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Abstract—In this paper, we develop soft decision equalization
(SDE) techniques for frequency selective multiple-input mul-
tiple-output (MIMO) channels in the quest for low-complexity
equalizers with error performance competitive to that of max-
imum likelihood (ML) sequence detection. We demonstrate that
decision feedback equalization (DFE) based on soft-decisions,
expressed via the posterior probabilities associated with feedback
symbols, is able to outperform hard-decision DFE, with a low
computational cost that is polynomial in the number of symbols
to be recovered and linear in the signal constellation size. Building
on the probabilistic data association (PDA) multiuser detector,
we present two new MIMO equalization solutions to handle the
distinctive channel memory. The first SDE algorithm adopts a
zero-padded transmission structure to convert the challenging
sequence detection problem into a block-by-block least-square
formulation. It introduces key enhancement to the original PDA
to enable applications in rank-deficient channels and for higher
level modulations. The second SDE algorithm takes advantage
of the Toeplitz channel matrix structure embodied in an equal-
ization problem. It processes the data samples through a series
of overlapping sliding windows to reduce complexity and, at
the same time, performs implicit noise tracking to maintain
near-optimum performance. With their low complexity, simple
implementations, and impressive near-optimum performance
offered by iterative soft-decision processing, the proposed SDE
methods are attractive candidates to deliver efficient reception
solutions to practical high-capacity MIMO systems. Simulation
comparisons of our SDE methods with minimum-mean-square
error (MMSE)-based MIMO DFE and sphere decoded quasi-ML
detection are presented.

Index Terms—Efficient reception algorithms, equalization
for frequency selective MIMO channels, overlapping sliding
windowing, soft decision.

I. INTRODUCTION

ENORMOUS increase in bandwidth efficiency is promised
by the use of multiple-input-multiple-output (MIMO) sys-

tems in wireless radio frequency links [1]. In high-data-rate ap-
plications, channel-induced intersymbol interference (ISI) can
be mitigated using serial equalization techniques, which unfor-
tunately encounter major challenges in MIMO channels, be-
cause of the need for signal detection in the presence of both
multiple access interference (MAI) as well as ISI. The BCJR
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maximum a posteriori (MAP) [2] and Viterbi equalizers per-
form optimum sequence detection to account for the channel
memory but incur prohibitive complexity that is exponential in
the number of inputs and the channel memory. Their equaliza-
tion complexity can be reduced using standard reduced-com-
plexity methods for single-input channels (e.g., [3], [4]), but
such methods do not apply to MIMO channels. For complexity
considerations, typical equalizers consist of linear processing
of the received signal, i.e., linear equalization (LE), and pos-
sibly past symbol estimation, e.g., decision feedback equaliza-
tion (DFE). The optimum MIMO DFE settings in the minimum
mean-square error (MMSE) sense have been derived in [5]–[8].
In these schemes, tentative decisions on both past symbols and
symbols from MAI sources are made by quantizing properly de-
rived decision statistics. Such a hard-decision-based approach
may suffer from catastrophic error propagation and, in most
cases, incurs nontrivial performance degradation relative to an
optimal maximum likelihood (ML) detector, in terms of the bit
error rate (BER) performance. Recent advances include turbo
detection and equalization [9]–[11], in which low-complexity
soft-input-soft-output (SISO) LE and DFE equalizers are de-
vised based on the MMSE criterion [10].

This work accentuates the low-complexity, near-optimum
equalization for frequency selective MIMO channels by taking
on a soft-decision equalization (SDE) approach. We recognize
that block transmission by zero padding permits the conversion
of sequence detection to block detection; thus, MIMO channel
equalization can be viewed as a general high-dimensional
integer least-square (LS) problem in the form of ,
where is an input vector that takes on finite-al-
phabet values, and are the output vector, the channel
matrix, and the noise vector, respectively. Unique to channel
equalization, the channel matrix entails a special Toeplitz
structure, to be discussed in Section II. The exact ML solution
to the integer-LS problem unfortunately incurs prohibitively
high computational complexity that is exponential in . In
the quest for low-complexity implementations of ML block
detection, quasi-ML solutions have been developed, such
as sphere decoding [12], semi-definite relaxation [13], and
probabilistic data association (PDA) filtering [14], [15]. The
PDA detector [14] provides near-optimal performance at a
low overall complexity of . It employs a multistage
detection structure and replaces the intermediate finite alphabet
symbol decisions by soft decisions, which are expressed via
their associated posterior probabilities. Such a soft-decision
structure leads to significant computation reduction when MAI
is approximated to obey a Gaussian probability distribution:
an idea originated from the PDA filter for target tracking
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[16]. Despite its impressively low BERs, the PDA method in
its current form has limited applications. The original PDA
detector was derived for multiuser detection (MUD) within
the framework of code-division multiple access (CDMA) in
frequency flat-fading channels, in which case, the channel
matrices are confined to be square matrices made of users’
cross-correlation coefficients. Zero-forcing preprocessing
via square matrix inverse is performed in PDA, imposing an
invertibility constraint on .

Symbol detection in practical MIMO systems encounters
pronouncedly different system parameters and compared
with those in MUD for single-channel CDMA. The channel
matrix is typically nonsquare and possibly rank-deficient. For
example, downlink transmissions often face channels that are
fat, that is, there are more columns than rows in . Such a
channel matrix is no longer invertible, even though the system
may still be identifiable for digital inputs. A typical case is
a BLAST system [17] with a larger number of transmit than
receive antennas. Moreover, in high-capacity wireless systems,
the input signal constellation size increases to improve spectral
efficiency, such as quadrature phase shift keying used in
third-generation cellular and 16/64-quadrature amplitude mod-
ulation (QAM) in IEEE 802.11a. Higher level modulation is
one of the primary reasons that obviate ML detection, and it has
not been discussed in the current PDA detection algorithm. In
conjunction with Kalman filtering, the PDA method can handle
a short channel memory length of 2 induced by asynchronism
only [15], but the result cannot be extended to channels with a
longer memory length. The PDA MUD is hampered by these
obstacles; hence, its remarkable features cannot be fully appre-
ciated by wireless MIMO systems. Constructing a successful
PDA-type MIMO channel equalizer calls for a research effort
that is beyond the scope of simple generalization of the existing
PDA block detectors.

In this paper, we propose MIMO SDE techniques that incor-
porate the PDA MUD principle. Different from the hard-de-
cision multistage parallel interference cancellation (PIC), the
SDE approach generates tentative decisions on ISI and MAI
symbols in the form of posterior probabilities instead of quan-
tized bits, and the decision updating is simplified by forcing
the composite effect of noise and interference to be Gaussian:
a strategy used in the PDA detector. The SDE detection perfor-
mance improves with additional iterations and stabilizes quickly
in three to five iterations for high SNR, and seven to 14 iterations
for low SNR. Compared with the suboptimum hard-decision
MMSE-DFE [6], the SDE method demonstrates close-to-op-
timal equalization performance at a comparable low complexity
that is polynomial in the number of inputs and only linear in the
constellation size of . Compared with other quasi-ML methods
such as sphere decoding [12], the SDE is not only competitive
in both performance and complexity but also applies to situa-
tions where sphere decoding does not work well, such as the
fat channel case. The SDE is distinct from PDA MUD in sev-
eral key accounts. First, the SDE approach is tailored to handle
near-optimum symbol sequence detection in the presence of
channel memory, which is difficult to accommodate in PDA
MUD. Our main contribution is to adopt the block transmis-
sion structure via zero padding to enable block detection and to

apply sliding windows for ISI cancellation and noise tracking
to attain near-MAP detection performance at a low complexity.
Second, we propose an alternative implementation of the PDA
principle that eliminates the zero-forcing preprocessing. As a
result, the restriction on full-rank square channel matrices is
lifted. Third, we extend the PDA algorithm to bandwidth-effi-
cient higher level modulation schemes. Through this work, the
potential of the iterative soft-decision PDA philosophy can be
fully enjoyed by practical wireless systems to achieve near-op-
timal, low-complexity detection and equalization.

The ensuing paper is organized as follows. Section II de-
scribes the input–output model for block transmissions through
frequency selective MIMO channels. Section III develops
two SDEs: One applies to a general integer-LS problem by
enhancing the original PDA algorithm with an alternative
implementation that obviates zero-forcing preprocessing; the
other focuses on frequency selective channels and capitalizes
on the distinctive Toeplitz channel structure to reduce the equal-
ization complexity. Analytical comparisons between our SDE
algorithms and the existing iterative methods, including PDA
and turbo SISO-MMSE, are discussed. Section IV performs
evaluation of the proposed MIMO SDE algorithms in terms
of their BER performance and the computational load, with
elaboration on the tradeoffs in choosing the sliding window
size and on their application in the rank-deficient fat channel
case. Comparisons with ML detection, sphere decoding, and
MIMO MMSE-DFE are presented via computer simulations,
followed by a summary in Section V.

II. SIGNAL MODEL

We consider the discrete-time block transmission equivalent
model of a baseband communication system with inputs
and outputs. There are a total of links in this MIMO
system, wherein the link between each input–output pair is mod-
eled as a linear finite impulse response (FIR) dispersive channel
with no greater than symbol-spaced taps in the channel
response. The sampled channel response from the th input to
the th output, including transmit and receive filters, is denoted
by . We adopt a block trans-
mission structure with zero padding to eliminate interblock in-
terference, hence alleviating the performance degradation due
to noise enhancement or error propagation [19]. The informa-
tion-bearing symbols are parsed into -long frames, with the
insertion of zeros at the tail of each frame. The th frame
of the input vector is denoted as

, where contains
the information symbols from all inputs at the th sampling
instant. After zero padding, each -long information-bearing
symbol frame creates a transmit symbol frame of frame
size , where the first entries convey messages

, followed by trailing
zeros , for any frame index and
input . Correspondingly, the received data vector
at the th frame is a concatenation of noise-contaminated
sample vectors , where

consists of the th re-
ceived signals at all outputs. The redundancy per transmitted
frame is measured by the ratio , whereas at the receiver,
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the data rate is reduced by the same amount. We set and
typically choose a large frame size (and ) to maintain the
transmission rate.

In linear FIR channels, the received is expressed
by

(1)

where denotes the additive zero-mean Gaussian
stationary noise received at the th output. The noise terms at
the th transmission frame are grouped into a vector

, where
, and the covariance of is denoted

by . With these definitions, the single-link
input–output model (1), when assembled into the vector-matrix
format, results in a MIMO channel model in the form of

, where the MIMO channel matrix takes on a banded
Toeplitz structure [19]:

...
. . .

. . .
...

(2)

where

...
...

(3)

Sequence detection incurred by the channel memory can now
be alternatively solved by frame-by-frame symbol detection, for
which we will drop the subscript without raising confusion.
This system model subsumes a broad range of MIMO transmis-
sion scenarios. The multiple input could result from the combi-
nation of three situations:

i) multiple transmit antennas with a single user, e.g., the
single-user space-time coding case;

ii) single transmit antenna with multiple users, e.g., as
encountered in the single-channel multiuser detection
problem;

iii) transmit-induced diversities including orthogonal fre-
quency division multipexing (OFDM) and CDMA.

Thus, the number of inputs is determined by both the number
of transmit antennas and the number of multiple-access users.
Meanwhile, multi-output is invoked when there are multiple re-
ceive antennas and/or when fractional sampling is used. Thus,

is determined by the total number of distinct samplers oper-
ating within a symbol period.

With this MIMO model, the integer-LS problem described
in the Introduction deals with a channel matrix of size

, where and . The optimal

ML solution to such a MIMO system faces a major implemen-
tation challenge, as its complexity increases exponentially in

, and . Our objective in this paper is to develop
soft-decision-based symbol detection and channel equalization
schemes that achieve near-optimal BER performance at low
polynomial complexity. Throughout, the MIMO channel is as-
sumed to be frequency selective and slowly varying. It is time in-
variant within each frame of symbol periods but may change
independently from frame to frame. We suppose the receiver has
perfect knowledge of the channel state information and the
noise variance .

III. NEAR-OPTIMUM SDE

We now develop SDE methods based on the PDA-type soft-
decision multistage detection principle. We begin by enhancing
the PDA detector to enable its applicability to a generic block
transmission system with higher level modulation. A key mod-
ification is to associate each symbol with its channel response
vector when deriving its posterior probability density function
(pdf) and updating its soft decisions. This strategy eliminates
the preprocessing of channel matrix inversion, thus relaxing the
constraint on channel invertibility. Next, we develop a new SDE
algorithm that is specifically tailored to near-optimum symbol
detection in channels with memory. Taking advantage of the
Toeplitz channel matrix structure, we apply a series of overlap-
ping sliding windows to obtain reduced-complexity local MAP
estimation of current symbols and, at the same time, track the
ISI and noise components to ensure near-optimum performance.
The overall computational load is reduced to a fraction (propor-
tional to the transmission redundancy) of that of the enhanced
PDA solution. For each SDE algorithm, we present efficient im-
plementations of the iterative soft-decision updating rule to fur-
ther reduce the complexity.

A. SDE by PDA Enhancement

In the general MIMO model , we emphasize the
th element of by rewriting the received signal as

(4)

where and are the th and th columns of , re-
spectively, denoting the channel responses of and

, as shown in Fig. 1(a). The transmitted bits take
values from a finite alphabet set on -ary mod-
ulation, where the modulation format is typically chosen from
phase shift keying (PSK) and QAM. Given , there are poste-
rior probability values associated with each digital input, which
we denote as , for and

.
Finite-alphabet symbol detection on can be alternatively

carried out by estimating , giving rise to soft decisions.
Unfortunately, direct evaluation of via the corresponding
likelihood function still incurs exponential complexity
in , considering that is a Gaussian mixture with

modes [22]. To avoid the combinatorial complexity,
we adopt the PDA filtering idea and treat the transmitted
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Fig. 1. Channel models. (a) SDE-1. (b) SDE-2. Each vertical line represents
the signature vector of the corresponding input denoted by a horizontal line.
The length of the signature vector determines the detection complexity for the
corresponding input.

symbols as Gaussian random variables. Since the
FIR MIMO channel is a linear system, the posterior pdf of

remains Gaussian; thus, it can be fully characterized by
its mean and variance, conditioned on the received signal .
Define and cov as the
conditional mean and covariance of , respectively. These
definitions are different from [14], noting that each symbol
is now associated with its channel response vector , instead
of a simple unit vector. Such definitions eliminate the need
to perform the channel decorrelating preprocessing in [14],
which is not applicable for nonsquare channel matrices and
rank-deficient channels. When the transmitted symbols are
independent and identically distributed (i.i.d.), it follows from
(4) that

(5)

var (6)

where ( denotes the magnitude of a complex quantity)

(7)

var

(8)

In antipodal signaling, , which leads to
, and

var , which corroborates [14].
When is approximated as a Gaussian vector with the

matched mean and covariance, its pdf can be described by
and as follows:

(9)

This pdf calibrates the posterior probabilities of all possible
constellation points of , and the soft decisions can be derived
from (9) by setting , where is a
normalization factor such that . Note that
the conditional pdf in (9) is determined by and , regardless
of the constellation size . Therefore, the overall complexity
of evaluating all soft decisions is linear in .

To obtain in an efficient manner, we introduce the ratios
, for , which can be deduced

from (9) as

(10)

Using the probability normalization condition ,
we obtain

(11)

Subsequently, the MAP estimate of is decided to be the
value that yields the largest . The decision rule can be fur-
ther simplified in the special binary modulation case [14], [18].

For algorithm implementation, we note that computing
for one input involves computing and

, where both depend on of all other inputs
. This intertwined relationship among all unknown

inputs prompts an iterative multistage procedure [14], where the
pair is computed from (5) and (6) based on tentative

soft decisions obtained at a previous stage. Each
can be updated from (11) successively until all

converge for all , followed by decision making on
this frame of symbols via the MAP rule.

In the above iterative soft-decision updating procedure, the
most computationally expensive operation is to compute the co-
variance matrix inverse , which incurs complexity on the
third order of the number of outputs . Direct matrix inversion
can be avoided using the matrix inversion lemma, which will
lower the overall complexity by an order. This speed-up mea-
sure is discussed in [14], and it shares the same principle with
the widely used recursive least-square (RLS) adaptive filtering
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TABLE I
SOFT DECISION EQUALIZATION ALGORITHM: SDE-1

[21]. We now describe these results for our -ary modulation
case.

First, we form two auxiliary variables:
is the conditional mean of the noise

term , and var is
the conditional covariance matrix of . Apparently

(12)

var (13)

Applying the matrix inversion lemma on (13) yields [21]

var
var

(14)

and, conversely

var

var
(15)

By keeping the updated versions of and and
can be obtained from (12) and (14) at a low com-

plexity of for each input and an overall complexity
of in one iteration. The overall soft-decision MIMO
equalization algorithm, which is enabled by zero-padded block
transmission, is summarized in Table I.

B. SDE by Sliding Windowing

So far, we have not utilized the unique Toeplitz structure
of the channel matrix in the equalization problem. When the
pdfs in (9) are computed via matrix operations, the complexity
of the Gaussian-forcing MAP detection is determined by the
length of each input’s channel response vector , which is

in the SDE-1 algorithm. On the other hand,
when the block size is chosen to be much larger
than the channel length to reduce the transmission redun-
dancy, there are a large number of zeros in the channel matrix,

which could be avoided to save computation. Next, we utilize
the effective portion of each channel response vector and con-
struct a soft decision approach that is tailored to the equalization
problem. The objective is to maintain the near-MAP detection
accuracy of SDE-1 and, at the same time, reduce the computa-
tional complexity to be proportional to the channel memory
instead of the frame size .

1) Algorithm Development: Revisiting the signal model
(4) illustrated in Fig. 1(b), we divide the symbol vector

into sub-blocks , where each sub-block
contains the information

symbols from all inputs at the th sampling instant.
Due to the finite channel memory length, only af-
fects output elements, which we group into

[see Fig. 1(b)]. This
output block contains the sufficient statistics of , as
well as contributions from residual ISI elements .
Compared with , the reduced-sized vector contains
all the observations relevant to . It is thus possible to
construct an optimum detector for from in lieu
of , provided that the contributions from other symbols to
this output block are properly accounted for, possibly through
ISI cancellation and noise tracking. Focusing on one input
sub-block at a time, we will convert the signal model in (4)
into a set of sub-models, each describing one of the
sufficient statistics , such that each sub-model can
be expressed by shorter channel response vectors compared
with (4). In the th sub-model depicted by the shaded area in
Fig. 1(b), we denote the channel response matrix from the th
input sub-block to by , which refers to
the sub-block matrix of at the intersection of the th row
sub-block and the th column sub-block. To be exact, it is the
portion of bordered by the th to the th
columns and the th to the th rows.
There are columns in ,

where is the channel response vector

of during the -dependent observation window cov-
ering the th to the th symbol periods. It is further
observed that when represents the nonzero
portion of each column block and is independent of . In fact,

, which happens
to be the -tap FIR MIMO channel impulse response.
With these definitions, can be obtained from the general
signal model (4) by sliding over a -dependent observation
window of symbol periods, yielding

(16)

where is the zero-mean white
Gaussian noise component that falls within the sliding window.
Its covariance matrix is readily available
as a sub-block of . Hence, we have estab-
lished reduced-sized sub-models, resulting from overlapping
sliding observation windows.
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Next, we will show how to utilize the enhanced PDA MUD
detector within each reduced-sized sub-model for symbol-by-
symbol detection. Focusing on in the th sliding window
described by (16), we further dissect the channel matrix
and represent the nonzero (effective) portion of the channel re-
sponse vector for as , which is the th column of

and is independent of . Define
as the posterior probabilities of the

-ary modulated symbol . The conditional mean and
variance of are then given by

(17)

var

(18)

respectively. To make MAP detection on , the task now is
to evaluate its posterior probability distribution. We suppose the
posterior pdf is Gaussian after the Gaussian forcing approxima-
tion, hence, can be fully characterized by its mean and variance
conditioned on .

Defining and

emphasizing each individual element in , we rewrite
(16) as

(19)

Equation (19) follows the same structure as (4); hence, the
SDE-1 algorithm can be applied within this local time window
for detecting . To do so, we express the signal component
from by

(20)

The conditional mean and covariance of are thus
given by

(21)

cov

cov (22)

To obtain the conditional mean and covariance of , we
adopt the following approximations for all and

(23)

var var (24)

As a result, we have

(25)

cov

(26)

Now, we are ready to use the enhanced PDA framework
to compute the soft-detection on . As a result of the
Gaussian forcing approximation, the posterior probabilities of

can be obtained as

(27)

where . Once the posterior probabilities
are established

from (27), the MAP detection on can be made in
the same manner as described in (10) and (11).

2) Iterative Implementations: As discussed in SDE-1, the
evaluation of posterior probabilities for each
input involves computing and , which
are dependent on not only the unknown of MAI
symbols at the th sampling time but, in addition,
on the unknown of ISI symbols .
Algorithm implementation via iterative multistage processing
is, thus, in order. Similar to the speed-up strategy described
in (14) and (15), we introduce two auxiliary variables that
are instrumental to computational saving in updating the

pair: One is the conditional mean of the
noise term ,
given by

(28)
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The other is the conditional covariance matrix of in
the form of

var

var

(29)

Both and take into account of the channel responses
to all the elements in and all the ISI components as well.
For reasons that will be explained in Section III-B3, we term the
updating of due to the ISI components as soft ISI cancel-
lation and that of as noise tracking.

An obvious contrast between (21) and (22) and (28) and (29)
shows that

(30)

(31)

Therefore, for within each local window , we
have

(32)

(33)

During iterative processing, and are first up-
dated via (30) and (32), using tentative soft information
and from the previous stage. Subsequently, the poste-
rior pdf of can be computed from (27), yielding up-
dated soft information and of the current
stage. The auxiliary variables and are then updated
via (30) and (33) using the new values. Bear in mind that
in each sliding window only yields the soft information of one
input block , but also affects previous overlap-
ping windows and future overlapping windows

. Therefore, there are additional
pairs of auxiliary variables that need to be
updated from the new estimates of . The updating of these
ISI pairs can be carried out instantaneously when any

and become available or after these soft-information
values are updated for all and ,
resulting in two implementation procedures of different compu-
tational loads.

In the first procedure, we update the related ISI auxiliary pairs
whenever and become available for any
and . Following (28), an auxiliary ISI mean can be updated by

(34)

TABLE II
SOFT DECISION EQUALIZATION ALGORITHM: SDE-2 (I)

To update , it is observed from
(29) that

(35)

where is indepen-

dent of . Based on (35), we can apply the matrix inversion
lemma twice to update from and

(36)

(37)

The intermediate matrix inverse plays a similar role to
the updating of as to . The computational load
of updating all the relevant auxiliary variables for each input is
on the order of , which represents
an approximate reduction compared with the SDE-1 algo-
rithm. The overall algorithm is summarized in Table II.

In the above procedure, overlapping time windows are pro-
cessed in serial, resulting in a total of
times updating the auxiliary pairs inside each stage. To reduce
the number of covariance matrix inverse to be processed, we
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TABLE III
SOFT DECISION EQUALIZATION ALGORITHM: SDE-2 (II)

may take an alternative procedure to update the auxiliary ma-
trices . In each stage, we first process the
local windows in parallel to update the soft decisions of all in-
puts , using tentative decisions and auxiliary vari-
ables from the previous stage. When all the new soft-informa-
tion values are available, we recalculate the auxiliary pairs

, possibly by using their definitions in (28)
and (29). On average, there are only pairs of auxiliary vari-
ables to be updated inside each stage, and the complexity order
per symbol is the smaller of (when
the matrix inversion lemma is used) and (when
direct matrix inversion is used). This procedure is summarized
in Table III. The implementations in both Tables II and III are
expected to converge to the SDE-1 algorithm, which have been
verified in our simulations. The second procedure offers a com-
plexity advantage when the channel length is much less than the
frame size, i.e., .

3) Comparisons With Existing Algorithms: The SDE-2
MIMO equalizer resembles a concatenation of a series of
enhanced PDA/SDE-1 detectors, each operating on a truncated
sub-model to reduce the overall complexity. It is worth empha-
sizing that the pdf estimators in (9) for SDE-1 and in (27) for
SDE-2 are equivalent when both converge to the steady state.
The only approximations involved are (23) and (24), which, if
at the steady state, does not incur performance loss. The multi-
stage iterative processing nature of the SDE algorithms prompts
their links with the PIC [22] and the soft-input-soft-output
(SISO) MMSE detector that was developed for turbo detection.
Next, we compare SDE with existing interference cancellation
techniques.

a) Comparison With Hard-Decision PIC: In each trun-
cated output vector can be viewed as the
interference to the desired symbol block , and the sub-
model (19) can be written as

. This appears to be deduced from (16)
using the PIC structure [22]. A close examination shows that the

SDE-2 method treats the tentative decisions on differently
from PIC. An equivalent model for SDE-2 is described as

(38)

where the observation vector is modified to in the form of

(39)

The noise term is independent of and is assumed to
be Gaussian with zero-mean and covariance being equal
to cov in (26), i.e.,

(40)

The efficacy of (38) can be established by the fact that both
and in (21) and (22) that are required to fully characterize
the posterior pdf of can be equivalently obtained from
(38)–(40). Compared with PIC, our SDE-2 method entails three
major differences.

i) The finite-alphabet ISI symbols are cancelled out
by their soft-decision alternative instead
of tentative hard decisions.

ii) In addition to the soft-decision interference cancellation,
the conditional variances of the soft estimates are tracked
and lumped into the variance of noise , as seen in
(40). In contrast, hard-decision PIC does not change the
statistics of the noise term during iterations. Due to
this key noise tracking step, the formulation in (38) re-
tains optimality subject to the Gaussian forcing approxi-
mation, whereas the conventional PIC is suboptimum.

iii) The SDE-2 method performs interference cancellation
along overlapping blocks, using a sliding window of size

outputs, such thatall theobservations related to
each input are retained within the corresponding window.
The conventional PIC receiver, on the other hand,operates
on a nonoverlapping sliding window of size 1.

b) Comparisons Between SDE, PDA, and SISO-MMSE-
Based Turbo Detection: The soft-decision iterative processing
nature of our SDE algorithms prompts their links to turbo signal
processing. In turbo detection [9], soft information in the form
of log-likelihood ratios (LLR) is exchanged; interchangeably,
the PDA, SDE-1, and SDE-2 methods iteratively feed back the
means and variances of Gaussian distributed random symbols.
We now compare the multistage Gaussian forcing principle used
in PDA, SDE-1, and SDE-2 with the SISO-MMSE-based turbo
principle for uncoded systems. For different algorithms, we will
explain the posterior probabilities derived for in the general
model . The comparison will be
based on binary modulation.

In SDE-1 for binary signaling, the posterior probability dis-
tribution of in (9) is reduced to

(41)

where and are given by (5) and (6), respectively.
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The PDA algorithm focuses on MUD in synchronous CDMA
multiple access, where is a real-valued, square cross-correla-
tion matrix, and the noise variance is . Let
represent a Gaussian random variable with mean and variance

. Under the special system setup, the PDA MUD establishes
a Gaussian model for in the form of [14]

(42)

where
var , and is a column vector whose th ele-
ment is 1, whereas all other components are 0. Premultiplying

on both sides of (42) yields

(43)

The soft decision made by PDA is thus given by

(44)

Using the equality , it can be established that
. Therefore, the PDA result in (44) is

the same as that of SDE-1 in (41) in this special case. As an
enhancement to PDA, our SDE-1 algorithm does not restrict

to be proportional to , and it applies even when
does not exist.

The SISO-MMSE method generates an MMSE filtered deci-
sion statistic for estimating , where boils down to of [9,
(41) and (50)]

(45)

The LLR of is thus given by

(46)

The comparison between SISO-MMSE and PDA (a special case
of SDE-1) is clearly illustrated by the similarities and differ-
ences between (43) and (44), and (45) and (46).

As to the SDE-2 method, it is specially tailored to the equal-
ization problem with a Toeplitz channel structure; therefore, it
is not directly comparable with the existing turbo detectors. In-
terestingly, the iterative processing in SDE-2 suggests the flow-
chart in Fig. 2, which interprets the algorithm by a turbo struc-
ture in which two major function blocks (MUD and ISI can-
cellation) exchange information in an iterative manner. SDE-2
builds on the Gaussian forcing idea and incorporates sliding
windowing to reduce the overall complexity without sacrificing
the detection performance. The key to retaining optimality after
data truncation is to carry out the noise tracking step (40) prior to
each reduced-dimension local SDE-1 detection on (38). Noise
tracking via Kalman filtering has appeared in the context of
PDA detection for asynchronous CDMA under frequency flat
fading [15]. Such a PDA-Kalman tracker cannot be generalized
to track the noise in a channel with a memory length
since the underlying dynamic model is no longer first-order,
thus obviating Kalman filtering. In our development, we inter-
pret noise tracking as a means to update the variance of the
ISI estimates. This viewpoint allows us to generalize the noise

Fig. 2. Turbo-like flow chart of the SDE-2 algorithm.

tracking method easily to channels with long memory length,
and there is no need to perform channel Cholesky decomposi-
tion and Kalman filtering, as in [15].

IV. ALGORITHM EVALUATION AND SIMULATIONS

In this section, we investigate the characteristics of our
two soft-decision equalization methods through computer
simulations. In both the SDE-1 and SDE-2 algorithms, the soft
decisions are derived to converge to the sequence MAP esti-
mates through multistage iterations; therefore, close-to-optimal
symbol detection performance is anticipated. On the other
hand, Gaussian forcing explains the low-complexity feature of
these SDE methods. These claims will be verified here by com-
parisons with other competing methods, including the optimum
ML detection by brute-force enumeration, quasi-ML by sphere
decoding (SD) [12], [20], and the suboptimal hard-decision
MIMO FIR MMSE-DFE method [6]. Performance metrics of
interest are the BER performance in both full column-rank
and rank-deficient channels, as well as the computational
complexity in terms of the number of operations versus the
frame data size .

A. BER Performance in Full-Rank MIMO Channels

In the simulated MIMO system, each input–output radio link
is generated independently from the broadband wireless high
performance European radio LAN (HIPERLAN) model [23],
[24]. The channels are complex-valued, and the noise is as-
sumed to be complex white Gaussian. The time-varying FIR
channels are generated according to the channel model A spec-
ified by ETSI for HiperLAN/2 [23], resulting in a maximum
channel memory length of symbols. Each channel tap
varies according to Jakes’ model with a maximum Doppler fre-
quency of 52 Hz, corresponding to a typical terminal speed and
a carrier frequency of 5.2 GHz.

We study the BER performance versus the signal-to-noise
ratio (SNR) of various detectors under different modulation
schemes and numbers of antennas. The total transmit power is
held constant, irrespective of the number of transmit antennas.
For each given SNR, the simulation keeps running until the
number of errors for the (near-optimum) sphere decoding
algorithm reaches 100 or greater. With this number of errors,
the simulated BER is within 20% of the true BER.

We start with the case of more number of receive antennas
than transmit antennas, i.e., . Due to the block trans-
mission structure with a transmit redundancy of padded zeros,
the Toeplitz channel matrix in (2) has a full column rank



730 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 3, MARCH 2004

Fig. 3. Performance comparison under 16/64QAM, N = 1; N = 4.

Fig. 4. Performance comparison under 16/64QAM, N = 2; N = 4.

of and is guaranteed invertibility, irrespective of
channel nulls [19].

Fig. 3 illustrates the performance comparison of SDE-1,
SDE-2, SD, FIR MMSE-DFE, and ML (by brute-force search)
for and . The symbol block size is chosen
as 8. The results for both 16- and 64-QAM are presented.
The same MIMO setup is considered in Fig. 4, except that the
number of transmit antennas is increased to . In both fig-
ures, it can be seen that the BER curves of SDE-1, SDE-2, and
SD are nearly identical for different high-bandwidth-efficiency
modulation schemes. They all approach that of the optimum
ML detection. This corroborates the near-optimum property of
the reduced-complexity SDE-2 technique. FIR MMSE-DFE,
however, experiences nontrivial performance degradation in all
the above scenarios. The performance gap in the case is
more pronounced than that in the case. As increases,
the information-theoretic capacity is expected to grow linearly
in , given [1]. MMSE-DFE cannot deliver the
desired performance as capacity-driven MIMO systems exploit

Fig. 5. Performance comparison in fat channel case, N = 3;N = 1.

more transmit antennas. On the other hand, our SDE methods,
with their near-optimum performance, are very promising
candidates to bring the potency of MIMO systems to practice.

B. BER Performance in Rank-Deficient MIMO Channels

Rank-deficient MIMO channels exist in many wireless sce-
narios, such as in mobile downlink transmission, where there
is typically more transmit than receive antennas. A so-called
fat channel matrix arises when , which means
that has more columns than rows, and its pseudo-inverse
no longer exists. This poses a significant challenge for symbol
detection since a input data vector is projected onto
an output/observation space of a smaller dimension
[20]. Such a channel is identifiable only when each distinct
finite-alphabet input can be mapped into a distinct and
resolvable output when free of noise. Even when the system
identifiability condition is satisfied, a rank-deficient channel
is difficult to process. First, many detection techniques that
require channel invertibility do not apply. This includes the
linear zero-forcing and MMSE detectors [22] and the original
PDA MUD filter [14]. Second, even when a detector does not
face implementation difficulty, its detection performance may
exhibit an unacceptably large noise floor. Examples include
FIR MMSE-DFE and SD. In MMSE-DFE, a fat channel matrix
severely reduces the power efficiency of the feedforward filter,
which in turn compromises ISI cancellation in the feedback
filter design. The original SD judiciously uses the lattice
structure of the finite-alphabet input data to perform quasi-ML
search at a low complexity. Unfortunately, such a lattice search
is infeasible for [12], and the generalized SD
(GSD) does not preserve optimality due to a reduced-dimension
lattice projection [20].

To investigate the behavior of our SDE methods in the
fat-channel case, we choose a MIMO setup with
receive antenna, transmit antennas, and a block size of

. The corresponding channel matrix is thus 13 15 in
dimension. In Fig. 5, the performance of channel equalization
by brute-force ML is plotted as a baseline, along that of
SDE-1, SDE-2, GSD, and MMSE-DFE. The BER values for
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both MMSE-DFE and GSD stay above , even for high
SNR. The SDE methods also incur considerable performance
degradation compared with the optimum ML but do not seem to
exhibit an error floor. Intuitively, soft-decision-based methods
with Gaussian forcing track the composite covariance of MAI
components as noise. Even when there is a rank reduction, or
some MAI components are too close in the signal space, the
composite noise effect could still retain full rank under the
ill-conditioned channel, thus leading to convergence in symbol
detection. The performance of SDE in this case could be poten-
tially improved by input ordering inside the iterative process.
Since soft decisions are updated sequentially based on tentative
decisions made previously, a good input-ordering mechanism,
which starts the soft-decision estimation from stronger and
well-identifiable inputs to weaker and less-separable inputs,
can be expected to enhance the detection performance, possibly
to near-optimum. Finding effective input-ordering methods for
SDE is one of our future research topics. Other prominent so-
lutions to tackle rank-deficient channels include complex-field
transmitter precoding, which will not be discussed here, as we
focus on channel equalization at the receiver end.

C. Complexity Evaluation

As we explained in Section II, the input size in a
MIMO system may come from multiple access and/or multiple
antennas; therefore, it is potentially very large for a high-ca-
pacity MIMO system. The computational load of the optimum
ML detection is , where is the alphabet size of the
input data. Such complexity is infeasible for a high-capacity
(large ), high-throughput (large ) system, which motivates
the search for near-optimal, low-complexity symbol detection
and channel equalization solutions.

Quasi-ML by sphere decoding entails polynomial complexity
on the order of , [12],
where is a lower bound for the eigenvalues of the Gram
matrix , and is the square of the initial searching
radius. Choosing a large value for improves the BER perfor-
mance but also incurs higher complexity. Typically, close-to-op-
timal performance can be achieved at a polynomial complexity
index between 3–6.

The SDE algorithms are iterative routines that compute the
posterior probabilities of each input symbol in a sequential
fashion. The number of iterations required for convergence
varies from one input to another. Based on our MIMO setups,
we have observed from simulations that the posterior proba-
bilities typically converge in three to five iterations for higher
SNR ( dB), and in seven to 14 iterations for lower SNR
( dB). In each iteration, the computational load is mainly
composed of two parts: One results from computing
and the other from evaluating the posterior probabilities using
(9) or (27). If we define as the sliding window length in
terms of the number of sub-blocks, then the number of symbols
within the window is defined by . The value is
also the size of the covariance matrix . In the following
discussions, we evaluate the performance-complexity tradeoff
in choosing the window size .

1) Full-Size Windowing : This case corresponds
to the SDE-1 algorithm. There is only one full-size window;

Fig. 6. Performance versus m.

therefore, all the output sub-blocks are processed simultane-
ously. The dimension of the covariance matrix and the
auxiliary matrix are both determined by . Because the
matrix inversion lemma is used, the complexity of computing

is . The complexity involved in evaluating
posterior probabilities is per symbol. Hence, the
overall complexity per symbol is on the order of .
The complexity for detecting symbols in one iteration is then
given by . Noting , the complexity of
SDE-1 per symbol is on the second-order polynomial in the
input size and is only linear to the constellation size .

2) Optimum Window Size : This case
corresponds to the SDE-2 algorithm. SDE-2 takes advantage
of the sparse Toeplitz structure of the channel matrix to reduce
the equalization complexity. The sliding window only contains
the nonzero part of the channel response vector. A symbol can
at most affect output blocks in a -memory channel.
These output blocks form the sufficient statistics of
each symbol. As a result, SDE-2 can retain the near-optimum
performance and, at the same time, save the computational
cost. In SDE-2, computing and updating the auxiliary
matrix costs . Finding the pdfs of each symbol
takes operations. The overall complexity per symbol
is then , and the complexity per iteration is

. Compared with SDE-1, the dimension
of each conditional covariance matrix is reduced from

(corresponding to in SDE-1) to , thus
lowering the complexity order of from 2 to 1 per input. More
impressively, such a complexity reduction does not induce
noticeable BER performance loss.

3) Suboptimum Window Size : The
implementation procedures for SDE-2 can be used when the
window size . As shrinks, the complexity

decreases. However, since the sliding
window only covers a portion of the channel response for the
intended input, the algorithm does not make full use of the suf-
ficient statistics, leading to performance degradation. In Fig. 6,
we plot the BER curve at a sliding window size of , along
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Fig. 7. Complexity versus N .

Fig. 8. Complexity versus N .

with SDE-1 and SDE-2 . It is shown that
the small window size yields inferior performance to the other
two near-optimum schemes. In fact, is the optimal
window length because a longer length does not render better
performance, but the complexity increases, whereas a shorter
length sacrifices the performance. When , the algorithm
becomes a symbol-by-symbol equalization technique, and
therefore, the performance cannot match up to that of sequence
detection in ISI channels.

The complexity evaluation results are further verified by sim-
ulations in Figs. 7 and 8. The system parameters are set to

, and and . The computational
load in terms of the number of operations versus the data block
size is depicted for each detection method in Fig. 7. Our
SDE methods, along with SD and MMSE-DFE, avoid asymp-
totic computational explosion suffered by the brute-force ML
algorithm at a large data size. More detailed comparison of these
low-complexity algorithms are illustrated in Fig. 8. In this simu-
lation setting, the sphere decoder has the same third-order com-
plexity in as the SDE-1 algorithm. This is not always the case,

as the complexity of SD could be higher if the Gram matrix
has very small eigenvalues, and the search radius is chosen to
be large. The overall complexity of the SDE-2 algorithm is be-
tween SD and SDE-1, but asymptotically, its complexity order
in is only 2 instead of 3, as witnessed by its close match with
the function at large . Such a reduction in the complexity
order will pay off for high-capacity MIMO systems.

V. SUMMARY

Soft-decision based equalization techniques have been de-
veloped in this paper for frequency selective MIMO multipath
channels. Relying on iterative posterior probability updating
and PDA-type Gaussian forcing, the proposed SDE algorithms
attain remarkable near-ML performance at low complexity
that is polynomial (on the third-order) in the input and output
sizes and linear in the modulation constellation size. Unlike
existing fast MUD algorithms, our development for MIMO
channel equalization relies on zero-padded block transmission
to enable block detection for a sequence detection problem
and capitalizes on the distinct Toeplitz channel structure to
simplify the equalization complexity. Near-optimum symbol
detection in the presence of channel memory is attained by
virtue of soft-decision MAP multiuser detection, multistage ISI
cancellation, and implicit noise tracking. Our algorithms also
apply to rank-deficient channels, provided that the channels
are identifiable for the signal constellation. This work not only
establishes the soft-decision approach as an attractive candidate
for near-optimum channel equalization and symbol detection
for practical MIMO systems but also enhances the applicability
of the original PDA filter to a generic integer-LS problem
that is omni-present in many signal processing and wireless
communications applications.
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