
Using Petri Nets to Introduce Operating System Concepts

John M. Jeffrey

Department of Computer Science and Information Systems

Elmhurst College

Elmhurst, IL 60126

Abstract

Graph-theoretical tools, algorithm animation, and other re-

lated visual-aids have proven very useful in computer- science

pedagogy. In this paper the use of the graphical aspects of

Petri net theory as a tool to introduce operating system con-

cepts is given. It is shown how a minimal amount of Petri

net theory cara be applied to problems often discussed in an

operating systems course. Examples of models for the con-

cept of deadlocks, for the deadlock detection algorithm, and

the fork/’oin and parbegin/parend concurrency constructs

are shown, In addition, discussion of how Petri net models

are utilized to introduce Ada rendezvous solutions of classic

problems, such as producer/consumer with a ring-buffer, is

given.

1 Introduction

Numerous graph-oriented models have proven very useful as

pedagogical tools for teaching operating system concepts.

For example, precedence, process, and resource allocation

graphs are utilized by several operating system textbook au-

thors to illustrate relevant concepts and issues [3,5,7,13,16].

However, graph-oriented models are not generally utilized

to visualize the dynamics associated with concepts in con-

currency and related problems often presented in an oper-

ating systems course. A model that also has a dynamic

component can enhance the understanding these problems.

This has been demonstrated in recent years through soft-

ware projects developed to show program animation of con-

current pro cessing problems [17] or visualize the information

flow in an operating system [1]. In this paper, an argument

is made for incorporating the graphical aspects of Petri nets

as a lecture and textbook tool for introducing operating sys-

tem concepts. Although this paper does not focus on utiliz-

ing soft ware for Petri net editing, simulation, and analysis,

very sophisticated systems are available [18].

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
@ 1991 ACM ()+9791-377.9/91 /rJOr32.r3324... $J .5(3

A Petri net is a graphical and mathematical tool for mod-

eling information systems that are considered to be nonde-

terministic, concurrent, parallel, asynchronous, distributed,

and/or stochastic [8,12]. As a graphical tool it provides stu-

dents with a visualization of concepts and issues typically

discussed in an operating systems course. Petri nets include

tokens to represent the nondeterministic evolution of a sys-

tem and make explicit the concurrent activities of a system.

A formal definition of Petri nets is given in section 2.

Based upon the apparent absence of Petri nets in oper-

ating system text books and course syllabi, it appears that

many computer science educators are unaware of Petri net

theory or that a minimal amount of Petri net theory can be

very valuable as a pedagogical tool for teaching operating

system concepts. Very lit tle Petri net theory seems to have

been applied to the area of operating systems. A variation

of a Petri net model of the SCOPE operating system of the

CDC 6400 is given in [11], but the model is not strictly

a Petri net. To my knowledge the only operating system

book that gives any space to Petri nets is [16]. Some au-

thors of software engineering texts devote a brief subsection

to show the usefulness of Petri nets within the requirements

and/or design phase(s) [4, 15]. One of the motivating fac-

tors to introduce Petri nets into operating system course

lectures was that many of the software engineering students

exhibited a better understanding of the mutual exclusion

problem, deadlock, starvation, etc. Many claimed that they

would have preferred Petri nets also in their operating sys-

tems course.

Because of limited space only a sampling of the many

Petri net models used in operating system lectures are dis-

cussed. Some of these Petri nets not discussed in this pa-

per model problems such as the reader/writer problems, a

simple communication protocol, the cigarette smokers prob-

lem, the dining philosophers problem and data-flow compu-

tations. For discussion of these models and further introduc-

tory Petri net theory, the interested reader is recommended

to consult [8,12]; both have extensive bibliographies. The

few models that are shown in this paper are intended to il-

lustrate how a minimal amount of Petri net theory can be

used to visualize and analyze problems typically presented

in operating system courses.

Perhaps some concern may be raised about the amount of

time needed to introduce Petri net theory and model build-

ing. It has been my experience that only one lecture of 50–

65 minutes is sufficient to introduce the basics of Petri net

theory. Although Petri net theory is a well-developed area

324

of theoretical computer science—some taking a great deal

of mathematical maturity—only a sophomore-level discrete

mathematics background is needed. This paper indicates

precisely how much Petri net theory and related mathemat-

ics is actually needed.

2 Petri Net Background and

Fundamentals

While working as a scientist at the University of Bonn, Petri

nets were first conceived and developed by Carl Petri in his

dissertation, which was submitted in 1962 [14] to the Math-

ematics and Physics faculty at the University of Darmst adt.

Since then, numerous papers have been written and a rich

body of theory has been developed. For more information

on historic developments see for example [8].

A Petri net is represented by an underlying bipartite di-

rected graph and an initial state, called an initial marking.

The two partitions are called places and transitions. Graph-

ically, places are drawn as circles and transitions as boxes

or rectangles. The arcs are weighted (labelled with positive

integers) and are either from a place to a transition or vice

versa. The arcs that are weighted with 1 are left unlabeled

when drawing the Petri net. An arc labelled with k can be

interpreted as k parallel arcs.

The state of the system that the net is modeling is repre-

sent ed by the assignment of non-negative integers to places.

This assignment is called a marking. For the graphical repre-

sent ation, rather than labeling a place p with a non-negative

integer k, k black dots, called tokens, are drawn inside place

p. If the number of tokens is too large, then the non-negative

integer is used.

Typically, the places represent some type of condition and

the transitions represent an event in the system. The input

(output) places to a transition represent the pre- (post-)

conditions. The tokens may have many interpretations. For

example, when a place is marked with a token it might rep-

resent that the corresponding condition is true. In other

cases, k tokens might represent k resources, e.g. the number

of tape drives available. Because Petri nets can model many

types of systems, what the places, transitions, and tokens

represent varies greatly. In [8] many examples of typical

interpretations are given.

2.1 Definition of a Petri Net

Definition: A Petri Net is a 5-tuple, PN = (P,T,F,W,MO)

where:

P={P1, P2,..., pm} is a finite set of places,

T={tl, tz, ..., ~n} is a finite set of transitions,

F~(Px T) U(Tx P)isa setof arcs,

W : F + {1,2, 3,...} is a weight function,

MO : P + {O, 1,2, 3,...} is the initial marking,

PnT=Oand PLJT#O. ❑

It is convenient to use the following notation. For a given

transition t,let the input places and the output places of a

transition t be denoted respectively by •~ = {PI (P, ~) G F}

and ts= {pl(t, p) G F}.

Formally, a marking M is defined as: M : P ~

{O, 1,2,.. .}. It is also convenient in some cases to denote a

marking M of m places as an m-vector where the i-th com-

ponent denotes M(pi), i.e. M = < M(pl), M(p~) >.

2.2 Transition Enabling and Firing

The

and

1.

2.

3.

state changes of a system are modelled via the enabling

firing rules. The rules are described as follows:

A transition tis enabled under marking M if each input

place p oft is marked with at least W(p, t) tokens, the

weight of the input arcs to t.More formally, Vp E d
M(p) z TV(P, t) iff t is enabled.

A transition may or may not fire when enabled. When

more than one transition is enabled, one is nondeter-

ministically chosen depending on the model. The tran-

sitions that fire represent that the corresponding mod-

elled events occurred.

A firing of a transition tresults in W(p, t) tc)kens being.-. ,
removed from each input place p of t and the addition

of W(t, p’) tokens to each output place p’. More for-

mally, firing an enabled transition tresults in changing

marking M to M’ where:

M’(p) = M(p)+ W(t, p) if p E to and p @ ●t

M’(p) = M(p) – W(p, t) if p c ctand p @ te

M’(p) = M(p) otherwise

If thas no input places (i.e. d = 0),itisa source transition-- ,.
and is vacuously enabled. If t has no output places (i.e.

tc = 0), it is called a sink transition. A sink transition

“consumes” tokens and does not produce any tokens.

If a transition t is enabled under marking M, and M’

is the resulting marking following the firing of t, we write

M~M’.

Note that as the transitions are fired the total number

of tokens distributed throughout the net may vary, i.e. the

conservation of tokens does not necessarily hold.

Example: Shown below in figure l(a) is an example of

a Petri net with both transitions enabled under an initial

marking M. = < 1,2,0 >. Either one may be fired. We

have either: MO ~ MI = < 0,0,1 > or Mo ~~ M2 = <

1, 1,1>. Figures l(b) and (c) show markings MI and Mz,

respectively. Under Ml neither tl nor t2 are enabled. Under

M2, tz is enabled and, if tz is fired again, we have Mz ~

MS = <1,0,2>. Figure 1(d) shows marking Ms. Under

Ma neither transition is enabled. For the initial marking MO

and this rather simple net all firings are shown. ❑

(a) (b)

P1 MO t, PI w t,

fire t2 II
m PO

P2
2 e

12

PI ,11, t, PI +

w“’’”;w
(c)

(d)

Figure 1: Example of Net Firings

325

It is important to note that the Petri net definition and

enabling and firing rules given above permit a place to be

marked with an unlimited number of tokens. These Petri

nets are called infinite capacity nets [8]. There are also jinite

capacity nets where the marking of each place p is given an

upper bound K(p). Thus, an extra constraint is included

in the enabling rule of a transition t:M(p) cannot exceed

K(p) for all p G tc if twere to fire. Although finite capacity

nets are very useful for modeling some systems, they have

not been needed in teaching operating systems thus far, so

are not considered in this paper. For more discussion about

finite capacity nets and their relationship with infinite ca-

pacity nets, the reader is referred to [8,12].

3 Petri Net Models of Operat-

ing System Concepts

There are many Petri net models for the classic problems

typically covered in an operating systems course. In this

section the usefulness of Petri nets as a pedagogical tool is

illustrated through a few examples.

3.1 Modeling Deadlock Concepts

An important concept associated with resource allocation is

deadlock. Within Petri net theory an important question is

“does the net deadlock?” A Petri net is deadlocked if no

transitions are enabled. The first subsection presents two

simple net models that provide a means to introduce the

concept of deadlock. In the second subsection a graphical

model of the bankers algorithm and deadlock detection al-

gorithm, such as the algorithms presented in [3,5,7,13], is

discussed. This model is a completely different model from

the first two and exhibits a very different use of a Petri net

model for the same general subject area.

3.1.1 Introducing deadlocks

The following model is used to introduce the concept of

deadlock. Shown in figure 2 is a simple net model of a re-

source allocation scheme with only two instances of a single

kind and two processes that require both resources before

completing. The place R represents the single resource and

each token represents an instance of the resource. The re-

maining places represent the thread of control of the two

processes. The transitions tl and tzrespectively represent

the events of process a and process 11requesting an instance

of the resource. The transitions tsand tlrepresent a second

request from each. Finally, transitions tsand t6 model the

releasing of both resource instances.
Process a

Deallocate

both

resources

Deallocate
both

Process b
resowcea

This net can deadlock if the following firing sequence oc-

curs: tl,tz.At this point no transitions are enabled. Al-

though resource allocation graphs are useful, the Petri net

model adds the dynamic aspects explicitly, i.e. the posei-

ble sequences of events leading up to a deadlock. One may

begin to examine what firing sequences cause deadlocks.

This particular model is simple enough to be a good start-

ing point to illustrate the use and value of a Petri net.

The students are not overwhelmed with many details. This

model allows for discussion and perhaps better understand-

ing of the four necessary conditions of deadlock: mutual

exclusion, hold-and-wait, no preemption, and circular wait.

This also helps develop a deeper understanding of the en-

abling and firing rules.

Once the first model is understood and the concept of

deadlock is introduced, the subject of deadlock prevention

and the related costs can be discussed. To illustrate the

prevention protocol that calls for processes to allocate all

their resources before execution begins one could use the

following Petri net in figure 3.

Precessa

Pa t,: Allocate Processing

J-I

2

“u
% t*: Allocate

Process b

Figure 3: Resource Allocation Net Model 2

One can see that if tl fires, then tz and td cannot be

enabled until tshas been fired. This models the fact that

process a has all the resources and process b cannot make

any progress. Following the firing of t3,both tland t2are

enabled. Suppose that tl is fired again and the same firing

sequence is repeated. This illustrates the concept of star-

vatio~ in this case, the starvation of process b. Comparing

this model with the model in figure 2, students are able to

begin “seeing” the difference between starvation and dead-

lock. The dynamics of the model prove very useful.

Other issues such as the poor resource utilization of this

particular deadlock prevention protocol can also be dis-

cussed.

3.1.2 A model for deadlock avoidance and de-

tection algorithms

Deadlock avoidance and detection are two other major

subtopics. Typically, the banker’s algorithm is presented

when discussing deadlock avoidance. The banker’s (safety)

algorithm checks for the safeness of allocating resources to a

process p, each time a request is made by process p,. A sim-

ilar algorithm is used for detecting deadlocks. The deadlock

detection algorithm is run periodically. The output of the

detection algorithm is either a sequence of processes, which

indicates how the system of processes may complete, and

thus indicate that the system is not deadlocked, or the in-

dication that the system is deadlocked. Some sample texts

that present the details of these algorithms are [3,5,7,13].

Figure 2: Resource Allocation Net Model 1

326

A Petri net model for the deadlock detection algorithm

is presented next for a system of processes with several in-

stances of each resource type. This model follows the algo-

rit hm as presented in [13]. Alt bough a similar model can

be derived for the banker’s algorithm, only the deadlock

detection algorithm is shown here.

To aid in presenting the net model we briefly review the

algorithm’s data structures as presented in [13].

In the following discussion we use X as an unconventional

index variable to emphasize that resources are indexed by

letters rather than non-negative integers.

Given n processes and m resource types, the algorithm

uses an n x m allocation matrix, Allocation, whose entry,

Allocation[i ,X] = k, indicates that k inst antes of resource

X are allocated to process i. Similarly, an n x m request

matrix, Request, has entries, Request[i,X] = k, that indi-

cate process i is currently requesting k instances of resource

X. An m-vector, Available, whose entry, Available[X] = k,

indicates k instances of resource X are currently available.

The generic net model is described as follows. There is

a process place and transition pair for each of the processes

in the system (each correspondingly subscripted). There is

also a resource place for each resource type. Let P: and pX

denote process and resource places, respectively. The arc

set F and labeling function W consist OE

arcs (pi, t:), each with weight one, for each process i;

arcs from transitions t, to resource places pX with

weight label k iff Allocation[i,X] = k and k > O;

and arcs from resource places PX to transitions t~ with

weight label k iff Requ&t[i,Xj = k and k >0.

In the algorithm, a Boolean n-vector, Finish, is used to

keep track of what processes were examined and can have

their requests met. Finish[i] = true when the ith process

has been examined by the algorithm and its request can be

met. Initially, Finish[i] is false for all i, where 1 s i < n.

The place markings correspond to Finish. A process place p,

is marked with one token iff Finish [i] = false, and marked

with zero tokens otherwise. After a transition t, fires, a

token is removed from process place pi. This corresponds to

setting Finish[i] to true. The meaning of firing a transition

is discussed shortly.

The resource places PX are marked with k tokens iff

Available[X] = k.

In addition to the data structures discussed above, the

algorithm also uses an m-vector called Work, which is mod-

ified during the execution of the algorithm. Work is initial-

ized by the Available vector. At each point in the execu-

tion of the algorithm, the value Work[X] corresponds to the

number of tokens in px. When Request[i, X] < Work[X]

for each resource kind X and Finish [i] = false, the t ran-

sition t, is correspondingly enabled. This corresponds to

the situation where the requests of the ith process can be

met. Note that more than one request might be met. Thus,

several transitions might be enabled. One is nondeterminis-

tically chosen. If process i is chosen, then the Work vector
is updated through vector addition of itself with the ith Al-

location row. This corresponds to the firing of transition

ti.
The reader is encouraged to compare this model with the

versions of this algorithm presented in the above-mentioned

textbooks.

An example taken from [13] is used to illustrate the “ex-

ecution” of the Petri net model.

Suppose that five processes, {po, p4 }, and three re-

source types, { A, B, C }, are giveu. Resources A, B, and

C have 7, 2, and 6 instances, respectively. First, consider

only the leftmost request matrix (Request); the right most

request matrix (Request ‘) is used later in the paper. Sup-

pose that the matrices representing the state of resource

allocation at some time T are:

Allocation Request Available Request ‘

ABC ABC ABC ABC

po 010 000 000 000

PI 200 202 202
p2 303 000 001

p3 211 100 100

I-u 002 002 002

The following net model in figure 4 allows one to graphically

depict the deadlock detection algorithm. (Ignore the dashed

arc (1’c, t2) since it corresponds to the Request ‘ matrix.)

Figure 4: Deadlock Detection Model

One begins to arbitrarily (nondeterministically) fire en-

abled transitions until no transitions are enabled. Note

that in this model, this does not mean the modelled sys-

tem is deadlocked. Insteadj the deadlock in the modelled

system is detected if a token remains in any of the initially

marked process places (as opposed to the resource places)

and no transition is enabled. If all these process places are

unmarked, then that firing sequence corresponds to a cor-

responding process completion sequence. For the above ex-
ample to ,t2 ,t3 ,tl ,t4 is one possible firing sequence and cor-

responds to a solution presented in [13]. This indicates that

the above system is not in a deadlocked state. Another ex-

ample of the many possible firing sequences is: fz ,tl ,to ,~3 ,tl.

Now using the rightmost request matrix, Request ‘, we

have the same net, but with the dashed arc included. In

this case one cannot reach a marking that has all the process
places marked with zero tokens. Therefore, this system is

deadlocked. The only enabled transition under the initial

marking is to. After firing to no transitions are enabled,

yet there are still tokens in process places pi for all i where

1<; <4.

It should be pointed out that in [13], the authors give

327

resource allocation and wait-for graphs when there are single

instances of each resource type. The Petri net model given

above is a graphical depiction of the genera~ case, i.e. several

instances of each resource type. It can be thought of as a

visualization of the deadlock detection algorithm (and the

banker’s (safety) algorithm).

Another graphical method available for deadlock detec-

tion is sequential reductions of resource allocation graphs;

see [3] for example. These have also been proven useful. The

Petri net model presented in this subsection is an alternative

graphical technique for detecting deadlocks, and, aa shown

in this paper, can be used to model many other concepts

in operating systems. If Petri nets are used throughout an

operating systems course, then the students have a familiar

graphical model.

3.3 Modeling the Ada Rendezvous

The Ada rendezvous has been modelled by several re-

searchers [2,6 ,9]. By utilizing the work of these researchers

not only the rendezvous can be visualized, but solutions to

classic concurrent problems can also be visualized. For ex-

ample, in [2] a solution for the producer/consumer problem

with a ring-buffer is shown. Using this model gives a visu-

alization of the rendezvous synchronization, the semantics

of the selective wait with guard(s), the concept of mutual

exclusion, and the producer/consumer problem itself. In

addition, these Petri net model instances can be compared

against Petri net model instances that model similar solu-

tions that utilize P/V semaphore operations; see for example

[4]. By comparing the two solutions the students can also

get a better appreciation what is “hidden” in the implemen-

tation of Ada run-time environments. o
3.2 Modeling Fork/Join and Parbe-

gin/Parend Constructs

When introducing the concept of concurrent processing

within a single process or the interprocess synchronization

between processes the precedence constraints between the

statements or processes are often represented graphically

by a precedence graph such as in [7,13]. With respect to

the concurrent processing within a single process, a prece-

dence graph is a directed acyclic graph whose nodes repre-

sent stat ements and arcs (Si, Sj) represent that statement

S, must complete before S~ begins. We shall use the pro-

cessing within a single process for discussion.

The fork/join and parbegin/parend constructs are intro-

duced by using the precedence graphs. Using only the prece-

dence graphs, the fork and join statements do not have ex-

plicit nodes in the graphs. What is proposed here is the

introduction of Petri nets as an intermediate representa-

tion between the precedence graphs and the concurrency

constructs. The Petri net model models each statement,

including the fork and join statements, via transitions. In

figures 5(a) and (b) the Petri net models for fork/join and

parbegin/parend are shown. Note that join models the join

with more than two threads of control, i.e. join with a count

parameter. See [13] for details.

Given in figure 6(a) is a precedence graph taken from [13]

and the corresponding fork/join (6(b)) and parbegin/parend

(6(c)) Petri net models. Note that if the join were limited

to merging only two threads of control, both nets would

be structurally identical. One can see explicitly where the

fork/join actions occur. Also, the explicit flow of tokens

allow the students to visualize the threads of control. Also,

the net aids in defining the count parameter’s initial value

for each join and the number of joins needed when writing

fork/join code.

Often the discussion of the expressiveness of fork/join vs.

parbegin/parend can be aided with the use of this model.

By using an example of a precedence graph that cannot be

translated to a Petri net begin/parend constructs, students

see the power of fork/join construct. On the other hand, the

students also see why the parbegin/parend is a structured

programming construct.

parend

(a) (b)
6

Figure 5: Fork/Join and Parbegin/Parend Models

4
S1

(a)

S2 a3

a4

S5 $+s

a7

a5

~

● 2●

(b) (c)

S1 S1

bfork

S2

a4 S3

S2

S4

vfork

S6

join 3

0
parbegin

S3

& S7 & S7

Figure 6: Transforming Precedence Graphs

328

4 Summary

Petri nets are a valuable pedagogical tool in an operating

systems course. They act as a visual-communication aid

for both the instructor and students. The explicit flow of

tokens greatly enhances the understanding of the dynamic

aspects of many operating system concepts, especially those

like deadlocks, concurrency, mutual exclusion, etc. In addi-

tion, Petri nets can provide a kind of algorithm visualiza-

tion.

From experience, the amount of time to introduce and get

students started in understanding the Petri nets presented

in this paper is minimal, approximately one to two lectures.

As more concepts are introduced along with the Petri net

models the students get a deeper understanding of Petri

nets. This, in turn, seems to give a deeper understanding of

the topics. The questions about the net models themselves

often generate interesting and important questions about

the problem being modelled. Although no software tools are

currently being used, the intention is to make them available

to students to edit, simulate, and analyze the net models so

that the corresponding problems can be further investigated.

Petri nets have been applied to systems and subject mat-

ter found in many computer science curricula. Some systems

and topics include pipelined computers, distributed systems,

neural networks, and logic programming; there are many

more [8,12]. Based upon the success and acceptance in the

operating system course, Petri nets and variations on the

Petri net model are being investigated as teaching tools in

other computer science courses. A variation of the Petri net

model presented in this paper, called a Predicate/Transition

net, seems very promising in teaching logic programming

and issues in parallelism in logic programs [8,10].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Cafias, D., “GRAPHOS: A Graphic Operating Sys-

tem,” SIGCSE Bull., vol. 19, no. 1, pp. 201-205, 1987.

Cherry, G., Parallel Programming in ANSI Standard

Ada. Reston Publishers, 1984.

Deitel, H., Operating Systems. Addison-Wesley, 1990.

Fairley, R., Software Engineering Concepts. McGraw-

Hill, 1985.

Krakowiak, S., Principles of Operating Systems. The

MIT Press, 1987.

Mandrioli, D. and Ghezzi, C., Theoretical Foundations

of Computer Science. John Wiley and Sons, 1987.

Milenkovic, M., Operating Systems Concepts and De-

sign. McGraw-Hill, 1987.

Murata, T., “Petri Nets: Properties, Analysis, and Ap-

plications,” Proc. of IEEE, vol. 77, no. 4, pp. 541-580,

1989.

Murata, T., Shatz, S. M., and Shenker, B., “Detection

of Ada Static Deadlocks Using Petri Net Invczriants,”

IEEE Trans. of Software Engineering, vol. 15, no. 3,

pp. 314–326, 1989.

Murata, T. and Zhang, D., “A Predicate-Transition

Net Model for Parallel Interpretation of Logic Pro-

grams,” IEEE Trans. of Software Engineering, vol. 14,

no. 4, pp. 481–497, 1988.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Noe, J., “A Petri Net Model of the CDC 6400,” Pro-

ceedings of ACM SIGOPS Workshop on System Per-

formance Evaluation, April, pp. 362-378, 19’71.

Peterson, J., Petri Net Theory and the Modeling of Sys-

tems. Prentice-Hall, 1981.

Peterson, J. and Silbershatz, A., Operating System

Concepts. Addison-Wesley, 1985.

Petri, C. A., ‘(Kommunikation mit Automate,” Bonn:

Institute fiir Instrumentelle Mathematik, Schriften des

IIM Nr. 3, 1962. English translation: “Communication

with Antomata,” New York: Griffiss Air Force Base,

Tech. Rep. RADC-TR-65-377 vol. 1, Suppl. 1, 1966.

Schach, S., Software Engineering. Aksen Associates,

1990.

Tsichritzis D. and Bernstein, P., Operating Systems.

Academic Press, 1974.

Zimmerman, M., Perrenoud, F., and Schiper, A.,

“Understanding Concurrent Programming Through

Program Animation,” SIGCSE Bull., vol. 20, no. 1,

pp. 27–31, 1988.

Design/CPN Announcement, Feb. 1990, Mets Software

Corporation, 150 Cambridge Park Dr., Cambridge, MA

02140.

329

