

Abstract—A fundamental challenge to successful

deployment of DRAMs is the availability of a flexible and
scalable DRAM interface. This is exacerbated by the
application specific nature of the logic-side DRAM interface.
This paper presents a study that attempts to overcome this
challenge for networking application domain. We quantify the
various challenges and present techniques that were
implemented to build a flexible and scalable interface to an
existing multi-port memory controller for DDR DRAM using
a FPGA. We demonstrate the deployment of this new
interface in two example applications. We present two novel
techniques that enable us to reduce the latency of DRAM
related memory accesses and improve throughput. We believe
our techniques enable harnessing maximum throughput from
existing memory controllers with least possible latency.

Index Terms—Memory architecture, Memory
management, Routing, Parallel processing

I. INTRODUCTION
HE search for application-specific solutions with ever
decreasing time-to-market is pushing system designers

away from the risky time-consuming ASIC design process
towards programmable platforms, such as FPGAs. In
addition, network line cards require external memories,
such as DRAM, for many reasons (e.g. storing look up
tables, shunting packet payloads, storing packet statistics,
etc). In practice a complete network line card could require
a dozen or more such external memory chips. Thus,
integrating a malleable memory interface into an FPGA-
based networking application design flow is essential.

FPGAs are well suited for interfacing with external
memory(-ies). The logic-side interfaces for such memory
controllers are application specific and need to be adapted
for different applications as well as for integration within
an overall design. Due to their programmability, FPGAs
are an attractive choice. However, integrating memory
controllers for a given application scenario becomes

Jike Chong is a Ph.D. student at University of California, Berkeley,
Berkeley, CA, USA (e-mail: Jike@eecs.berkeley.edu)

Chidamber Kulkarni is a researcher at at Xilinx Research Labs, Xilinx,
Inc. San Jose, CA, USA (e-mail: Chidamber.Kulkarni@xilinx.com)

Gordon Brebner is a distinguished engineer at Xilinx Research Labs,
Xilinx, Inc. San Jose, CA, USA (e-mail: Gordon.Brebner@xilinx.com)

tedious, error-prone, and time consuming due to the lack of
a flexible and scalable interface. In fact, the memory
interface becomes a design bottleneck if appropriate care is
not taken in the overall design process. Building a scalable
and extensible interface is non trivial because of two
aspects: first, there is a vast variety of external memories
available in the market today, and second, different
application domains have different characteristics that
impacts the type of optimizations one can apply.

SRAM and DRAM memories have synchronous
interfaces for the control and data buses. Internally these
memories have multiple memory banks and the
input/output data bus is shared between different memory
banks. DRAM architectures support varying degrees of
control over concurrency internally. For example there are
control instructions that allow activation of a row to
perform consecutive read or write operation or allowing
combined read or write operation with pre-charge
operation, etc. An efficient memory controller matches the
concurrency required by the application to that available in
the DRAM architecture.

Application domains also have a significant impact on
the logic-side interface to DRAM controllers. For example,
in network processing, the interface needs to support
signals for start, pause, or end of a packet. Another
example of application specific characteristic is the elastic
buffer requirement for network processing. Sizes of
network packets on a network vary, whereas sizes of
frames for a segment of video do not. In addition, the
amount of concurrency one can exploit for network
processing is much higher than e.g. video processing. Such
concerns significantly impact the design and scaling of a
logic-side interface for servicing varying number of
(concurrent) state machines. One of the main motivations
for our study is the need for domain specific considerations
and optimizations of the logic-side interface. In this paper
we focus on network processing as an example application
domain.

 The design productivity gap is widening with every new
process generation. To close this gap, we need methods and
tools that can transform higher-level concurrent semantics
into efficient HDL implementations. This work contributes
to building a flexible and scaleable DRAM memory
interface. Such an interface can be easily incorporated in to

Building a Flexible and Scalable DRAM Interface
for Networking Applications on FPGAs

Jike Chong, Student Member, IEEE, Chidamber Kulkarni, Member, IEEE, and Gordon Brebner

T

different networking application scenarios specified using a
domain specific language such as Click [1]. Specifically, it
should a) allow an arbitrary number of threads of control to
access DRAM,b) harness maximum throughput from the
DRAM bus, and c) support different quality of service to
different ports tunable to different application scenarios.

In the remainder of the paper, we will present related
prior work, an extensible interface that we have
implemented, and experimental results on an Internet
Protocol routing application. In particular we provide a
detailed analysis of various latencies in the pipeline and
approaches to reduce them. We end the paper with the
main conclusions and directions for future work.

II. BACKGROUND AND RELATED WORK
Memory controllers have received significant attention

in the research domain [2], [3], [4], [11]. The majority of
the existing efforts have been targeted at maximization of
DRAM throughput by re-ordering of memory accesses
based on the target address within the DRAM. In particular
most of the mainstream effort has been on optimizing the
throughput for a single stream of control for servicing a
single processor cache hierarchy [2], [3], [4], [11].

FPGA-based designs attain better performance by
exploiting concurrency, and so have multiple threads of
control interfacing to the memory controller. Thus,
adapting the DRAM interface for varying number of
threads of control is a critical requirement. For example, on
the Xilinx website [5] alone, there are more than a dozen
different DRAM controllers for different applications and
DRAM architectures. This demonstrates the conundrum the
system designer faces when choosing a particular memory
controller for external memories.

Park and Diniz [6] present an approach to synthesize and
estimate performance of a SDRAM memory controller for
FPGA-based applications. An important aspect of their
approach is the decoupling of the external memory
controller from the application related data path design.
This allows for easy composition based on a bus-like
interconnection structure. However it does not efficiently
utilize the specific characteristics of any particular
application domain.

An investigation of input and output queuing schemes
for DRAM based router designs for ASIC implementations
has been done by McKeown et al [7]. We build upon their
conclusions in terms of choosing a particular style of
memory allocation scheme. Sherwood et al [10] present a
wide word pipeline DRAM architecture suitable for layer 3
and below network processing applications. Hasan et al
[11] present memory access re-ordering techniques for a
fixed network processor architecture.

In this work we leverage an existing DDR SDRAM

memory controller [8] called the Multi-Port Memory
Controller (MPMC) available as a Xilinx reference design.
It is important to note that the MPMC was designed for a
networking application domain, thus we leverage some of
the optimizations performed for a single channel controller
for the networking application domain. Our goal is to build
layers of abstraction suited for the networking application
domain upon this existing (and efficient) single channel
memory controller. In the following sections we will
explain the different layers of abstraction that we have
implemented on top of MPMC to build a flexible and
scalable interface to DRAM memory.

III. INTRODUCTION TO MPMC
The MPMC is a quad-port DDR SDRAM memory

controller that can arbitrate four concurrent streams of
control to access memory. The logic-side interface has four
ports for 64-bit data. The memory side has one physical
interface for 32-bit DDR SDRAM with a 125MHz system
clock (250MHz data rate). A 32-bit bus running at
250MHz offers a maximum throughput of 8 Gbit/s.
Figure 1 depicts the architecture of MPMC. The DDR
interface sequentially transmits controls and data on the
bus. With various control overhead, the maximum
achievable throughput is somewhat lower, as discussed
later.

MPMC supports four memory access modes, ranging
from a single (32-bit) word access to a 32-word burst
access. The mode is selectable with each access to the
memory. Inside the MPMC, the four memory ports are
arbitrated onto the DRAM bus. Each memory port has a
read data buffer and a write data buffer of 32 words, sized
to store enough data for one burst access.

In each memory write, the data and controls are
presented at an MPMC port with a request for service.
When there is space in the write data buffer (burst buffer)
for burst access, MPMC acknowledges the request, and
transfers the data into the burst buffer. The data stays in

Fig. 1. MPMC and internal components

this buffer until the memory bus is available. Pre-coded
control sequences, stored in on-chip block RAM, are used
for the physical interface controls. When the memory bus is
available, a control sequence is retrieved from command
memory in MPMC and placed on the DRAM bus, then
followed by the data.

In each memory read, the request is presented at an
MPMC port. When the memory bus is available, the
appropriate pre-coded control sequence is retrieved and
sent to the DRAM. When the DRAM responds with the
data, the data is transferred into the port’s read burst buffer.
Data in the burst buffer can be read out as soon as the first
word is available from memory. The read operation at
each port is partially pipelined between memory bus access
and burst buffer access.

Each memory port can service either a read or a write
access at a time, as the address control is shared between
read and write. The four memory ports can operate
independently, i.e. one can be servicing a read or write,
while another is servicing a different read or write. Access
to the memory bus is arbitrated between all ports in a
round-robin fashion.

There is significant latency overhead in accessing the
DRAM. Among the four memory access modes, single
word access has the most overhead per data word accessed.
The 32-word burst has the least overhead per data word
accessed. Even for a 32-word burst write, various latencies
add up to 42 cycles. Specifically, there are 19 cycles to
load the burst buffer, 2 cycles for DRAM bank activation,
16 cycles for data transfer on the DRAM bus, and 5 cycles
for DRAM pre-charge. Read and write accesses have
different amounts of overhead. If there is an equal number
of read and write accesses, as in a buffering scenario where
the DRAM is used as a FIFO, sequentially accessing
DRAM achieves a bus throughput of 3.51 Gbit/s, or 44%
of peak throughput.

Taking advantage of the independent nature of the
MPMC memory ports, we can allow memory accesses to
DRAM to be interleaved, such that one port could be
loading its burst buffer, while another is utilizing the
DRAM bus. This interleaving technique can recover
DRAM bus throughput to 5.95 Gbit/s, or 75% of peak
throughput. Table 1 lists the different latencies observed
for the MPMC.

 In the following section we discuss the
implementation of an abstraction layer on top of MPMC to
make it extensible to arbitrary number of ports.

IV. EXTENSIBLE INTERFACE
An extensible interface to the DRAM memory controller

is required to support concurrent FSMs in the logic fabric.
An extensible DRAM interface should a) allow an arbitrary

number of threads of control to access DRAM, and b)
harness maximum throughput from the DRAM bus.

To gain a quantitative understanding of the trade-offs for
such a memory interface, we leverage the validated MPMC
as a building block for a memory interface. A fundamental
feature of our approach is to build layers of abstraction in
supporting a memory controller for external memory. For
example, the lowest layer supports a single channel DDR
DRAM controller that controls the physical interface to a
DDR DRAM memory. On top of this is the MPMC,
configured in our study to support two read-only and two
write-only ports. The significance of this configuration is
explained later in this section. With this configuration, the
interface is able to harness maximum throughput from the
single channel memory controller. However, to make it
easy for integration within the application domain, we
introduce a layer of abstraction that supports an arbitrary
number of input and output ports with an interface suitable
for networking applications.

One alternative approach is to build a single layer of
logic (single memory controller) that implements all three
layers of abstraction described above. Such an approach
might potentially have lower latency but will be difficult to
maintain, reuse, and adapt to different application domains.

Another alternative approach is to combine the top two
layers of abstraction, and have the application developer
design to the single channel controller. In such an
approach, the application developer losses a standard
memory interface, and must then explicitly manage burst
operations, and explicitly exploit concurrencies between
burst buffer load and physical interface access for multiple
independent memory accesses. We maintain that the
functions in MPMC best managed by memory experts, and
orthogonalized to application specific optimizations.

To support arbitrary numbers of ports in a memory
interface, a simple approach is to statically map each thread
of control to one of the four MPMC memory ports, such
that each MPMC port will service one fourth of the threads
of control. Such a topology requires less arbitration logic
per port, but has a severe throughput penalty: DRAM
accesses that are mapped onto one port are serialized. If
most of the active threads are mapped to one of the ports,

TABLE 1
DRAM BUS THROUGHPUT AND LATENCY

(interleaving
/sequential)

Read
(Cycles)

Write
(Cycles)

Total
(Cycles)

Throughput
(Gbit/sec)

Word
 (32 bits) 7 / 14 8 / 13 15 / 27 0.53 / 0.30

4-Word
(128 bits) 8 / 15 9 / 15 17 / 30 1.88 / 1.07

8-Word
(256 bits) 8 / 17 11 / 19 19 / 36 3.37 / 1.78

32-Word
(1024 bits) 20 / 29 23 / 44 43 / 73 5.95 / 3.51

the serialized accesses cannot be interleaved by the
MPMC, and the maximum achievable throughput will drop
dramatically.

An extensible approach is to use an arbiter to
dynamically arbitrate input requests onto the MPMC ports.
Facing the logic, there could be an arbitrary number of
control threads connected to the arbiter. Facing the
MPMC, the write requests are mapped to two of the
MPMC ports, and the read requests are mapped to the other
two MPMC ports.

The MPMC burst buffer access time is shorter than
DRAM access time for 32-word bursts. Two-stage
interleaving is enough to keep the DRAM bus maximally
utilized. With two ports for each type of accesses, one port
could be accessing the burst buffer, while another utilizes
the DRAM bus. This pipelining of accesses guarantee
interleaved memory access whenever two or more requests
are present.

The arbitration of FSM threads of control onto the
MPMC ports can be adapted for specific application
scenarios. Typical arbitration schemes found in networking
applications such as deficit round robin and weighted fair
queuing can be employed to optimize for particular
network traffic patterns. This flexibility in the arbitration
scheme only impacts the extensible layer component, not
the MPMC, nor the single channel memory controller.
Figure 2 illustrates the extensible approach we
implemented, contrasting it with the simple approach.
When utilizing future faster DRAM buses, burst buffer
accesses may take longer than the transmission of a burst of
data. For such external memories, more than two stages of
pipelining may be required to maximize utilization of the
DRAM bus. However, this will not affect the dedicated
single channel controller for the particular DRAM memory.

V. CASE STUDY: INTERNET PROTOCOL ROUTING
Applying the extensible DRAM interface to a

networking application, we chose the payload shunting
application in a gigabit Internet Protocol (IP) router to
stress test throughput of the memory sub-system.

In our case study we investigate the split header and
payload architecture. This approach enables higher
utilization of header processing logic. Figure 3 illustrates
this architecture for a two port IP router application, which
can be generalized to N ports.

In a router, packets from any input port must be able to
go to any output port. The obvious approach is to
implement a fully connected crossbar. However, this
approach is not scalable. For example, in a sixteen port
router, there needs to be 16x16=256 buses of N bits wide to
implement a fully connected crossbar. Such a routing
resource can significantly constrain implementation

alternatives; even in today’s rich FPGA interconnect fabric.
In addition, meeting timing can become a challenge due to
large routing overhead.

Using a memory as a bus-based crossbar mitigates this
routing problem. When a packet is written into a memory
location from one port, it can be read out to any other ports.
An additional port for the router only requires additional
routing to and from the memory port. This linear scaling of
the routing resources is much more manageable than the
quadratic scaling for a cross bar. With multi-gigabits per
second throughput on the memory bus, it is possible to
multiplex several concurrent streams of control on a
DRAM bus for sequential access to the DRAM memory.

A. Payload shunting using the extensible memory
interface
In the IP router application, external memory is used to

buffer in-flight packet payloads. The application constrains
packets from the same input port to be processed in order
of arrival. This implies FIFO-like behavior at the memory
interface. The FIFO queue abstraction has input data,
output data, and read/write controls. Memory addresses
have to be generated and managed by the interface to keep
track of locations of the payload packets. During each
routing operation, a piece of memory is allocated for a
packet, and the payload is written into the memory. The

Fig. 2. Simple approach (left) vs. extensible approach (right)

Fig. 3. Split header/payload processing

location and packet length are passed as descriptors to the
destination port to be queued and retrieved. The three main
memory allocation schemes that we considered are: global
queuing, input queuing, and output queuing. Output
queuing was selected as the method of implementation. We
discuss the memory allocation scheme further in the
following section.

1) Global FIFO Queuing: In global queuing, memory
addresses are allocated following the sequential ordering
from the header processor. Each payload is allocated a
consecutive memory block, and is followed immediately by
the next payload in the sequential ordering.

This memory allocation strategy is easy to compute. The
next payload starting address is the current payload starting
address plus current payload size. There is no gap between
payloads in memory, which allows maximum utilization of
available memory space. However, it suffers from the head
of line (HOL) problem. If the head of the FIFO is blocked
by resource contention on one output port, no other
elements in the queue can proceed before the blockage is
resolved. Figure 4 illustrates the HOL blocking case where
the second entry in the FIFO (labeled 1) is destined for
output port 1 but is blocked since the head of FIFO is
destined for output port 2 which is busy transmitting
another packet.

If we allow out-of-order processing of the FIFO queue,
memory could be freed out-of-order, leading to memory
fragmentation, which may imply complex garbage
collection routines requiring inappropriately large FPGA
resource usage.

2) Input FIFO Queuing: In input queuing, memory is
segmented into equal partitions dedicated to each input
port. Memory addresses are allocated consecutively
following the sequential ordering of each input. The
payload starting address is computed per input port.

Memory is less efficiently utilized as packets may be
dropped when there is still free memory space. Packets at
an input may be dropped when its own input queue is full
while other input queues may still have space. The HOL
blocking problem still exists, but is less serious in the
average case. There are many heads of queue to route
from, so the HOL problem affects each input separately.
Figure 4 illustrates the HOL blocking case for input
queuing. The left-most input queue has an entry (packet)
destined for output port 0. But it is blocked by the head of
FIFO entry that is destined for output port 2 which is busy
transmitting.

Attempting to free memory out-of-order would be more
complex because there is more than one queue to maintain.

3) Output FIFO Queuing: In output queuing, memory is
segmented into equal partitions dedicated for each output
port. The destination port is known before the payload is
written to memory. In other words, packet payloads are
stored into memory in the order they become free. This

completely resolves the HOL blocking problem and no
memory fragmentation will occur. Figure 4 illustrates the
output queuing scheme.

Memory utilization efficiency is the same as input FIFO
queuing, and not as efficient as global FIFO queuing.
Header IP lookup must precede memory allocation which,
depending on implementation, may delay the write to the
memory and increase the input queue size requirement.

In traditional output queuing systems, the output queue
must have r-speedup (r times as fast as line-rate), as
multiple input ports can be writing to the same output
queue concurrently. In the memory-based cross bar
architecture, the requirement is naturally satisfied, as
multiple input ports can interleave writes to distinct
memory addresses in a single output queue partition.

Output queuing was selected here for its straightforward
implementation of memory allocation and freeing schemes.
It trades additional latency in allocating memory for ease of
memory freeing.

B. Experiments
A two port router was implemented, with payloads being

shunted to off-chip DRAM. It was also extended to a four
port router version to illustrate the effect of scaling.

The implemented routers have the same top-level
architecture. Packets come into the fabric through Gigabit
Medium Access Control (GMAC) ports. Each GMAC is a
port of the router that has separate gigabit transmit and
receive channels. For the receive channel, each port has a
packet splitter module that separates the packet header
from the payload. The headers are directed to one shared
header processing unit, and the payloads are shunted to the
shared payload processing unit, with dedicated queues for
each GMAC. The header processing unit does IP address
lookup, and indicates to the payload processing unit to
which destination port the payload should be routed.
Based on the destination port, the payload processing unit
computes an address in the memory partition of the
destination output queue in DRAM. An FSM is then
invoked to write the payload to this address. The
descriptor containing this address is passed to the
destination port descriptor queue. The output descriptor

Fig. 4. Global, input and output queuing schemes

queue is drained by an output port FSM which retrieves the
payload from DRAM, through MPMC, into the output
payload buffers. The packet reconstructor modules then
unite the payloads with their respective headers, and the
reconstructed packets are sent out by the GMACs on the
transmit channel. The GMAC has a physical layer facing
the FPGA I/Os and a logic side facing the packet splitters
and reconstructors.

Header processing is not the emphasis of this study, so
static IP address lookup sufficed in the current
implementation. Since the payloads are written to memory
in 32-word bursts, it takes 128 cycles to accumulate
enough data for a burst. Header processing can use this
time to implement these approaches as alternatives without
affecting performance.1 The header processing can easily
be shared among all inputs by pipelining the lookups.
Investigation of DRAM-based lookup remains an active
research topic.

In payload handling, a packet is first buffered in the
input FIFO queues implemented with on-chip Block RAM
(BRAM). Once the memory destination address is known,
data in the input FIFO queue is written to external memory
one full burst at a time.

Each input port has an FSM producing control sequences
for the MPMC port. The input arbiter arbitrates between all
ready input FSMs. Access to the MPMC is granted by
providing a communication channel from an input FSM to
a MPMC port. By having an FSM for each input port, we
are able to interleave burst controls from multiple input
ports at the granularity of a single burst length.

C. Results for the extensible interface
The designs were targeted at the Xilinx Virtex-II Pro

series FPGAs, and specifically implemented on a
XC2VP30 device. The main timing constraint of 125MHz
was met after placement and routing. The designs were
verified in RTL simulation and the numbers measured and
reported here are from RTL simulation using sample
network traffic patterns of a mix of three packet sizes:
small, medium, and large, containing one, five and fourteen
32-word burst length of payload respectively. To maximize
throughput on the DRAM memory bus, the design
exclusively uses 32-word bursts. Sub-burst length payload
is not handled in this implementation, although multiple
payloads could be concatenated into one burst, requiring
additional control logic to maintain the payload descriptor.

Throughput was measured by recording the time spent
on the memory bus over 100 burst accesses. Since the
router is designed to harness maximum throughput on the
DRAM bus, throughput on this bus determines the possible
throughput of the system.

1 Recent works [1], [9], in IPv4 forwarding on FPGA achieve 224-
673ns address lookup time for table sizes of up to 10,000 entries, which is
equivalent to 28-84 cycles at 125MHz.

Latencies were measured assuming a store-and-forward
scenario, starting on the cycle when the entire packet
arrives at an input, and ending on the cycle the packet starts
transmission at an output. There are best case and worst
case latencies due to the contention of multiple control
streams at different points in the architecture.

Table 2 shows the design statistics for the two and four
port routers. We observe that the two-port router is able to
achieve a DRAM bus throughput of 1.94 Gbit/s, whereas
the four-port router is DRAM limited in terms of
throughput to 2.91 Gbit/s (read and write), or 5.82 Gbit/s
DRAM bus throughput, 98.5% of the limit derived from
MPMC characterization. The maximum two-port memory
bus throughput is necessarily less than 2 Gbit/s because
only packet payloads pass through the DRAM bus.

The two port router used 6817 slices and the four port
router used 12629 slices. Other than the
MPMC, which synthesizes to 1318 slices, all logic
resources are doubled as we scale from two ports to four
ports. The observed increase in area usage confirms that
logic resource usage scales linearly. Note however that the
implementations were not optimized for area.

1) MPMC latency analysis: The majority of the latency
experienced by a packet in this router is before various
arbiters. There are five points of arbitration in this router,
listed in Table 3. The best case shows shortest latency
measured from RTL simulation waveforms. Worst case
latency shows longest latencies measured, which include
contention at the points of arbitration.

The goal of the example is to stress test the memory sub-
system, so a simple internal routing scheme sufficed. As
discussed in Section 5.2, there is a 128-cycle period after
the header is received to accumulate enough data for the
first burst access. The header processing unit can utilize
this time to work on a variety of lookup approaches before
the first data burst has to be directed to its memory
location. The header processing arbitration (1) has
negligible latency. The input payload and output payload
arbitration delays (2,5) vary dramatically between the best
and worst case. The worst case occurs when a burst
becomes ready just after its turn at the arbiter. Since four
input/output streams are contending for two write/read
ports, the latency is approximately two times the worst case

TABLE 2
RESULTS FOR THE EXTENSIBLE INTERFACE

 2-Port Router 4-Port Router

 Throughput (Gbit/s) 1.94 2.91

 Area (slices) 6817 12629

 Best case latency (cycles) 87 93

 Worst case latency (cycles) 301* 722*

 * computed assuming all stages of arbitration hit worst case

latency of write/read. The best cases for write and read
DRAM bus arbitration delay (3,4) are the same as those
measured for a single burst. The worst case latency for
write and read DRAM bus arbitration however is close to
the theoretical latency for four (32-word burst) accesses,
where a write/read just misses one round of arbitration, and
has to wait for the other three ports to complete before
proceeding. The overall latency of one burst comprises the
total latency a packet experiences from input port to the
output port.

In the next section, we investigate and analyze latency
reduction techniques that enable reduction in latency to
provide a graceful degradation for the worst case as well as
improve the average latency for the whole system.

VI. LATENCY REDUCTION TECHNIQUES
Given the many sources of latencies, we propose some

latency reduction techniques for latency sensitive packets.
We define latency sensitive packets to be those packets
that, when routed with shorter latencies, will increase the
overall throughput. Specifically, these are packets whose
destination port is idling. Reducing the latency of these
packets will reduce idle time of the router as a system, thus
increasing throughput.

There are two techniques that, applied together, create a
solution for the latency problem. The first technique is to
create a set of four forwarding paths at the MPMC level.
Recall that the base MPMC version we use has two input
and two output ports. Input data could be directly sent to
output port, bypassing contention on the DRAM bus. Note
that these are forwarding paths within the MPMC. Thus the
overhead of implementing a fully connected internal path
to MPMC is much less than a fully connected cross bar for
applications with larger port count. This structure can
support arbitrary number of input and output ports on the
extensible interface. Figure 5 presents a pictorial

representation of these bypasses.
In activating the forwarding path, the sequential order of

packets in the output port should be conserved. The
forwarding paths are used when the corresponding output
queue in the DRAM is empty, where in the absence of the
forwarding path, the data has to be written into the DRAM
and immediately read out again. The forwarding path
reduces the latency to move the data from input port to
output port, and conserves DRAM bus time slots. For
example, in the above-described 32-word burst case, the
forwarding path reduces the 70 to 268 cycle latency (write
+ read) down to 16 cycles. This approach succeeds at
alleviating the contention for the DRAM bus.

However, there remain latencies at the input and output
arbiters. With the fast forwarding paths available, there
now exist two ways to transfer data from input to output:
one writes through the DRAM, and the other bypasses the
DRAM.

The main extension here is to allow the input and output
arbiters in the extensible interface to prioritize for latency
sensitive packets in resolving contentions for gaining
access to MPMC port. For scheduling input and output port
access, there is a wide range of scheduling algorithms to
experiment with: weighted round robin, deficit round robin,
weighted fair queuing, etc. In this work we use a non-
preemptive round robin scheduling algorithm.

In setting up a fast forwarding operation, the input
arbiter needs to a) recognize an empty output queue in
memory, and b) wait to synchronize with the output arbiter
to transfer the data on the forwarding path. Synchronizing
with the output arbiter under-utilizes the input arbiter, and
may degrade total throughput. We monitor the queues at
the output ports for presence or absence of packets. Based
on this information, payloads are routed either through the
DRAM memory or using the forwarding paths within the
MPMC, bypassing the DRAM memory.

The second technique is to insert a FIFO buffer for a
single burst in the forwarding path. The input arbiter is
only required to recognize an empty output queue in
memory and deposit a burst of data in the buffer for that
port. If the output arbiter is busy with other read
operations, it can get to the buffered data at the next
arbitration opportunity. Since the buffer is a FIFO, the
write and read operations can overlap without undesirable
side effects. The buffers in Figure 5 represent the above
described buffers in the bypass path.

A. Analysis of Latency Reduction Techniques
The bypass path provides a high throughput, low latency

alternative compared to accesses through the DRAM.
However, it is only activated under particular conditions.
For certain traffic patterns, all packets may be able to flow
through the bypass path. For some other traffic patterns, the

TABLE III
MEASURED LATENCY (4-PORT ROUTER)

 Best Case
(cycles)

Worst Case
(cycles)

1. Header processing arbitration 2 18

2. Input payload arbitration 2 248

3. Write DRAM bus arbitration 43 135

4. Read DRAM bus arbitration 27 133

5. Output payload arbitration 3 172

Other FSM handshake delays 16 16

Overall latency for one burst 93 722*

 * computed assuming all stages of arbitration hit worst case)

bypass path may not be used at steady state.
The bypass paths consist of two 64-bit channels that

support concurrent read and write. At a 125MHz clock
rate, this provides a raw throughput of 16 Gbit/s. Our
implementation uses the fast bypass channels when the
limited on-chip output queues are sufficient. When the on-
chip output queue is exhausted, to avoid HOL blocking
(when packets on all input ports are destined to the same
output port), the remaining payload is shunted to output
queues implemented in off-chip DRAM. The on-chip
output queue has 4Kb storage per output port, which holds
two to three large-sized standard Ethernet packets (not
jumbo grams). The queues are easily exceeded in normal
traffic when multiple packets from different sources are
destined for the same output port.

As packets are shunted to the DRAM, total throughput
over the DRAM bus peaks at 2.9 Gb/s. This may seem to
be a sub-optimal steady-state solution where all packets
pass through the DRAM interface. However, the output
queues are draining at 4 Gb/s. Our system level goal is to
increase throughput and reduce idle time at the output
ports. We can bias the arbiters of the MPMC to favor pop
(read) more than push (write). This way, output queues in
the off-chip memory are drained faster than they are filled.
Once an output queue in off-chip memory is empty, the
bypass path can be utilized again.

We showed that, at steady-state, the bypass paths will
contribute positively to the throughput of the router. The
total throughput of the four port router stays between
2.9 Gb/s and 4 Gb/s depending on traffic patterns. The
latency reduction techniques allow the peak throughput of
4Gb/s. The DRAM interface provides graceful degradation
for system throughput down to a minimum of 2.9 Gb/s.

With bypass paths in the latency reduction techniques,
we reduced latency from a best case of 70 cycles to as little
as 16 cycles, and gained additional throughput in the
memory interface. Note that the bypass only affects latency
due to write and read DRAM bus arbitration delays (e.g.
for the four port router, rows 3 and 4 from Table 3).
Prioritizing latency sensitive packets in resolving
contentions in input and output arbiter help reduce wait
time at row 2 and 5. We emphasize again that the latency

reduction here is mainly enabling the additional throughput
we are able to achieve and provides a graceful degradation
for the worst case scenario.

VII. CONCLUSIONS AND FUTURE WORK
In this paper we have studied issues in building a

flexible and scalable interface for external memory
controllers in an application domain. We have implemented
an interface that builds layers of abstraction starting from a
single channel memory controller to an arbitrary ported
memory interface. We have presented latency numbers at
various stages of the DRAM access pipeline based on our
IP routing application. We have presented latency
reduction techniques that provide a graceful degradation
for worst case scenarios. Lastly, we believe that such
extensible interfaces are critical to enabling deployment of
component based domain specific languages such as Click.
This remains a topic of current research.

REFERENCE
[1] C. Kulkarni, G. Brebner, et. al., “Mapping a domain specific

language to a platform FPGA,” in Proc. of Design Automation
Conference (DAC 2004), San Diego, CA, 2004.

[2] S.A.McKee, W.A. Wulf, et. al., “Dynamic access orderings for
streamed computations,” in Proc. of IEEE transactions on computers,
Vol. 49, Nov 2000.

[3] S. Rixner, W.J. Dally, et. al., “Memory access scheduling,” in Proc.
of International Symposium on Computer Architecture (ISCA 2000),
June 2000.

[4] J. B. Carter, W. Hsieh, et. al., “Impulse: Building a smarter memory
controller,” in Proc. of IEEE Symposium on High Performance
Computer Architecture (HPCA-5), January 1999.

[5] Xilinx memory corner, http://www.xilinx.com/products/
design_resources/mem_corner/resource/xaw_dram_ddr.htm.

[6] J. Park, P. Diniz, “Synthesis of memory access controller for
streamed data applications for FPGA-based computing engines,” In
Proc. of International Symposium on System Synthesis (ISSS'2001),
Oct. 2001, pp. 221-226.

[7] S. Iyer, N. McKeown, “Analysis of the parallel packet switch
architecture,” in IEEE Transactions on Networking, Vol. 11, No. 2,
April 2003.

[8] Xilinx application note, “Multi-port memory controller,” No. 535,
Version 1.1, 2004. (available online)

[9] A. Mihal, K. Keutzer, “A Processing Element and Programming
Methodology for Click Elements,” Workshop on Application
Specific Processors, 10-17, September, 2005.

[10] T. Sherwood , G. Varghese, et. al., “A pipelined memory architecture
for high throughput network processors,” in Proc. of International
Symposium on Computer Architecture (ISCA 2003), June 2003.

[11] J. Hasan, S. Chandra, et. al., “Efficient use of memory bandwidth to
improve network processor throughput,” In Proc. of International
Symposium on Computer Architecture (ISCA 2003), June 2003

Fig. 5. Latency reduction technique

