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Abstract
We present data representations, distance measures and or-

ganizational structures for fast and efficient retrieval of sim-

ilar shapes in image databases. Using the Hough Transform

we extract shape signatures that correspond to important

features of an image. The new shape descriptor is robust

against line discontinuities and takes into consideration not

only the shape boundaries, but also the content inside the ob-

ject perimeter. The object signatures are eventually projected

into a space the renders them invariant to translation, scal-

ing and rotation. In order to provide support for real-time

query-by-content, we also introduce an index structure that

hierarchically organizes compressed versions of the extracted

object signatures. In this manner we can achieve a signifi-

cant performance boost for multimedia retrieval. Our exper-

iments suggest that by exploiting the proposed framework,

similarity search in a database of 100,000 images would re-

quire under 1 sec, using an off-the-shelf personal computer.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval

General Terms
Algorithms, Performance

Keywords
Hough Transform, Image Signature, Metric Tree

1. INTRODUCTION
Recognition of objects or shapes in images and video is

a fundamental problem in computer vision encompassing a
multitude of applications in medicine (tumor shape recogni-
tion) [10], manufacturing (crack identification), multimedia
search (shape taxonomy grouping) [11], trademark recogni-
tion [9], surveillance (weapon detection), etc.

Effective retrieval of similar shapes in image databases
is a complex and time consuming process. In most cases
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it represents a compromise between accuracy and expected
response time. Direct comparison of images is inefficient
not only because of the high raw data dimensionality, but
also because shape transformations (e.g., due to different
viewpoints) can deteriorate the matching process. In order
to guarantee high quality matching one has to deploy shape
descriptors/signatures that can adequately capture shape
characteristics, and are typically tailored to be immune to
transformations such as translation, scaling or rotation.

While the efforts of the pattern recognition community
are primarily targeted on the accuracy of results with the
use of complex similarity measures, there has been little
work on expediting the search procedure. Older systems for
content-based image retrieval include the QBIC system [4],
while more recent implementations for generic multimedia
retrieval (images and video) can be found in MARVEL [1].
However, these efforts primarily address the issue of feature
selection (such as color, shape, texture and position) rather
than the organizational mechanisms of the object signatures.

In this work we are examining the problem of shape re-
trieval not only from a machine learning perspective (i.e.
devising robust shape descriptors), but also from a data-
base viewpoint, providing additionally an efficient hierarchi-

cal indexing scheme for achieving a fast search mechanism.
We accomplish this by intelligently organizing/clustering the
object signatures, so that the search procedure is directed
toward the most promising object ‘clusters’.

The shape signatures that we extract are based on the
Hough Transform, which captures important line features of
an image. The descriptor offers enhanced robustness against
line discontinuities and considers not only the object perime-
ter, but also its interior content. However, similarity search
on the signatures using sequential scan, would significantly
hamper the system performance, making it difficult to scale
to large datasets. Therefore, we additionally demonstrate
how to create the necessary mechanisms that can render
search into a real-time process, even using a regular per-
sonal computer, on a database containing thousands of im-
ages. To achieve this: (i) we exploit the Fourier Transform
properties for providing a rotation invariant image signa-
ture, (ii) we provide compressed representations of the sig-
natures and also a lower-bounding distance measure which
guarantees that no qualifying signatures will be discarded,
(iii) we present a hierarchical index structure which holds
the compressed signatures and in conjunction with the lower
bounding function can offer real-time search capabilities.

To our best knowledge this is first work that seamlessly
integrates all the above components in order to offer a ro-



bust and real-time shape search mechanism. An additional
advantage of the proposed framework is its flexibility and
adaptability, since it can be used in conjunction with other
shape signatures (perimeter or angular based), without any
modification, therefore easing the porting of our system in
other domains and applications. We envision that this work
can provide the data-mining practitioners with a variety of
tools that can ease and expedite expensive tasks, such as
image clustering and visualization.

2. PROBLEM AND METHODOLOGY
In this work we are interested in providing fast and ef-

ficient recognition/classification of shapes or objects in im-
ages, given a large database of (possibly annotated) exam-
ples. We can achieve this by realizing 3-levels of abstraction
for data organization (figure 1). The lowest and most rudi-
mentary level will contain the raw images. The middle level
will store image descriptors in the form of signatures that
are invariant to various transformations. The upper level
will provide the signature organization, and will facilitate
an efficient pruning scheme.
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Figure 1: 3-tier hierarchy for efficient image search

The highest level will hold compressed versions of the
image signatures, with the purpose of providing distance
approximations and faster distance calculations. The com-
pressed vectors will also be hierarchically organized, leading
to an efficient pruning scheme of signatures (and images)
that are guaranteed to be very distant to the query image.

3. EXTRACTING SHAPE SIGNATURES
We utilize the Hough Transform (HT) for extracting im-

portant features from an image. HT based algorithms can
be used for detection of any parametric shape (lines, cir-
cles, planes, etc.) and have found applications in many ar-
eas such as human iris recognition or fingerprint matching
[16]. In this work we are interested in recognizing contours
of shapes or line drawings (such as technical drawings [14],
symbols, trademarks [9], etc.) therefore we utilize the HT
for detecting the basic line structures in an image, a method
that is very robust to noise and line discontinuities. An ad-
ditional advantage of the HT based signature that will be
extracted, is the fact that it also takes into consideration the
content inside the perimeter of the object, unlike perimeter
based methods which only consider the silhouette. In this
paper we present a way of compressing the information of
the Hough Transform and extracting a rotation invariant

signature. However, the signature transformation and the
indexing framework that will be presented in this paper is
generic enough to support other shape signatures, such as
angular signatures [14]. Due to limited space we provide
just a short overview of the HT.
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Figure 2: A line in the x-y plane is mapped to a
point in the ρ-θ space. A point x (since infinite lines
pass through it) is mapped onto a set of ρ and θ

pairs, forming a sinusoid in the Hough space.

The HT performs a mapping from the x-y space onto a
ρ-θ space, where the ρ, θ parameters represent solutions of
the line equation xcosθ + ysinθ = ρ (left side, figure 2). Pa-
rameter θ records the angle of a segment with one end on
the axis origin and the other one perpendicular to the line,
while ρ captures the distance of the respective segment. Us-
ing the HT each point of the original image is mapped onto a
sinusoid in the new ρ-θ space, or ‘votes’ for the correspond-
ing sinusoid positions in an accumulator array R. After all
points have ‘voted’ on the array R, the local maxima of R

correspond to the dominant lines of the image.
Using the entire accumulator Rρ,θ as an image signature

is space prohibitive. In this work we introduce a way of
compressing the accumulator by summing the values of R

across the θ axis (i.e., summing the columns of the array).
In this manner we extract a signature s from every image.

s(θ) =

n�

p=1

R
2
ρ,θ, θ = 0 . . . 180o

The resulting sequence can be normalized by division with
its average value. In [5] Fränti et al. also utilize the HT
to extract shape descriptors, but retain only the dominant
peaks of the HT by thresholding the accumulator array,
hence introducing an additional (and not easy to set) para-
meter. In our setting, all the values of array R are utilized,
making our system completely parameterless.

By summing along the parameter ρ we have rendered the
shape descriptor robust to translation and scale, since we
just record the angles of the lines and not their position.
This type of compression however also increases the prob-
ability of different shapes having the same signature. This
will introduce false alarms during the matching procedure,
which can be eliminated in a post-processing phase by look-
ing at the full array R.

We should also note that rotation of an image by theta

degrees does not change the shape of the signature, but only
shifts it (left or right) along the θ axis by an equal amount.
In figure 3 we depict examples of signatures extracted from
various shapes on grayscale images. The final shape signa-
tures are sequences of length 180, since the Hough Transform
records line angles in the range of 0− 180o. In the same fig-
ure, we notice that similar shapes produce similar signatures
(shifted nonetheless), irrespective of the shape orientation.

4. DISTANCE MEASURE
Suppose that x = (x0, x1, . . . , xN−1) and y = (y0, y1, . . . , yN−1)

are the signatures extracted from two images. We need to
define a distance function that will quantify the degree of
similarity. The L2-Norm should be sufficient to capture such
similarities.
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Figure 3: For left to right: image, Hough accumula-
tor, shape signature by vertical summation of accu-
mulator

D(x, y) = ‖x − y‖

However, since we desire our measure to be rotation invari-
ant, we also need to perform a circular rotation of one signa-
ture along the other and record the minimum distance be-
tween the signatures. The rotation invariant distance mea-
sure Drot is defined as:

Drot(x, y) = min
i=0...N−1

D(x, Ci(y)),

where Ci is the circular rotation operator. Computation of
Drot requires time in the order of O(N2), which can render
retrieval times too slow for many practical applications.

In the following sections, we present a more efficient way of
approximating the Drot function. We can avoid the costly
execution of the circular rotation operation by exploiting
the Fourier Transform properties and rendering the shape
signature rotation invariant.

4.1 Magnitude Based Distance
We utilize the normalized Fourier Transform (FT) for pro-

viding a rotation invariant signature. The FT of a sequence
x is a sequence of complex numbers and is defined as:

X(k) = 1√
N

N−1�
n=0

x(n)e
−j2πkn

N , k = 0, 1 . . . N − 1

The image signature x is a sequence of real numbers, so
each Fourier coefficient X(k) will also have a symmetric in
the form of a complex conjugate. The FT essentially records
the amplitude and phase of the complex sinusoids sf (n) =
ej2πfn/N

√
N

, which represents a lossless decomposition of the

original signal. Since we want to provide a measure that
is immune to circular rotations it is sufficient to record the

magnitude of the coefficients and ignore the phase. The
magnitude signature is a vector of real and positive numbers.
We can also reduce the space in half by recording only the
magnitude of the first half coefficients, due to the symmetric
property:

X = ‖X(k)‖, k = 0, 1 . . . dN−1

2
e

Now, we define the new rotation invariant distance be-
tween two signatures x and y, as the L2-Norm between the
magnitude vectors:

D(X,Y) = ‖X − Y‖

The extraction of the magnitude signatures from the im-
ages can be performed offline and therefore the computation
of the new rotation invariant distance function requires now
time only in the order of O(N) (where N is is the magni-
tude signature length). These new signatures will be stored
on disk and will represent the second level of our 3-tier hi-
erarchy, as described in figure 1. Next we will explain how
to create the compressed signatures that will populate the
highest level of the database hierarchy.

4.2 Compression and Lower Bound Distance
Approximation

We will provide a more compact representation of the
magnitude vector and also an approximation of the distance
function, between the compressed vectors.

In the magnitude vector not all coefficients are equally
important; those with the highest value correspond to the
sinusoids that carry most of the signature energy [15]. For
any signature X, we will store only the highest k magnitude
coefficients, where parameter k depends on the desired com-
pression factor. Let us denote as p+ a vector indicating the
positions that hold the largest k values of signature X hav-
ing length N (so p+ ⊂ [1 . . . N ]), and p− contains the indices
of the omitted ones. We also record some information about
the omitted magnitude coefficients, which will assist us in
providing more tight distance estimation when utilizing the
compressed vectors. The additional information will be the
square root of the sum of squares of their values (εX), that
represents a measure of the approximation error. The er-
ror εX is essentially the length of the vector containing the
discarded magnitude coefficients:

εX = � �
i∈p−

X(i)2 = ‖X(p−)‖

Therefore, the compressed signature of every image will
contain k + 1 numbers, the k largest coefficients and one
additional error value, having the form [X(p+), εX]. Now
suppose the user provides a new query image and wants to
retrieve the image most similar to it. The query magnitude
signature Q will be calculated, which is an uncompressed
magnitude vector. Next, we provide a lower bound approx-
imation of the magnitude distance between the original un-
compressed vectors X and Q.

Let us denote as Q(p+) the vector holding the equivalent
coefficients as X(p+). Similarly, Q(p−) is the vector holding
the analogous elements of X(p−).

Example: Suppose that the magnitude vector of x is: X =
(5, 8, 2, 10, 1, 0, 3, 2). If we decide to record just the two
best coefficients then p+ = (2, 4) and therefore X(p+) =
(0, 8, 0, 10, 0, 0, 0, 0). Now suppose the user presents a query
q with magnitude signature Q = (8, 2, 10, 5, 2, 2, 1, 3). Then



we have: Q(p+) = (0, 2, 0, 5, 0, 0, 0, 0) which holds the equiv-
alent coefficients as X(p+). (Note that the zeros have been
placed here just for clarity. In the actual implementation
we just need to store the position of the coefficient and its
value.)

We can rewrite the squared distance between the compressed
vectors:

D(X,Q)2 = D(X(p+),Q(p+))2 + D(X(p−),Q(p−))2

= ‖X(p+) − Q(p+)‖2 + ‖X(p−) − Q(p−)‖2

The left part of the distance calculation can be easily per-
formed since we have all the required data. The right part
cannot be computed exactly because we lack the X(p−) por-
tion. We will provide an approximation that always underes-
timates the true distance between the original uncompressed
signatures. It holds that:

‖X(p−) − Q(p−)‖2 = ‖X(p−)‖2 + ‖Q(p−)‖2

− 2〈X(p−),Q(p−)〉

where 〈·, ·〉 is the inner product between two vectors.
However, using the Cauchy-Bunyakovski-Schwarz (CBS)

inequality, which dictates that |〈a, b〉| ≤ ‖a‖ · ‖b‖, we get:

‖X(p−) − Q(p−)‖2 ≥ ‖X(p−)‖2 + ‖Q(p−)‖2

− 2‖X(p−)‖ · ‖Q(p−)‖

= (‖X(p−)‖ − ‖Q(p−)‖)2

= (εX − εQ)2

and therefore we can utilize the following lower bounding
function LB between the compressed magnitude vectors:

LB(X,Q) = �‖X(p+) − Q(p+)‖2 + (εX − εQ)2

≤ D(X,Q)

Essentially, we managed to offer an underestimate of the
distance between the original image signatures using their
compressed counterparts.

4.3 Utility of Lower Bound function
Let us examine for a moment the usefulness of the lower

bounding function. Suppose we only had the uncompressed
magnitude vectors and we would like to find the signature
that is closest to a query signature Q. The search proce-
dure in this case would proceed by retrieving one-by-one
the signatures and comparing them to the query. The im-
age having the smallest signature distance will be returned
as the nearest match. Therefore, in this scenario all the im-
age signatures would have to be retrieved from disk. This
approach is typically called Linear Scan (LS) of the data.

When we utilize the compressed signatures, we can avoid
examining a portion of the uncompressed shape signatures.
In this case we cannot provide exact distances, but we can es-
timate lower bound approximations. Suppose that we com-
pute the lower bound distance between the query and all
compressed vectors. We start retrieving the uncompressed
signatures in the order dictated by the lower bound esti-
mates (from smaller to larger distance). The true distance
between the query and the currently retrieved uncompressed
vector is calculated and the best-so-far match is potentially
updated. However, when we reach an object with lower-
bound distance greater than the best-so-far distance, the

search can be safely terminated, since we are guaranteed that
all remaining objects have lower bound (and hence true dis-
tance) larger than the current best match. If the distance
function did not underestimate the actual distance, we could
not guarantee the outcome of the results.

Another advantage of this method is that distance compu-
tations are much faster using the compressed signatures be-
cause of their compact size, meaning that they can typically
fit in main memory, enhancing even more the performance.

Using a hierarchical indexing scheme (which will be de-
lineated in the following section), we can also prune from
evaluation a large number of compressed signatures, if they
are guaranteed to be very distant to the query and as result
further improve the efficiency of the search method.

5. INDEXING STRUCTURE
For organizing hierarchically the compressed object signa-

tures, we construct a new index structure which adopts ideas
from the family of metric trees. Metric structures provide a
clustering of the objects based on the relative distance be-
tween the object signatures. Our choice of metric indices is
guided by our adaptive compression technique. Since every
signature uses a different set of magnitude coefficients (the
ones with the highest energy per object), indexing using
data-partitioning methods, such as R-trees (which would re-
quire the same sets of coefficients for each object signature)
would have been impossible. Moreover, the superiority of
metric trees against R-Trees has been empirically demon-
strated in [6].

In this work we introduce a variation of a well studied
metric tree, the Vantage-Point tree (or VP-tree) [6]. The
VP-tree exploits the object distances to preselected refer-
ence objects (called vantage points) in conjunction with the
triangle inequality, in order to prune parts of the search
space that are guaranteed to contain objects more distant
than the currently discovered best matches. Therefore, the
search strategies direct the search toward the most ‘promis-
ing’ partitions, namely the ones that have high probability
to contain result candidates.

However, the original structure of a VP-tree uses uncom-
pressed objects as vantage points which simplifies distance
calculations, but leads to large tree structures. In this work
we present the VPC-structure (where ‘C’ stands for ‘Com-
pressed’), that uses compressed objects as vantage points,
leading to reduced index sizes that can be entirely kept in
memory, hence leading to a significant performance boost.
However, because of its different structure, the VPC-tree
employs a different search procedure and pruning method-
ology than the original vantage-point tree. We continue by
presenting the traditional VP-tree and then we explain its
differences from the VPC structure.

Every node in the VP-tree (or VPC-tree) is associated
with a set of points S and a pivotal or vantage point v, which
is used to divide all points in that node into two equal sets.
After the distances between all node points and the van-
tage point are sorted, the points with distance less than
the median distance µ are placed in the left subtree S≤,
while the remaining ones in the right subtree S>. This con-
cept is illustrated in Figure 4a. The index tree structure is
constructed by recursively performing this operation for all
subtrees (figure 4b). The leaf nodes of our index contain the
actual compressed signatures, as well as a pointer to their
uncompressed version, which resides on disk.



Figure 4: Vantage-Point structure

In order to create a vantage point tree one needs to pro-
vide a method for selecting a vantage point for each tree
node. As such reference points, are chosen the objects that
provide high deviation of distances to the remaining objects
in the node, which is an analogous concept to the largest
eigenvector in SVD decomposition.
KNN Search in VP-trees. After its construction, the in-
dex structure can be used to efficiently answer k-NN queries.
In summary, the search is directed to the most promising
parts of the data space, potentially pruning objects or clus-
ters of objects from examination. The pruning strategy
works as follows; suppose that σ is the distance between
the query and its closest match discovered so far and d(q, v)
is the distance between the query and vantage point of the
currently examined tree node. Using the triangle inequality,
it can be shown that the subset S≤ does not have any candi-
date nearest neighbor points if d(q, v) > (µ+σ) and therefore
the subset can be excluded (pruned) from the search process.
Similarly, the subset S> can be pruned from the search if
d(q, v) ≤ (µ − σ) (figure 4c). Both subtrees would have to
be visited only in the case when µ − σ < d(q, v) < µ + σ.

Using those results, the search for the nearest neighbor of
a query q proceeds as follows: The threshold σ is set to a
large value and the distance d(q, v) between the query point
q and the vantage point v associated with the root node of
the VP-tree is computed. The distance determines which
child nodes need to be searched and which can be safely
pruned. The same procedure is recursively repeated for each
node that is searched, until the leaf nodes are reached where
the actual distances of the data from the query point are
computed. If at some point a better nearest neighbor is
identified, σ is reduced to new distance value and the search
resumes with this new value.
KNN search in the VPC-tree. For our shape recogni-
tion application, the index uses the compressed magnitude
vectors for the vantage points as well as for the leaf data.
We will demonstrate in the experimental section that this
results in an index structure whose size is a very small frac-
tion of the original data size.

The new index structure necessitates several modifications
in both the construction and search phases. During the con-
struction phase, the uncompressed signatures of the shapes
are utilized in order to identify the vantage points and com-
pute the median distances. Subsequently, only the com-
pressed version of each object is stored in the index.

During the search phase, we take into consideration the
fact that the index maintains only the compressed magni-
tude vectors, when traversing the structure. As a result,

NNSearch(Q) { /* Input: Uncompressed Signature Query */
cNN.ID = NULL; cNN.distance = INF;
Search(ROOT, Q, cNN);

}

Search(NODE, Q, cNN) {
/* Parameter: Node of VP-tree, Uncompressed Query

Signature Q, Current Nearest Neighbor */

/* queue = priority queue of compressed
shape signatures sorted on LB */

if NODE.isLeaf {
for each compressed time-series cT in node {

LB <- computeLowerBound(cT,Q);
queue.push(cT,LB); /* sorted by LB */

}
while ((!queue.empty()) &&

(queue.top().LB < cNN.distance)) {
if (cNN.distance > queue.top().LB) {

retrieve uncompressed T of queue.top() from disk;
dist = D(T,Q); /* full distance */
if dist < cNN.distance {

cNN.distance = dist; cNN.ID = T;
}

}
}

} else { /* vantage point */
LB <- computeLowerBound(VP,Q);
queue.push(VP,LB);
if LB < (node.median + cNN.distance) {

search(NODE.left, Q, cNN);
}
search(NODE.right, Q, cNN);

}
}

Figure 5: Indexed Retrieval of Shape Signatures

at each step, in order to check whether a visited data se-
quence is the current nearest neighbor, we first compute the
lower bound of the distance between the query sequence and
the currently visited compressed representation of the data
sequence. If the lower bound is larger than the distance be-
tween the query and the current nearest neighbor, then as we
have already described in section 4.3, we can safely discard
this data sequence. Otherwise, we fetch the actual object
signature from disk and we compute the real distance. When
the visited data sequence is a vantage point, the discussion
as of how to identify the subspaces to search next that we
have provided in the previous section, holds only if we load
the uncompressed signature from disk. Otherwise, we can
only check whether we can discard the subset S≤, while we
have not enough information for the S> subset. The sub-
set S≤ can be safely discarded if LB(q, v) > (µ + σ), where
LB is the lower bound of the periodic distance between the
compressed vantage point and the query point.

In figure 5 we provide the pseudo-code for the search al-
gorithm. For simplicity we only include the case where we
do not need to load the disk-resident, uncompressed repre-
sentation of the vantage point. If we have already loaded
the uncompressed magnitude vector, the method is identi-
cal with the search within the original VP-Tree node, as this
is described in [6].

The algorithm invokes the computeLowerBound(cT,Q) method,
which receives as parameters the compressed representation
of a data point and the uncompressed signature of the query
point and computes the lower bound of their distances, using
the method described in section 4.2. Moreover, it utilizes a
priority queue maintaining the compressed signatures of the
visited data points, along with the lower bound of their dis-
tance. The priorities in the queue are defined by those lower
bounds. That way, the most promising data points, i.e. the
ones which the smaller lower bounds are visited first.



Due to its hierarchical structure and its small footprint,
the VPC-tree is able to provide very fast response rates and
exceptional pruning power. This will be demonstrated in
more detail in the experimental section.

6. EXPERIMENTS
We provide comprehensive experiments that show the high

matching quality of the proposed shape signatures and dis-
tance measures. Additionally we indicate the low latency of
the indexing scheme. The experiments utilize two datasets;
the first contains 160 shapes, with 9 classes of objects (bone,
hand, rabbit, etc), which are obtained from various sources
(Mixed-Bag dataset). The second dataset comes from a
symbol recognition database called HHreco 1 (Figure 7).
The shapes used in our experiments are: ‘cube’, ‘square’,
‘pentagon’, ‘hexagon’, ‘parallelogram’, ‘trapezoid’, ‘triangle’,
‘moon’. These come at different positions, scales and ori-
entations according to the individual writer’s style. The
database contains a total of 7791 strokes, collected from 19
users. The second dataset (because of its larger size) was
also used in order to test the performance of the indexing
scheme.

Figure 7: A sample of the HHRECO dataset of sym-
bol strokes used in our experiments

For both datasets, the only preprocessing we did before
applying the Hough transform, is to perform an edge de-
tection. After this operation using the proposed algorithms
we extracted the shape signature, uncompressed magnitude
signature and also its compressed version.

All techniques have been implemented in Java and exe-
cuted on a desktop computer equipped with a Pentium 4,
2.6GHz processor, 512MB of main memory and a 40GB IDE
disk. In our experimental setting the index structure was
small enough to be held entirely in main memory, while the
uncompressed signatures are disk resident.

6.1 Accuracy and Quality of results
In Figure 6 we demonstrate a small set of results that de-

pict the high perceptual similarity of matches returned by
our system for various image queries posed on both datasets.
From the retrieved images, it is evident that the extracted
shape signatures are robust to transformations such as trans-
lation, scale, rotation and even deformation.

We also compare the accuracy of our system against two
of the most widely used image matching algorithms in the
vision literature, the Hausdorff [8] and the Chamfer [2] dis-
tance functions. Both of these measures operate directly
on the image space and have complexity of O(R ∗ ElogE),
where E is the number of edge pixels and R is the number of
rotations that need to being executed (assuming the images
have been aligned to have same center and scaling factor).
In our experiments R=45. Comparatively our approach has
O(n) complexity, with n the length of the compressed Hough
signature (where n << E).

1http://www-cad.eecs.berkeley.edu/Respep/Research/hhreco/

In Table 1 we report the retrieval accuracy from 1-NN to
5-NN for the 3 measures. The accuracy is measured using
a leave-one-out classification experiment, where we remove
each image from the dataset and then retrieve its k-Nearest-
Neighbors (k = 1 . . . 5) from the remaining shapes of the
database. The ratio of the number of shapes belonging in
the same class as the query image out of the k images, defines
the level of accuracy. The presented distance measures on
the compressed Hough signatures achieve a 91.25% accuracy
for the 1-NN on Mixed-Bag dataset, and 83% for the HHreco

database. The competing distances report slightly higher
accuracy (around 2-6%) but this comes at significantly more
prolonged execution time. In total, the results of the com-
pressed Hough signatures are very encouraging, achieving
high precision/recall, while providing a rotation invariant
approach at low computational cost. In future work we plan
to explore how these k-NN results could be further refined
using more expensive measures, such as the Hausdorff or
Chamfer distance (in effect, using a multi-measure hierar-
chy).

Dataset Method 1-NN 2-NN 3-NN 4-NN 5-NN

Mixed-Bag HT-Signature 0.91 0.88 0.87 0.84 0.80

Hausdorff 0.93 0.92 0.91 0.90 0.89

Chamfer 0.94 0.94 0.93 0.92 0.91

HHRECO HT-Signature 0.83 0.81 0.80 0.79 0.79

Hausdorff 0.86 0.86 0.86 0.85 0.85

Chamfer 0.87 0.87 0.86 0.86 0.86

Table 1: System recognition accuracy from 1-NN to
5-NN

6.2 Index Pruning Power
In this section we focus on the index performance. To

evaluate the effectiveness of the proposed measure in con-
junction with the VPC-tree, we provide a thorough compar-
ison of three methods:

(i) The linear scan of the shape signatures using the brute-
force Drot measure

(ii)The linear scan of the uncompressed magnitude vec-
tors, and

(iii) The VPC-tree performance using the compressed HT
signatures and the lower bounding distance function de-
scribed in Section 4.2.

We count the number of the uncompressed magnitude vec-
tors that need to be loaded from secondary storage when
the index structure is employed to answer a k-NN query.
The experiment is repeated for different values of k, namely
5, 10 and 20 and varying dimensionalities (i.e., number of
compressed signature coefficients). The reported results are
average values over 100 queries and they are presented in
Figure 8(a). It is evident that our system is not only able
to retrieve high quality matches, but it also achieves it in a
very efficient way, pruning a large number of signatures that
do not participate in the final k results.

As expected, the larger the dimensionality of the com-
pressed signatures, the better the pruning power of the in-
dex. That is because the estimated lower bounds for the dis-
tance values are tighter when more coefficients are preserved.
At dimensionality of 16, where the index presents the best
pruning power, only 1% of the total uncompressed magni-
tude signatures are visited by the index. It should be noted,
that linear scan methods (which don’t employ an index),
would have to examine all disk resident signatures. There-
fore, our technique demonstrates excellent pruning power of
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Figure 6: 5-Nearest Neighbors for queries posed on our two datasets. The last row depicts examples of
incorrect matches. We observe that rotated versions of the query shape can be effectively recognized.

the data space. These results are also very promising re-
garding the scalability of our method, as only a very small
number of object signatures have to be touched per query.

6.3 Index Response Time and Speedup
Even though the number of retrieved disk-resident signa-

tures is one measure of the index efficiency, a more realistic
indicator is the time needed for returning an answer to a
k-NN query. In this third experiment we provide a compari-
son of the time required for each of the three methods under
consideration to process and return the results of a k-NN
search for 100 queries. The outcome is presented in Figures
8(b) and 8(c). Again the VPC-tree depicts exceptional per-
formance, being more than 40 times faster than the linear
scan of the magnitude vectors and up to 300 times more
efficient than the linear scan of the shape signatures (using
the Drot distance measure). In Table 2 the actual index re-
sponse times are reported. We observe that the VPC-tree
can return the closest matches to a query in ˜50-70msec de-
pending on the signature dimensionality and the number of
Nearest-Neighbors that are requested.

D=2 D=4 D=8 D=16
5-NN 66.59 45.37 45.88 42.60

10-NN 75.03 62.47 49.61 54.46
20-NN 65.72 59.36 54.34 65.32

Table 2: Average time (in msec) for returning the
k-NN results in a database of 7791 image signa-
tures. Results shown for different number of Near-
est Neighbor searches (k-NN ) and compressed sig-
nature dimensionalities (D).

One thing to note here is that for 10-NN and 20-NN
searches, the index exhibits a faster response rate for di-
mensionality of 8, even though more uncompressed signa-
tures are retrieved from disk compared to dimensionality
of 16. These results hint on the existence of an upper
threshold for the number of coefficients that have to be
recorded and clearly indicate that there are diminishing re-

turns by increasing the number of the magnitude coefficients
in the index. This outcome shows that signature approxi-
mation using 16 coefficients, does not yield a significantly
improved lower bound approximation of distances (in com-
parison to 8 coefficients). Therefore, the overhead of per-
forming the additional magnitude computations surpasses
the gains achieved by the tighter distance estimations.
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Figure 9: Additional disk size required for storing
the index.

Index Size: The VPC-tree index structure holds the com-
pressed signatures, and any additional organizational over-
head (vantage points, medians, pointers, etc.), however its
size is still a small portion of the uncompressed image sig-
natures. To illustrate this, in Figure 9, we present the total
size (data signatures + index structure) occupied by the
proposed architecture. The optimal index performance is
observed at compressed signature dimensionality of 8. As
illustrated in the figure, for this dimensionality, the index
incurs a disk size overhead of only 12%. Nonetheless, the
speedup achieved by this modest increase exceeds 40 times,
compared to the performance of the Linear Scan. Those
results justify the strategies proposed in this paper, i.e. to
trade some additional disk space, in order to achieve consid-
erably better performance and scalability.

7. RELATED WORK
A significant body of work in the field of computer vision

and machine learning has dealt with the problem of shape
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Figure 8: Index performance for various compressed magnitude vector dimensionalities (D=2,4,8,16) and
Nearest Neighbor searches (k=5,10,20). (a): Percentage of uncompressed signatures retrieved from disk
by the index. (b): Index Speedup compared to time required when performing a sequential scan of the
uncompressed magnitude vectors. (c): Speedup offered by index, in comparison to the time required for
finding k-NN matches using the original (non-magnitude) signatures and performing a cyclic-rotation distance
calculation.

recognition. This section does not intend to be complete
in any way, but rather hint on the variety of distance mea-
sures that have been used for shape recognition, such as
approximate Earth Movers Distance on shape contours [7],
Dynamic Time Warping of object boundaries [12], bipar-
tite matching between shape features [3], etc. Most of these
approaches completely lack an indexing framework, while
some of the distance measures are non-metric and therefore
are bound to present false dismissals when combined with
an indexing scheme. In [13] Rafiei et. al., present a complete
indexing framework for object boundaries using a fixed set
of Fourier descriptors in conjunction with R-trees. Besides
the different shape signature, our work enjoys the following
two advantages: i) the signature compression is significantly
more efficient, because it considers a different set of Fourier
descriptors per object (the ones holding the highest energy),
ii) the metric based tree structure that is used for storing
the object descriptors has been shown to be more efficient
than R-trees, especially for higher data dimensionalities [6].

A great discriminant of the present work to previous ones
is that the HT based signature can easily accommodate for
shape discontinuities and takes into account not only the
shape boundaries but also the content inside the perime-
ter, allowing for effective shape matching, even when highly
compressed.

8. CONCLUSION
We have presented a complete framework for recognition

of shapes and line drawings in image databases and we
have compared the proposed image signature and distance
measure with other widely used image matching functions
(Hausdorff and Chamfer). The contributions of this paper
are on different levels; first we have presented an elegant
way to extract a rotation invariant image signature using
the Hough Transform and then we have rendered the dis-
tance calculation between signatures efficient using proper-
ties of the Fourier Transform. On the indexing level, we have
presented a compressed metric tree variant, coupled with an
effective lower bounding scheme, which demonstrates excep-
tional pruning power and very low latency.

While the focus of this work was primarily on providing
real-time matching of similar shapes, accuracy was notably
also very high. In future work, we intend to improve even

more on the system accuracy and precision, by using our
system as an initial prefiltering step for other more expensive
matching measures.
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