimizing the 
throughput for a single stream of control for servicing a 
single processor cache hierarchy [2], [3], [4], [11].   

FPGA-based designs attain better performance by 
exploiting concurrency, and so have multiple threads of 
control interfacing to the memory controller. Thus, 
adapting the DRAM interface for varying number of 
threads of control is a critical requirement. For example, on 
the Xilinx website [5] alone, there are more than a dozen 
different DRAM controllers for different applications and 
DRAM architectures. This demonstrates the conundrum the 
system designer faces when choosing a particular memory 
controller for external memories.  

Park and Diniz [6] present an approach to synthesize and 
estimate performance of a SDRAM memory controller for 
FPGA-based applications. An important aspect of their 
approach is the decoupling of the external memory 
controller from the application related data path design.  
This allows for easy composition based on a bus-like 
interconnection structure. However it does not efficiently 
utilize the specific characteristics of any particular 
application domain.   

An investigation of input and output queuing schemes 
for DRAM based router designs for ASIC implementations 
has been done by McKeown et al [7]. We build upon their 
conclusions in terms of choosing a particular style of 
memory allocation scheme. Sherwood et al [10] present a 
wide word pipeline DRAM architecture suitable for layer 3 
and below network processing applications.  Hasan et al 
[11] present memory access re-ordering techniques for a 
fixed network processor architecture.  

In this work we leverage an existing DDR SDRAM 

memory controller [8] called the Multi-Port Memory 
Controller (MPMC) available as a Xilinx reference design. 
It is important to note that the MPMC was designed for a 
networking application domain, thus we leverage some of 
the optimizations performed for a single channel controller 
for the networking application domain. Our goal is to build 
layers of abstraction suited for the networking application 
domain upon this existing (and efficient) single channel 
memory controller. In the following sections we will 
explain the different layers of abstraction that we have 
implemented on top of MPMC to build a flexible and 
scalable interface to DRAM memory. 

 

III. INTRODUCTION TO MPMC 
The MPMC is a quad-port DDR SDRAM memory 

controller that can arbitrate four concurrent streams of 
control to access memory. The logic-side interface has four 
ports for 64-bit data. The memory side has one physical 
interface for 32-bit DDR SDRAM with a 125MHz system 
clock (250MHz data rate). A 32-bit bus running at 
250MHz offers a maximum throughput of 8 Gbit/s. 
Figure 1 depicts the architecture of MPMC. The DDR 
interface sequentially transmits controls and data on the 
bus. With various control overhead, the maximum 
achievable throughput is somewhat lower, as discussed 
later.  

MPMC supports four memory access modes, ranging 
from a single (32-bit) word access to a 32-word burst 
access. The mode is selectable with each access to the 
memory. Inside the MPMC, the four memory ports are 
arbitrated onto the DRAM bus. Each memory port has a 
read data buffer and a write data buffer of 32 words, sized 
to store enough data for one burst access. 

In each memory write, the data and controls are 
presented at an MPMC port with a request for service. 
When there is space in the write data buffer (burst buffer) 
for burst access, MPMC acknowledges the request, and 
transfers the data into the burst buffer. The data stays in 

 
Fig. 1.  MPMC and internal components 



this buffer until the memory bus is available. Pre-coded 
control sequences, stored in on-chip block RAM, are used 
for the physical interface controls. When the memory bus is 
available, a control sequence is retrieved from command 
memory in MPMC and placed on the DRAM bus, then 
followed by the data. 

In each memory read, the request is presented at an 
MPMC port. When the memory bus is available, the 
appropriate pre-coded control sequence is retrieved and 
sent to the DRAM. When the DRAM responds with the 
data, the data is transferred into the port’s read burst buffer. 
Data in the burst buffer can be read out as soon as the first 
word is available from memory.  The read operation at 
each port is partially pipelined between memory bus access 
and burst buffer access.  

Each memory port can service either a read or a write 
access at a time, as the address control is shared between 
read and write. The four memory ports can operate 
independently, i.e. one can be servicing a read or write, 
while another is servicing a different read or write. Access 
to the memory bus is arbitrated between all ports in a 
round-robin fashion.  

There is significant latency overhead in accessing the 
DRAM.  Among the four memory access modes, single 
word access has the most overhead per data word accessed. 
The 32-word burst has the least overhead per data word 
accessed. Even for a 32-word burst write, various latencies 
add up to 42 cycles. Specifically, there are 19 cycles to 
load the burst buffer, 2 cycles for DRAM bank activation, 
16 cycles for data transfer on the DRAM bus, and 5 cycles 
for DRAM pre-charge. Read and write accesses have 
different amounts of overhead. If there is an equal number 
of read and write accesses, as in a buffering scenario where 
the DRAM is used as a FIFO, sequentially accessing 
DRAM achieves a bus throughput of 3.51 Gbit/s, or 44% 
of peak throughput.  

Taking advantage of the independent nature of the 
MPMC memory ports, we can allow memory accesses to 
DRAM to be interleaved, such that one port could be 
loading its burst buffer, while another is utilizing the 
DRAM bus.  This interleaving technique can recover 
DRAM bus throughput to 5.95 Gbit/s, or 75% of peak 
throughput. Table 1 lists the different latencies observed 
for the MPMC. 

    In the following section we discuss the 
implementation of an abstraction layer on top of MPMC to 
make it extensible to arbitrary number of ports.   

 

IV. EXTENSIBLE INTERFACE 
An extensible interface to the DRAM memory controller 

is required to support concurrent FSMs in the logic fabric. 
An extensible DRAM interface should a) allow an arbitrary 

number of threads of control to access DRAM, and b) 
harness maximum throughput from the DRAM bus.  

To gain a quantitative understanding of the trade-offs for 
such a memory interface, we leverage the validated MPMC 
as a building block for a memory interface. A fundamental 
feature of our approach is to build layers of abstraction in 
supporting a memory controller for external memory. For 
example, the lowest layer supports a single channel DDR 
DRAM controller that controls the physical interface to a 
DDR DRAM memory. On top of this is the MPMC, 
configured in our study to support two read-only and two 
write-only ports. The significance of this configuration is 
explained later in this section.  With this configuration, the 
interface is able to harness maximum throughput from the 
single channel memory controller.  However, to make it 
easy for integration within the application domain, we 
introduce a layer of abstraction that supports an arbitrary 
number of input and output ports with an interface suitable 
for networking applications.  

One alternative approach is to build a single layer of 
logic (single memory controller) that implements all three 
layers of abstraction described above. Such an approach 
might potentially have lower latency but will be difficult to 
maintain, reuse, and adapt to different application domains.  

Another alternative approach is to combine the top two 
layers of abstraction, and have the application developer 
design to the single channel controller. In such an 
approach, the application developer losses a standard 
memory interface, and must then explicitly manage burst 
operations, and explicitly exploit concurrencies between 
burst buffer load and physical interface access for multiple 
independent memory accesses. We maintain that the 
functions in MPMC best managed by memory experts, and 
orthogonalized to application specific optimizations. 

To support arbitrary numbers of ports in a memory 
interface, a simple approach is to statically map each thread 
of control to one of the four MPMC memory ports, such 
that each MPMC port will service one fourth of the threads 
of control. Such a topology requires less arbitration logic 
per port, but has a severe throughput penalty: DRAM 
accesses that are mapped onto one port are serialized. If 
most of the active threads are mapped to one of the ports, 

TABLE 1  
DRAM BUS THROUGHPUT AND LATENCY 

 

(interleaving 
/sequential) 

Read 
(Cycles) 

Write 
(Cycles) 

Total 
(Cycles) 

Throughput 
(Gbit/sec) 

Word 
 (32 bits) 7 / 14 8 / 13 15 / 27 0.53 / 0.30 

4-Word  
(128 bits) 8 / 15 9 / 15 17 / 30 1.88 / 1.07 

8-Word  
(256 bits) 8 / 17 11 / 19 19 / 36 3.37 / 1.78 

32-Word  
(1024 bits) 20 / 29 23 / 44 43 / 73 5.95 / 3.51 



the serialized accesses cannot be interleaved by the 
MPMC, and the maximum achievable throughput will drop 
dramatically.  

An extensible approach is to use an arbiter to 
dynamically arbitrate input requests onto the MPMC ports. 
Facing the logic, there could be an arbitrary number of 
control threads connected to the arbiter.  Facing the 
MPMC, the write requests are mapped to two of the 
MPMC ports, and the read requests are mapped to the other 
two MPMC ports.  

The MPMC burst buffer access time is shorter than 
DRAM access time for 32-word bursts.  Two-stage 
interleaving is enough to keep the DRAM bus maximally 
utilized. With two ports for each type of accesses, one port 
could be accessing the burst buffer, while another utilizes 
the DRAM bus.  This pipelining of accesses guarantee 
interleaved memory access whenever two or more requests 
are present. 

The arbitration of FSM threads of control onto the 
MPMC ports can be adapted for specific application 
scenarios. Typical arbitration schemes found in networking 
applications such as deficit round robin and weighted fair 
queuing can be employed to optimize for particular 
network traffic patterns. This flexibility in the arbitration 
scheme only impacts the extensible layer component, not 
the MPMC, nor the single channel memory controller.  
Figure 2 illustrates the extensible approach we 
implemented, contrasting it with the simple approach. 
When utilizing future faster DRAM buses, burst buffer 
accesses may take longer than the transmission of a burst of 
data. For such external memories, more than two stages of 
pipelining may be required to maximize utilization of the 
DRAM bus. However, this will not affect the dedicated 
single channel controller for the particular DRAM memory.  

 

V. CASE STUDY: INTERNET PROTOCOL ROUTING 
Applying the extensible DRAM interface to a 

networking application, we chose the payload shunting 
application in a gigabit Internet Protocol (IP) router to 
stress test throughput of the memory sub-system.  

In our case study we investigate the split header and 
payload architecture. This approach enables higher 
utilization of header processing logic. Figure 3 illustrates 
this architecture for a two port IP router application, which 
can be generalized to N ports.  

In a router, packets from any input port must be able to 
go to any output port. The obvious approach is to 
implement a fully connected crossbar. However, this 
approach is not scalable. For example, in a sixteen port 
router, there needs to be 16x16=256 buses of N bits wide to 
implement a fully connected crossbar. Such a routing 
resource can significantly constrain implementation 

alternatives; even in today’s rich FPGA interconnect fabric. 
In addition, meeting timing can become a challenge due to 
large routing overhead.  

Using a memory as a bus-based crossbar mitigates this 
routing problem. When a packet is written into a memory 
location from one port, it can be read out to any other ports. 
An additional port for the router only requires additional 
routing to and from the memory port. This linear scaling of 
the routing resources is much more manageable than the 
quadratic scaling for a cross bar. With multi-gigabits per 
second throughput on the memory bus, it is possible to 
multiplex several concurrent streams of control on a 
DRAM bus for sequential access to the DRAM memory.  

A. Payload shunting using the extensible memory 
interface 
In the IP router application, external memory is used to 

buffer in-flight packet payloads. The application constrains 
packets from the same input port to be processed in order 
of arrival. This implies FIFO-like behavior at the memory 
interface. The FIFO queue abstraction has input data, 
output data, and read/write controls. Memory addresses 
have to be generated and managed by the interface to keep 
track of locations of the payload packets. During each 
routing operation, a piece of memory is allocated for a 
packet, and the payload is written into the memory. The 

Fig.  2.  Simple approach (left) vs. extensible approach (right) 

 
 
Fig.  3.  Split header/payload processing 



location and packet length are passed as descriptors to the 
destination port to be queued and retrieved.  The three main 
memory allocation schemes that we considered are: global 
queuing, input queuing, and output queuing.  Output 
queuing was selected as the method of implementation. We 
discuss the memory allocation scheme further in the 
following section.  

1) Global FIFO Queuing: In global queuing, memory 
addresses are allocated following the sequential ordering 
from the header processor. Each payload is allocated a 
consecutive memory block, and is followed immediately by 
the next payload in the sequential ordering.   

This memory allocation strategy is easy to compute. The 
next payload starting address is the current payload starting 
address plus current payload size.  There is no gap between 
payloads in memory, which allows maximum utilization of 
available memory space. However, it suffers from the head 
of line (HOL) problem. If the head of the FIFO is blocked 
by resource contention on one output port, no other 
elements in the queue can proceed before the blockage is 
resolved.  Figure 4 illustrates the HOL blocking case where 
the second entry in the FIFO (labeled 1) is destined for 
output port 1 but is blocked since the head of FIFO is 
destined for output port 2 which is busy transmitting 
another packet.   

If we allow out-of-order processing of the FIFO queue, 
memory could be freed out-of-order, leading to memory 
fragmentation, which may imply complex garbage 
collection routines requiring inappropriately large FPGA 
resource usage.  

2) Input FIFO Queuing: In input queuing, memory is 
segmented into equal partitions dedicated to each input 
port. Memory addresses are allocated consecutively 
following the sequential ordering of each input. The 
payload starting address is computed per input port.  

Memory is less efficiently utilized as packets may be 
dropped when there is still free memory space.  Packets at 
an input may be dropped when its own input queue is full 
while other input queues may still have space. The HOL 
blocking problem still exists, but is less serious in the 
average case.  There are many heads of queue to route 
from, so the HOL problem affects each input separately. 
Figure 4 illustrates the HOL blocking case for input 
queuing. The left-most input queue has an entry (packet) 
destined for output port 0. But it is blocked by the head of 
FIFO entry that is destined for output port 2 which is busy 
transmitting.  

Attempting to free memory out-of-order would be more 
complex because there is more than one queue to maintain.  

3) Output FIFO Queuing: In output queuing, memory is 
segmented into equal partitions dedicated for each output 
port. The destination port is known before the payload is 
written to memory. In other words, packet payloads are 
stored into memory in the order they become free. This 

completely resolves the HOL blocking problem and no 
memory fragmentation will occur.  Figure 4 illustrates the 
output queuing scheme. 

Memory utilization efficiency is the same as input FIFO 
queuing, and not as efficient as global FIFO queuing. 
Header IP lookup must precede memory allocation which, 
depending on implementation, may delay the write to the 
memory and increase the input queue size requirement. 

In traditional output queuing systems, the output queue 
must have r-speedup (r times as fast as line-rate), as 
multiple input ports can be writing to the same output 
queue concurrently. In the memory-based cross bar 
architecture, the requirement is naturally satisfied, as 
multiple input ports can interleave writes to distinct 
memory addresses in a single output queue partition. 

Output queuing was selected here for its straightforward 
implementation of memory allocation and freeing schemes. 
It trades additional latency in allocating memory for ease of 
memory freeing. 

B. Experiments  
A two port router was implemented, with payloads being 

shunted to off-chip DRAM. It was also extended to a four 
port router version to illustrate the effect of scaling.  

The implemented routers have the same top-level 
architecture. Packets come into the fabric through Gigabit 
Medium Access Control (GMAC) ports. Each GMAC is a 
port of the router that has separate gigabit transmit and 
receive channels. For the receive channel, each port has a 
packet splitter module that separates the packet header 
from the payload. The headers are directed to one shared 
header processing unit, and the payloads are shunted to the 
shared payload processing unit, with dedicated queues for 
each GMAC. The header processing unit does IP address 
lookup, and indicates to the payload processing unit to 
which destination port the payload should be routed.  
Based on the destination port, the payload processing unit 
computes an address in the memory partition of the 
destination output queue in DRAM. An FSM is then 
invoked to write the payload to this address.  The 
descriptor containing this address is passed to the 
destination port descriptor queue. The output descriptor 

Fig.  4. Global, input and output queuing schemes 



queue is drained by an output port FSM which retrieves the 
payload from DRAM, through MPMC, into the output 
payload buffers. The packet reconstructor modules then 
unite the payloads with their respective headers, and the 
reconstructed packets are sent out by the GMACs on the 
transmit channel. The GMAC has a physical layer facing 
the FPGA I/Os and a logic side facing the packet splitters 
and reconstructors.   

Header processing is not the emphasis of this study, so 
static IP address lookup sufficed in the current 
implementation. Since the payloads are written to memory 
in 32-word bursts, it takes 128 cycles to accumulate 
enough data for a burst. Header processing can use this 
time to implement these approaches as alternatives without 
affecting performance.1 The header processing can easily 
be shared among all inputs by pipelining the lookups. 
Investigation of DRAM-based lookup remains an active 
research topic.  

In payload handling, a packet is first buffered in the 
input FIFO queues implemented with on-chip Block RAM 
(BRAM). Once the memory destination address is known, 
data in the input FIFO queue is written to external memory 
one full burst at a time.  

Each input port has an FSM producing control sequences 
for the MPMC port. The input arbiter arbitrates between all 
ready input FSMs. Access to the MPMC is granted by 
providing a communication channel from an input FSM to 
a MPMC port. By having an FSM for each input port, we 
are able to interleave burst controls from multiple input 
ports at the granularity of a single burst length. 

C. Results for the extensible interface 
The designs were targeted at the Xilinx Virtex-II Pro 

series FPGAs, and specifically implemented on a 
XC2VP30 device. The main timing constraint of 125MHz 
was met after placement and routing. The designs were 
verified in RTL simulation and the numbers measured and 
reported here are from RTL simulation using sample 
network traffic patterns of a mix of three packet sizes: 
small, medium, and large, containing one, five and fourteen 
32-word burst length of payload respectively. To maximize 
throughput on the DRAM memory bus, the design 
exclusively uses 32-word bursts. Sub-burst length payload 
is not handled in this implementation, although multiple 
payloads could be concatenated into one burst, requiring 
additional control logic to maintain the payload descriptor.  

Throughput was measured by recording the time spent 
on the memory bus over 100 burst accesses.  Since the 
router is designed to harness maximum throughput on the 
DRAM bus, throughput on this bus determines the possible 
throughput of the system. 
 

1 Recent works [1], [9], in IPv4 forwarding on FPGA achieve 224-
673ns address lookup time for table sizes of up to 10,000 entries, which is 
equivalent to 28-84 cycles at 125MHz.  

Latencies were measured assuming a store-and-forward 
scenario, starting on the cycle when the entire packet 
arrives at an input, and ending on the cycle the packet starts 
transmission at an output.  There are best case and worst 
case latencies due to the contention of multiple control 
streams at different points in the architecture.  

Table 2 shows the design statistics for the two and four 
port routers. We observe that the two-port router is able to 
achieve a DRAM bus throughput of 1.94 Gbit/s, whereas 
the four-port router is DRAM limited in terms of 
throughput to 2.91 Gbit/s (read and write), or 5.82 Gbit/s 
DRAM bus throughput, 98.5% of the limit derived from 
MPMC characterization. The maximum two-port memory 
bus throughput is necessarily less than 2 Gbit/s because 
only packet payloads pass through the DRAM bus. 

The two port router used 6817 slices and the four port 
router used 12629 slices. Other than the                     
MPMC, which synthesizes to 1318 slices, all logic 
resources are doubled as we scale from two ports to four 
ports. The observed increase in area usage confirms that 
logic resource usage scales linearly. Note however that the 
implementations were not optimized for area.  

1) MPMC latency analysis: The majority of the latency 
experienced by a packet in this router is before various 
arbiters. There are five points of arbitration in this router, 
listed in Table 3.  The best case shows shortest latency 
measured from RTL simulation waveforms. Worst case 
latency shows longest latencies measured, which include 
contention at the points of arbitration. 

The goal of the example is to stress test the memory sub-
system, so a simple internal routing scheme sufficed.  As 
discussed in Section 5.2, there is a 128-cycle period after 
the header is received to accumulate enough data for the 
first burst access. The header processing unit can utilize 
this time to work on a variety of lookup approaches before 
the first data burst has to be directed to its memory 
location. The header processing arbitration (1) has 
negligible latency. The input payload and output payload 
arbitration delays (2,5) vary dramatically between the best 
and worst case. The worst case occurs when a burst 
becomes ready just after its turn at the arbiter.  Since four 
input/output streams are contending for two write/read 
ports, the latency is approximately two times the worst case 

TABLE 2   
RESULTS FOR THE EXTENSIBLE INTERFACE 

 2-Port Router 4-Port Router 

 Throughput (Gbit/s) 1.94 2.91 

 Area  (slices) 6817 12629 

 Best case latency (cycles) 87 93 

 Worst case latency (cycles) 301* 722* 

      * computed assuming all stages of arbitration hit worst case 



latency of write/read. The best cases for write and read 
DRAM bus arbitration delay (3,4) are the same as those 
measured for a single burst. The worst case latency for 
write and read DRAM bus arbitration however is close to 
the theoretical latency for four (32-word burst) accesses, 
where a write/read just misses one round of arbitration, and 
has to wait for the other three ports to complete before 
proceeding. The overall latency of one burst comprises the 
total latency a packet experiences from input port to the 
output port.  

In the next section, we investigate and analyze latency 
reduction techniques that enable reduction in latency to 
provide a graceful degradation for the worst case as well as 
improve the average latency for the whole system. 

 

VI. LATENCY REDUCTION TECHNIQUES 
Given the many sources of latencies, we propose some 

latency reduction techniques for latency sensitive packets.  
We define latency sensitive packets to be those packets 
that, when routed with shorter latencies, will increase the 
overall throughput. Specifically, these are packets whose 
destination port is idling. Reducing the latency of these 
packets will reduce idle time of the router as a system, thus 
increasing throughput.  

There are two techniques that, applied together, create a 
solution for the latency problem. The first technique is to 
create a set of four forwarding paths at the MPMC level. 
Recall that the base MPMC version we use has two input 
and two output ports. Input data could be directly sent to 
output port, bypassing contention on the DRAM bus. Note 
that these are forwarding paths within the MPMC. Thus the 
overhead of implementing a fully connected internal path 
to MPMC is much less than a fully connected cross bar for 
applications with larger port count. This structure can 
support arbitrary number of input and output ports on the 
extensible interface. Figure 5 presents a pictorial 

representation of these bypasses. 
In activating the forwarding path, the sequential order of 

packets in the output port should be conserved. The 
forwarding paths are used when the corresponding output 
queue in the DRAM is empty, where in the absence of the 
forwarding path, the data has to be written into the DRAM 
and immediately read out again. The forwarding path 
reduces the latency to move the data from input port to 
output port, and conserves DRAM bus time slots. For 
example, in the above-described 32-word burst case, the 
forwarding path reduces the 70 to 268 cycle latency (write 
+ read) down to 16 cycles. This approach succeeds at 
alleviating the contention for the DRAM bus.  

However, there remain latencies at the input and output 
arbiters. With the fast forwarding paths available, there 
now exist two ways to transfer data from input to output: 
one writes through the DRAM, and the other bypasses the 
DRAM.  

The main extension here is to allow the input and output 
arbiters in the extensible interface to prioritize for latency 
sensitive packets in resolving contentions for gaining 
access to MPMC port. For scheduling input and output port 
access, there is a wide range of scheduling algorithms to 
experiment with: weighted round robin, deficit round robin, 
weighted fair queuing, etc.  In this work we use a non-
preemptive round robin scheduling algorithm. 

In setting up a fast forwarding operation, the input 
arbiter needs to a) recognize an empty output queue in 
memory, and b) wait to synchronize with the output arbiter 
to transfer the data on the forwarding path.  Synchronizing 
with the output arbiter under-utilizes the input arbiter, and 
may degrade total throughput. We monitor the queues at 
the output ports for presence or absence of packets. Based 
on this information, payloads are routed either through the 
DRAM memory or using the forwarding paths within the 
MPMC, bypassing the DRAM memory. 

The second technique is to insert a FIFO buffer for a 
single burst in the forwarding path. The input arbiter is 
only required to recognize an empty output queue in 
memory and deposit a burst of data in the buffer for that 
port. If the output arbiter is busy with other read 
operations, it can get to the buffered data at the next 
arbitration opportunity.  Since the buffer is a FIFO, the 
write and read operations can overlap without undesirable 
side effects. The buffers in Figure 5 represent the above 
described buffers in the bypass path. 

 
 

A. Analysis of Latency Reduction Techniques 
The bypass path provides a high throughput, low latency 

alternative compared to accesses through the DRAM. 
However, it is only activated under particular conditions. 
For certain traffic patterns, all packets may be able to flow 
through the bypass path. For some other traffic patterns, the 

TABLE III   
MEASURED LATENCY (4-PORT ROUTER) 

 Best Case 
(cycles) 

Worst Case
(cycles) 

1. Header processing arbitration 2 18 

2. Input payload arbitration 2 248 

3. Write DRAM bus arbitration 43 135 

4. Read DRAM bus arbitration 27 133 

5. Output payload arbitration 3 172 

Other FSM handshake delays 16 16 

Overall latency for one burst 93 722* 

      * computed assuming all stages of arbitration hit worst case) 



bypass path may not be used at steady state.  
The bypass paths consist of two 64-bit channels that 

support concurrent read and write.  At a 125MHz clock 
rate, this provides a raw throughput of 16 Gbit/s. Our 
implementation uses the fast bypass channels when the 
limited on-chip output queues are sufficient. When the on-
chip output queue is exhausted, to avoid HOL blocking 
(when packets on all input ports are destined to the same 
output port), the remaining payload is shunted to output 
queues implemented in off-chip DRAM.  The on-chip 
output queue has 4Kb storage per output port, which holds 
two to three large-sized standard Ethernet packets (not 
jumbo grams).  The queues are easily exceeded in normal 
traffic when multiple packets from different sources are 
destined for the same output port.  

As packets are shunted to the DRAM, total throughput 
over the DRAM bus peaks at 2.9 Gb/s. This may seem to 
be a sub-optimal steady-state solution where all packets 
pass through the DRAM interface.  However, the output 
queues are draining at 4 Gb/s.  Our system level goal is to 
increase throughput and reduce idle time at the output 
ports.  We can bias the arbiters of the MPMC to favor pop 
(read) more than push (write).  This way, output queues in 
the off-chip memory are drained faster than they are filled. 
Once an output queue in off-chip memory is empty, the 
bypass path can be utilized again. 

We showed that, at steady-state, the bypass paths will 
contribute positively to the throughput of the router.  The 
total throughput of the four port router stays between 
2.9 Gb/s and 4 Gb/s depending on traffic patterns. The 
latency reduction techniques allow the peak throughput of 
4Gb/s. The DRAM interface provides graceful degradation 
for system throughput down to a minimum of 2.9 Gb/s. 

With bypass paths in the latency reduction techniques, 
we reduced latency from a best case of 70 cycles to as little 
as 16 cycles, and gained additional throughput in the 
memory interface. Note that the bypass only affects latency 
due to write and read DRAM bus arbitration delays (e.g. 
for the four port router, rows 3 and 4 from Table 3).  
Prioritizing latency sensitive packets in resolving 
contentions in input and output arbiter help reduce wait 
time at row 2 and 5.  We emphasize again that the latency 

reduction here is mainly enabling the additional throughput 
we are able to achieve and provides a graceful degradation 
for the worst case scenario.  

 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper we have studied issues in building a 

flexible and scalable interface for external memory 
controllers in an application domain. We have implemented 
an interface that builds layers of abstraction starting from a 
single channel memory controller to an arbitrary ported 
memory interface. We have presented latency numbers at 
various stages of the DRAM access pipeline based on our 
IP routing application. We have presented latency 
reduction techniques that provide a graceful degradation 
for worst case scenarios. Lastly, we believe that such 
extensible interfaces are critical to enabling deployment of 
component based domain specific languages such as Click. 
This remains a topic of current research.  
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Fig.  5.  Latency reduction technique 




