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Abstract. Traditional hardware error detection methods based on linear codes 
make assumptions about the typical or expected errors and faults and concen-
trate the detection power towards the expected errors and faults.  These tradi-
tional methods are not optimal for the protection of hardware implementations 
of cryptographic hardware against fault attacks.  An adversary performing a 
fault-based attack can be unpredictable and exploit weaknesses in the tradi-
tional implementations. To detect these attacks where no assumptions about 
expected error or fault distributions should be made we propose and motivate 
an architecture based on robust nonlinear systematic (n,k)-error-detecting 
codes.  These code can provide uniform error detecting coverage independently 
of the error distributions.  They make no assumptions about what faults or er-
rors will be injected by an attacker and have fewer undetectable errors than lin-
ear codes with the same (n,k).  We also present optimization approaches which 
provide for a tradeoff between the levels of robustness and required overhead 
for hardware implementations. 

1   Introduction 

Hardware implementations of cryptographic algorithms are vulnerable to malicious 
analyses that exploit the physical properties of the designs.  These attacks which 
exploit the implementation specific weaknesses are known as Side-Channel Attacks 
(SCA).  Information derived from the power consumption, electro-magnetic radia-
tion, execution time, and behavior in the presence of faults of a device can all be used 
to drastically decrease the complexity of cryptanalysis.  Mobile cryptographic devices 
such as smartcards and mobile computers are especially vulnerable since the physical 
hardware implementing the algorithms, and hence the side-channel information, is 
easily accessible. 

The side-channel attacks of interest to this paper are Differential Fault Analysis 
(DFA) attacks.  DFA attacks use the information obtained from an incorrectly func-
tioning implementation of an algorithm to derive the secret information.  DFA attacks 
were first proposed by Biham et al. [1] against hardware implementations of the Data 
Encryption Standard (DES).  They have since been extended to other symmetric key 
algorithms, such as the Advanced Encryption Standard (AES) in [5-9].  



Incorrect operation can result from faults within the circuit (permanent or tran-
sient) which may be due to natural effects or be maliciously induced. Faults can be 
injected into a circuit even in the presence of tamper resistant packaging by introduc-
ing the device to elevated levels of radiation or temperature, atypical clock rate, or 
incorrect voltage [3].   

Current DFA protection methods for symmetric ciphers based on error-detecting 
codes use linear codes such as parity or repetition codes (e.g. duplication).  These 
linear methods provide for good overall coverage but their error detecting capabilities 
depend on error distributions.  The protection they provide is not uniform against all 
errors.  Linear codes have areas of poor error coverage which can be exploited by an 
attacker regardless of how good the overall average protection is.  In this paper we 
demonstrate a method of transforming from protection based on linear codes to pro-
tection based on non-linear robust codes which provide for more uniform error-
detection coverage. This results in a drastic reduction of a number of undetected 
faults which can be exploited by an attacker.  We also present optimization methods 
for design of robust smart cards which provide for a tradeoff between levels of ro-
bustness (uniformity of error coverage) and hardware overheads.   

2   Current Protection Methods for Symmetric Ciphers 

Several methods and architectures have been proposed for protecting symmetric key 
ciphers like AES against DFA attacks.  These methods range in their granularity, 
protection they provide, and the overhead they require.  One method proposed by 
several groups is based on linear error-detecting codes [11-12].  Hardware redun-
dancy is added to the circuit to concurrently predict and verify a signature of the 
device.  Usually very simple linear codes such as parity or duplication are used.   The 
second method [10] exploits the symmetry and reversibility of private key algorithms.    
The method performs the encryption (or decryption) operations followed by their 
inverse decryption (or encryption).  If no error was present in the operation, then 
performing the inverse operation should lead to the original data.  The inverse and 
comparison can be performed on various granularities.  This method usually requires 
large temporal overhead, since the inverse operation cannot be performed before the 
original computation is performed, or large hardware overhead to facilitate the verifi-
cation on a finer granularity.   The solutions based on linear codes can have smaller 
overheads but are efficient only if the errors are within the given distribution for 
which the codes were designed. We note that several recently published DFA attacks 
[5-9] require very few faults to be injected. 

3   Attack Model 

Attackers inject faults and observe errors which are manifestations of the faults at the 
output.  In general, a fault produces useful information for analysis for a symmetric 
cipher only if an erroneous output can be observed by the attacker.  The erroneous 



output is the expected output distorted by some error e ( e x x= ⊕ %  , where x  is the 
expected output and x%  is the observed distorted output, and ⊕  stands for compo-
nentwise XOR of binary vectors).  In this model, detection and prevention of a fault 
attack is equivalent to determining if the output is distorted by an error (error detec-
tion) and suppressing the output to prevent analysis.  Multiple faults have to be in-
jected and observed for successful cryptanalysis so it is important to have the highest 
protection possible to detect the attack before it is successful and disable the device. 

We do not limit the analysis to any method of fault injection but assume that tam-
per proof packaging is used so that the attacker does not have direct access to the chip 
surface.  We assume that the attacker cannot precisely control the location of the 
injected faults and so the locations of the actual faults are randomly distributed within 
some given area of the chip.  We assume that it is realistic for the attacker to have 
control over the multiplicity (number) of faults introduced.  The multiplicity of faults 
can be controlled by manipulating the fault injection mechanisms such as the level of 
radiation, temperature, etc.   

4   Limitations of Methods Based on Linear Error-Detecting Codes 

Protection methods based on linear error-detecting codes do not provide for uniform 
level of protection against all possible faults but rather concentrate on a certain sub-
class of the possible faults.  One of the most important criteria for evaluating the 
effectiveness of a protection method is not to consider the overall average protection 
the method provides, but rather focus on the size and type of the security holes which 
exist.   

The three main criteria that are important for evaluating the effectiveness and prac-
ticality of a protection scheme are: 

 
1. The number of undetectable output distortions or output errors 
2. The maximum probability of missing an error or class of errors 
3. Spatial and temporal overhead 
 
Methods based on linear error-detecting codes do not provide optimum solutions 

with respect to the above criteria. For example, consider protection based on duplica-
tion where the hardware is doubled and the outputs of both copies are compared.  If 
the copies match, then no error was assumed to have occurred.  If an error affects an 
odd number of bits per a ( ,n k r k r= + = )-bit codeword (where k=number of in-
formation bits, r=number of redundant bits), then this protection scheme can detect 
those errors, and hence prevent an attack, 100% percent of the time.  However, when 
errors are of an even multiplicity it is possible that the error will distort both copies in 
the same manner thus making the error undetectable. As an example, Figure 1 shows 
the percent of detectable errors as a function of error multiplicity (number of distorted 
bits) for 7-bit duplication (k=r=7).   
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Fig. 1.  Percent of errors detected for 7 bit linear duplication (k=r=7).

 
Duplication is not robust; its detection capability depends largely on the multiplic-

ity and type of the error.  The scheme offers relatively poor protection for errors of 
even multiplicities. Although the overall probability of injecting an undetectable error 
(assuming all errors are equally likely) is 2 r− , which for the k=r=7 linear duplication 
example is , it is deceiving to imply that the method provides for this 
level of protection. In addition to the overall average protection it is important to note 
the class of errors with the weakest protection level.  As shown in Figure 1, for errors 
with multiplicity 2, the probability of successfully injecting an undetectable error 
increases by an order of magnitude.  

72 0.78− = %

The above limitations shown for duplication are present in any protection scheme 
based on linear error-detecting codes.  The classes of errors with lower probabilities 
of detection can serve as weak points for attack, regardless of how good the overall 
protection is.   

The protection method proposed in this paper minimizes the size and weakness of 
the least protected areas under given limitations imposed by overheads.  We propose 
a protection method based on a class of nonlinear systematic error-detecting codes 
called robust codes.  Robust nonsystematic codes which provide equal probabilities 
of detection for all error distributions were presented in [15-16].  The methods in this 
paper are based on systematic robust nonlinear error detecting codes which are simi-
lar to those described in [4],[13].  We present a new construction of these codes 
which uses a multiplicative inverse as the nonlinear transformation.  A method of 
reducing the hardware overhead while preserving much of the robustness is also pre-
sented.   

These nonlinear codes are robust in terms of having the capability of providing 
equal protection against all errors.  That is, for a completely robust code C the prob-
ability of missing an error e should be constant independently of an error, i.e. ( )Q e

| { | , } |
( ) Constant,  0

| |
w w C w e C

Q e e
C

∈ ⊕ ∈
= = ≠

nw e GF∈ (2 )nF⊆ |

. (1) 

Where , C G , |  is the number of codewords of the code. , (2 ) C
     Additionally, these codes for the same n and k have fewer undetectable errors than 
their linear counterparts.  As we will see in the next section, for a systematic nonlin-



ear (n,k) robust code the number of undetectable errors is 2k r−  versus  for a linear 
code with the same length n and same number of redundant bits r.  The construction 
and details of these robust codes are discussed in the next section.   

2k

5   Systematic Robust Codes 

The binary robust codes presented in [4] were constructed using a cubic signature.  In 
this paper we use inversion (multiplicative inverse in the field) as the nonlinear trans-
formations for the signature.  The same robust properties observed with the cubic are 
also observed with the robust codes which use inversion: data dependent error detec-
tion, reduction of the number of undetectable errors, and uniform distribution of the 
error-detecting power. 

We will present now a formal description of these codes. 
Let V be a binary linear (n,k) – code with 2n k≤  and check matrix [ ]|H P I=  

with  over .   Code V  can be made into a nonlinear 

systematic robust code  by taking the multiplicative inverse in  of the r 
redundant bits: 

( )rank P n k r= − = (2)GF

VC (2 )rGF

1{( , ) | (2 ), ( ) (2 )}k
VC x v x GF v Px GF−= ∈ = ∈ r

))r

 (2) 

where is defined to be 0 . 10−

For the code , error  is not detected for data 

 iff 
VC ( (2 ), (2k

x ve e GF e GF= ∈ ∈
1( , ( ) )x Px −

1 1( ( )) ( )x vP x e Px e− −⊕ = ⊕  (3) 

For linear codes an error is either always missed or never missed ( ( , 
regardless of data to which the error occurred, and error detection depends only on 
the error pattern. For these nonlinear codes detection of errors depends not only on 
the error, as shown in (3), but also on the data to which the error occurred. For these 
robust codes there are additional classes of errors which are conditionally detected.  
There is also a redistribution of errors among the new classes of errors.   

) {0,1})Q e ∈

Table 1 summarizes this redistribution for nonlinear robust codes, , when the 
data is assumed to be uniformly distributed.  The redistribution differs depending on 
the number of redundant bits r.  If the code has a signature where the multiplicative 
inverse is over  where r is odd and , then there are 3 different classes 
of errors, identical to the nonlinear robust codes based on a cubic signature presented 
in [4].  When r is even and , there is an additional class of errors which are 
detected with probability

VC

(2 )rGF 2r >

2r >
21 2 r− +− . 



As Table 1 shows, one very desirable consequence of the addition of inversion to 
create a robust code is the reduction in the number of undetectable errors.   The num-
ber of undetectable errors is reduced from  to .  When k=r, all nonzero errors 
are detectable. 

k2 rk−2

 

Table 1. Redistribution of errors among the three classes for a linear and a robust code

 Number of errors  

detected with 
probability of 

Linear Robust with inver-
sion (r is odd) 

Robust with inversion (r is 
even) 

0 k2  2k r−  2k r−  
1 2 2n k−

 
1 12 2 2n k k r− − −+ − 1 12 2 2 2 2n k k r k k r

 

− − − −+ − + −
 

11 2 r− +−  0 1 12 2n k− −−  
1 12 2 2(2 2n k k k− − −− − − )r  

21 2 r− +−  0 0 2 2k k r−−  
 

The codes described above are capable of providing almost uniform error detection 
coverage for all errors.  For example, if instead of performing simple duplication, the 
redundant bits are the multiplicative inverse (in GF ) of the k-information bits, 
the detection profile is much more uniform.  In contrast to Figure 1, Figure 2.a shows 
the k=r=7 robust du on (codewords are in the form

(2 )r

( )1 7, , (2x x x GF− ∈

M=3 

plicati ) ).  

The error detection is much more uniform independently o ype of error that is 
injected.  This kind of error profile is more desirable for sec pplications, since it 
provides equal protection regardless of what type of errors are injected.    

M=1 
f the t
urity aM=2 
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Fig. 2. Robust Duplication where k=r=7 a. detection for M=1, b. M=2 and M=3. 

Additionally, as Table 1 shows, for the robust codes there is a class of errors which 
are conditionally detected.  That is, for these errors their detection depends on the 
data to which the error occurred, and each error in this class is missed for   or 

 messages.  Unlike in the linear case where all errors are either always detected 
or always missed regardless of the message, the detection of these errors for robust 

12k r− +

22k r− +



codes is data dependent.  If an error of this class is missed for one message, there is a 
very high probability that it will be detected by the next message.  For example, for 
the robust duplication for any k=r, where r is odd, there are at most two messages for 
which an error is missed.  So if the same error is present for three different messages, 
the error is guaranteed to be detected, regardless of what the error is.  More precisely, 
if k=r and all messages are different, then: 

  1max ( ) 2 rQ e − +=   after M=1 message 

  max ( ) 2 rQ e −=     after M=2 messages 
         after M=3 messages max ( ) 0Q e =
Figure 2.b shows the increased probability of detecting an error after M=2 and 

M=3 messages for the robust duplication where k=r=7.   
For the case k=r these systematic robust codes are optimum in terms of providing 

uniform level of protection against all errors [4]. We note that for any linear code 
there are always undetectable errors, so max ( ) 1Q e =   regardless for how many 
messages the error is present.  

6   General Architecture 

The method of transforming protection based on a linear code to a more robust pro-
tection based on the systematic robust codes involves slight modification of the gen-
eral linear error-detection architecture.   

The general architecture used for protection with linear codes is presented in Fig-
ure 3.  The architecture is composed of three major hardware components: original 
hardware, redundant hardware for predicting the r-bit signature v (which is a linear 
combination of components of the output x of the original device), and an error-
detecting network (EDN).   

The signature predictor contains the majority of the redundant hardware.  The k 
bits of output of the original hardware and the r redundant output bits of the signature 
predictor form the n=k+r extended output of the device.  The extended output forms 
a codeword of the systematic (n,k) error-detecting code which can be used to detect 
errors in the original hardware or in the Predictor.  It is the EDN which verifies, that 
the extended output of the device belongs to the corresponding code V, if it does not 
then the EDN raises an error signal.  In a linear protection scheme the predicted r-bit 
signature v of the Predictor is a linear combination of the k-bit output of the original 
device. ( , where  is a v Px= P (r n)× - check matrix for the linear (n,k) code V  used 
for protection) 
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Fig. 3. General architecture for protection of hardware with error-detecting codes. 

With only a slight modification, the same architecture used for protection with lin-
ear error-detecting codes, can be used to provide protection based on the robust sys-
tematic nonlinear error-detecting codes presented earlier.  The transformation only 
requires an addition of two copies of one extra component for multiplicative inverse 
in .   (2 )rGF
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Fig. 4.  Architecture for protection of hardware with robust error-detecting codes. 

The modified architecture is shown in Figure 4. The Extended Output of the device 
is now protected with the robust nonlinear code with the properties outlined above.  
An additional (and identical) multiplicative inverse is also needed in the EDN to 
verify the nonlinear signature.  This transformation can be applied to any linear pro-
tection method regardless of what algorithm it is protecting. 



7   Architectural Optimizations 

The method for modifying an architecture based on linear codes into a robust archi-
tecture codes requires an overhead for computation of inverses in  , which is 

of the order .   

(2 )rGF
2( )O r

Since large r may be necessary to provide for a sufficiently high error-detecting 
probability the use of one large device which takes the multiplicative inverse of all of 
the r-redundant bits might not be practical.  Transforming an implementation pro-
tected by a linear code with r=32 into a robust systematic code would require several 
thousands additional 2-input gates.   
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Fig. 5. Optimized architecture, the multiplicative inverse in split into t=2 separate modules. 

It is possible to tradeoff the level of robustness for the amount of hardware over-
head required to transform linear protection to protection based on systematic robust 
codes.  Instead of taking one multiplicative inverse for all r-bit vectors, it is possible 
to divide the one large inversion into disjoint smaller inversions while retaining many 
of the robust properties outlined earlier.  That is, we can replace multiplicative in-

verse in  by t -bit disjoint inverses in (2 )rGF s (2 )
r
tGF  to produce the nonlinear r 

bit output ( r ts= ).  Thus, instead of having two r-bit multiplicative inverses in 

for the whole design, there could be 2t  inverses in (2 )rGF (2 )
r
tGF  as it is pre-

sented  in Figure 5 for t=2.  Since the number of two input gates to implement the 
inverse is proportional to the square of the number of bits at its input, a modification 
where t=2 would result in roughly 50% decrease of an overhead associated with the 
architecture based on robust codes.  As a consequence this also results in a slight 



decrease in the level of robustness and an in introduction of errors which are detected 
with different probabilities. 

The division of the nonlinear signature results in the creation of additional classes 
of errors which detected with different probabilities depending on the number of 
divided signatures they affect.  To account for this division Table 1 has to be ex-
tended.  Table 2 shows the redistribution of errors among the additional classes for t 
s-bit signatures if r is odd, a very similar table can be constructed for the case when r 
is even.  

Table 2. Redistribution of errors as function of the number of blocks t of the signature when r 
is odd  

Number of errors missed with probability p 

#of 
blocks 

p=1 
(unde-

tectable) 

p=0  
(always detected) p= 12 s− +  p= 2( 1)2 s− +  p=  ( 1)2 i s− +

Linear  2k  2 2k r k+ −   0 0 0 

1t =   
(robust) 

1N  2N  3N  0 0 

2
rt <  

(robust) 

1( )tN  
2 2(2 )

t
i s t it

N N
i1i

2 2
3 1( ) ( )

2
tt

N N−

=

2(2 ) (2 )

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑

s t s tN= − −

1
3 1( )ttN N

 

−

 
−⎛ ⎞

⎜ ⎟
⎝ ⎠

3 1( ) ( )i t it
N N

i
−⎛ ⎞

⎜ ⎟
⎝ ⎠

  

2
rt ≥  

2k  2 2k r k+ −  0 0 0 

where 1 2
k s
tN
−

= ,
1 1

2 2 2 2
k r k k s

t t tN
+

− − −
= + − , 

1 1

3 2 2
k r k

t tN
+

− −
= −  

 
The splitting of the signature has several effects.  Depending on the number of 

blocks, t, there is a redistribution of errors and a difference in the level of robustness.  
The maximum robustness is achieved with no divisions when t=1.  With an increas-
ing number of blocks the robustness of the resulting code is reduced.  As the number 
of blocks, t, increases, the number of undetectable errors increases exponentially.  
Likewise, the number of classes of errors increases linearly as t increases.   

Figure 6 demonstrates the increase of robustness, or uniformity of error coverage, 
as the number of blocks in a r-bit signature decreases for duplication where k=r=8.  
The level of robustness, or uniformity of error detection, increases as the number of 
signature divisions t decreases providing a tradeoff between overhead and robustness.    
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Fig 6.  The effect of splitting the r-bit signature into t disjoint inverses on robustness where 

k=r=8. 

8   Conclusions 

The protection provided by linear error detecting codes is not uniform and is not 
suitable for cryptographic hardware which is susceptible to fault attacks.  The level of 
protection they provide depends largely on the type of error that is considered.    We 
presented a method of protection based on nonlinear systematic robust codes which 
can provide for uniform protection against all errors thus drastically reducing the 
probability that an attacker will be able to inject an undetected error.  We also pre-
sented an optimization which allows for a tradeoff between the level of robustness 
and area overhead.   

The construction of the presented robust codes was based on the use of a multipli-
cative inverse as the nonlinear transformation.  The multiplicative inverse is a build-
ing block of the Sbox of the Advanced Encryption Standard.  This inverse based 
construction of the codes might be useful in further reduction of overhead if the in-
version hardware in AES can be used to produce the nonlinear signature.   
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