
1

Animated Impostors for Real-time Display of
Numerous Virtual Humans

Amaury Aubel, Ronan Boulic, Daniel Thalmann
Computer Graphics Lab

Swiss Federal Institute of Technology (EPFL)
CH 1015 Lausanne, Switzerland

Tel: +41 21 693 52 14 Fax: +41 21 693 53 28
e-mail: {aubel,boulic,thalmann}@lig.di.epfl.ch

Abstract

Rendering and animating in real-time a multitude of articulated characters presents a real challenge and few
hardware systems are up to the task. Up to now little research has been conducted to tackle the issue of
real-time rendering of numerous virtual humans. However, due to the growing interest in collaborative
virtual environments the demand for numerous realistic avatars is becoming stronger.
This paper presents a hardware-independent technique that improves the display rate of animated characters
by acting on the sole geometric and rendering information. We first review the acceleration techniques
traditionally in use in computer graphics and highlight their suitability to articulated characters. Then we
show how impostors can be used to render virtual humans. Finally we introduce concrete case studies that
demonstrate the effectiveness of our approach.

Keywords: virtual humans, level-of-detail, impostors, image caching, image-based rendering.

1. Introduction

Even though our visual system is not deceived yet when confronted with virtual humans, our acceptance
of virtual characters has greatly improved over the past few years. Today’s virtual humans faithfully
embody real participants in collaborative virtual environments for example and are even capable of
conveying emotions through facial animation [1]. Therefore, the demand for realistic real-time virtual
humans is becoming stronger. Yet, despite the ever-increasing power of graphics workstations, rendering
and animating virtual humans remain a very expensive task. Even a very high-end graphics system can
have trouble sustaining a sufficient frame rate when it has to render numerous moving human figures
commonly made up of thousands of polygons. While there is little doubt that hardware systems will
eventually be fast enough, a few simple yet powerful software techniques can be used to speed up
rendering of virtual humans by an order of magnitude.

Because 3D chips were not affordable or did not even exist in the 80s, video game characters, human-
like or not, were then represented with 2D sprites. A sprite can be thought of as a block of pixels and a
mask. The pixels give the color information of the final 2D image while the mask corresponds to a binary
transparency channel. Using sprites, a human figure could easily be integrated into the decor. As more
computing power was available in the 90s, the video game industry shifted towards 3D. However, the
notion of sprites can also be used in the context of 3D rendering. This has been successfully demonstrated
with billboards, which are basically 3D sprites, used for rendering very complex objects like trees or plants.
In our opinion image-based rendering can also be used in the case of virtual humans by relying on the
intrinsic temporal coherence of the animation.

Current graphics systems rarely take advantage of temporal coherence during animation. Yet, changes
from frame to frame in a static scene are typically very small, which can obviously be exploited [9]. This
still holds true for moving objects such as virtual humans providing that the motion remains slow in
comparison with the graphics frame rate. We present in this paper a software approach to accelerated
rendering of moving, articulated characters, which could easily be extended to any moving and/or self-
deforming object. Our method is based on impostors, a combination of traditional level-of-detail techniques
and image-based rendering and relies on the principle of temporal coherence. It does not require special

2

hardware (except texture mapping and Z-buffering capabilities, which are commonplace on high-end
workstations nowadays) though fast texture paging and frame buffer texturing is desirable for optimal
performance.

The next section gives an overview of the existing schemes that are used to yield significant rendering
speedups. Section 3 briefly describes our virtual human model and discusses the limitations of geometry
level-of-detail techniques. The notion of dynamically generated impostors is introduced in section 4 with
the presentation of an algorithm that generates virtual humans from previous rasterized images. In section 5
the duration of the validity of the image cache is discussed. The following section then shows how this
method can be embedded in a large-scale simulation of a human flow. Finally section 7 concludes the paper
with a summary of the results we obtained and leads on to some possible future work.

2. Background

There exist various techniques to speed up the rendering of a geometrical scene. They roughly fall into
three categories: culling, geometric level-of-detail and image-based rendering which encompasses the
concept of image caching. They all have in common the idea of reducing the complexity of the scene while
retaining its visual characteristics. Besides, they can often be combined to produce better results, as shown
in sections 3 and 4.

Culling algorithms basically discard objects or parts of objects that are not visible in the final rendered
image: an object is not sent to the graphics pipeline if it lies outside the viewing frustum (visibility culling)
or if it is occluded by other parts of the scene (occlusion culling). Luebke and Georges described an
occlusion culling system well suited for highly occluded architectural models that determines potentially
visible sets at render-time [3]. One major drawback of occlusion culling algorithms is that they usually
require a specific organization of the whole geometry database: the scene is typically divided into smaller
units or cells to accelerate the culling process. Therefore, they perform poorly on individual objects.
Because of this restriction it is no use trying to apply occlusion techniques to virtual humans if they are
considered individually as we do. Nevertheless, occlusion culling might be contemplated at a higher level if
the virtual humans are placed in a densely occluded world, as could be the case when simulating a human
crowd for instance.

Geometric level of detail (LOD) attempts to reduce the number of rendered polygons by using several
representations of decreasing complexity of an object. At each frame the appropriate model or resolution is
selected. Typically the selection criterion is the distance to the viewer although the object motion is also
taken into account (motion LOD) in some cases. The major hindrance to using LOD is related to the
problem of multi-resolution modeling, that is to say the automatic generation from a 3D object of simpler,
coarser 3D representations that bear as strong a resemblance as possible to the original object. Heckbert and
Garland [4] presented a survey of mesh simplification techniques. More recently, some more work has been
done to provide visually better approximations [5,6]. Apart from the problem of multi-resolution modeling,
it is usually quite straightforward to use LODs in virtual reality applications. Funkhouser and Séquin
described a benefit heuristic [15] to select the best resolution for each rendered object in the scene. Several
factors are taken into account in their heuristic: image-space size so as to diminish the contribution of
distant objects, distance to the line of sight because our visual system perceives with less accuracy objects
on the periphery, motion because fast moving objects tend to appear blurred in our eyes. In addition,
objects can be assigned different priorities since they all may play not an equal role in the simulation.
Finally, hysteresis is also taken into consideration in order to avoid the visually distracting effect that
occurs when the object keeps switching between two LODs. Recently Pratt et al. [14] have applied
geometric LODs to virtual humans in large-scale, networked virtual environments. They used heuristic to
determine the viewing distances that should trigger a LOD switch. Each simulated human has four different
resolutions ranging from about 500 polygons down to only three polygons. However, their lowest
resolutions are probably too coarse to be actually used unless the virtual human is only a few pixels high, in
which case another technique than polygon rendering may be considered.

Finally, image caching is based on the principle of temporal coherence during animation. The basic idea
is to re-use parts of the frame buffer content over several frames, thus avoiding rendering for each frame
the whole scene from scratch [2]. The hardware architecture Talisman [7] exploits this temporal coherence
of the frame buffer: independent objects are rendered at different rates into separate image layers which are

3

composited together at video rate to create the displayed image. In addition, the software host is allowed to
maintain a priority list for the image layers, which means that objects in the foreground can be updated
more frequently than remote objects in the background. From a software point of view Maciel et al. [8]
presented a navigation system of large environments that primarily relies on impostors. They replaced
clusters of objects with texture-mapped planes, one of the first attempts at software image-based rendering.
But they do not generate the textures on the fly. Hence their system requires a pre-processing stage during
which the scene is parsed: N textures - where N corresponds to the number of potential viewing directions -
are generated for every object and stored in memory. This approach is thereby likely to consume rapidly
the texture memory. Shaufler and Stürzlinger first introduced the notion of dynamically generated
impostors [9] that correspond essentially to a software image cache. They managed to solve the problem of
texture memory usage since textures are generated on demand in their system. Since then two other
software solutions using image-based rendering have been proposed concurrently and independently to
accelerate walkthroughs of complex environments [10,11].

Although impostors appear to be one of the most promising techniques their use has mainly been
restricted so far to walkthroughs of large environments. We believe however that this technique can bring a
substantial improvement to virtual humans too.

3. A multi-resolution virtual human

In this section we show how a multi-resolution virtual human can successfully be constructed and
animated. We have designed a human modeler that solves the traditional multi-resolution problem
described above. By relying on implicit surfaces we avoid resorting to complicated algorithms and
automatically generate multiple look-alike resolutions of a model.

3.1. Multi-resolution modeling

Our real-time virtual human model consists of an invisible skeleton and a skin. The underlying skeleton
is a hierarchy of joints that correspond to the real human main joints. Each joint has a set of degrees of
freedom, rotation and/or translation, which are constrained to authorized values based on real human
mobility capabilities [12]. Unlike other attempts [14] we did not model a multi-resolution skeleton because
our purpose was not to demonstrate the effectiveness of animation level-of-detail. Hand joints can be
replaced with a single joint though.

The skin of our virtual human is generated by means of an in-house modeler that relies on a multi-layer
approach (fig. 1): ellipsoidal metaballs and ellipsoids are employed to represent the gross shape of bone,
muscle and fat tissue [13]. Each primitive is attached to its proximal joint in the underlying human
skeleton. The set of primitives then defines an implicit surface that approximates the real human skin.
Sampling this implicit surface results in a polygonal mesh, which can be directly used for rendering.

Sampling the implicit surface is done as follows: we start by defining contours circling around each
limb link of the underlying skeleton. We then cast rays in a star-shaped manner for each contour, with ray
origins sitting on the skeleton link. For each ray, we compute the outermost intersection point with the
implicit surface surrounding the link. The intersection is a sample point on the cross-section contour. Once
all the sampling is done it is quite straightforward to construct a mesh from the sample points. Thus, we can
generate more or less detailed polygonal meshes by simply varying the sample density i.e. the number of
sampled contours as well as the number of sampled points per contour. And yet, since the implicit surface
remains the same no matter the sampling frequency, the generated meshes look very similar (fig. 2).

4

Figure 1: multi-layered model

Figure 2: Body meshes of decreasing complexity from one implicit surface

As for the head, hands and feet, we still have to rely on a traditional decimation technique to simplify
the original mesh. Manual intervention is still needed at the end of this process to smooth the transition
between LODs. The body extremities can cleverly be replaced with simple textured geometry for the
lowest resolution (fig. 3), which dramatically cuts down the number of triangles.

5

Figure 3: Levels of Details

3.2. Animation

The skeleton of our virtual human comprises a total of 74 DOFs corresponding to the real human joints
plus a few global mobility nodes, which are used to orient and position the virtual human in the world. In
the broad lines, animating a virtual human consists in updating this skeleton hierarchy including the global
mobility joints at a fixed frame rate. There exist several techniques to feed the joints with new
angle/position values. Motion capture for instance is used to record the body joint values for a given lapse
of time. The motion can later be played back on demand for any virtual human. Key frame animation is
another popular technique in which the animator explicitly specifies the kinematics by supplying key-frame
values and lets the computer interpolate the values for the in-between frames.

During animation the appropriate resolution is selected for each individual according to the euclidian
distance to the viewpoint. Therefore far objects and those on the periphery contribute less to the final
image. Note that we could also take the general motion of the virtual human into account. Finally at a
higher level, typically the application layer, virtual humans could be assigned different rendering priorities
too. For example, in the context of a human crowd simulation where individuals move and act in clusters
the application could decide to privilege some groups.

4. Animated Impostors for Articulated Characters

As first defined by Maciel et al. [8] an impostor is in essence some very simple geometry that manages
to fool the viewer. As traditionally the case in the existing literature, what we mean by impostor is a set of
transparent polygons onto which we map a meaningful, opaque image. More specifically our impostor
corresponding to a virtual human is a simple textured plane that rotates to face continuously the viewer.
The image or texture that is mapped onto this plane is merely a “snapshot” of the virtual human. Under
these conditions if we take for granted that the picture of the virtual human can be re-used over several
frames then we have virtually decreased the polygon complexity of a human character to a single plane
(fig. 4).

6

Figure 4: A Brazilian football player and its impostor

4.1. Impostor Refreshment Approach

The texture that is mapped onto the transparent plane needs to be refreshed from time to time because of
the virtual human’s mobility or camera motion. Whenever the texture needs to be updated a snapshot of the
virtual human is taken. This process is done in three steps:

1) Set up an off-screen buffer that will receive the snapshot
2) Place the virtual human in front of the camera in the right posture
3) Render the actor and copy the result into texture memory

The first stage typically comes down to clearing the buffer. The buffer should be a part of the frame
buffer so as to benefit from hardware acceleration. The purpose of the second step is to set up the proper
view to take a picture: first, we let the actor strike the right pose depending on joint values. Second, it is
moved in front of the camera or alternately, the camera itself is moved. Note that the latter is preferable
because the skeleton hierarchy remains unchanged in this case, which may save some time. In the last stage
the virtual human is rendered and the resulting image is copied into texture memory. Once the texture has
been generated there only remains to render the textured billboard to have a virtual human on screen. The
whole process is hardly any slower than rendering the actual 3D geometry of the virtual human for the
following reasons: setting the off-screen buffer up can be done once for all in a pre-processing step. It
chiefly consists in adjusting the viewing frustum to the virtual human. Furthermore, this buffer can be re-
used to generate several textures of different actors providing that they have approximately the same size.
Clearing the buffer is definitely not a costly operation. Letting the virtual human assume the right posture
and rendering it would also have to be carried out if the real geometry was used instead. Finally, if the
hardware features frame buffer texturing, the frame buffer to texture memory copy is performed within no
time. If not, clearing the off-screen buffer and transferring its content still remain all the less costly that the
buffer size is small, typically 128 by 128 pixels or less. As a consequence even in the worst cases (very
high texture refreshment rates), impostors prove not to be slower than rendering the actual 3D geometry.

4.2. Impostor Viewing and Projection

For the sake of clarity, when speaking respectively in the following of texture windows and scene
window, we will mean the off-screen buffers where textures of virtual humans are generated and the
window where the final, global scene with impostors is rendered.

7

Articulated
Characters

 World
coordinate
 system

Subjective Camera
coordinate system

a Articulated characters rendering

Drawing a. represents a top view of a scene
containing two articulated characters. Each
character has its own coordinates system. The
subjective camera coordinate system defines the
user’s viewpoint and corresponds to the camera in
the scene window. All coordinates systems are
expressed with respect to the world.

 World
coordinate
 system

Subjective Camera
coordinate system

Impostors

b Impostors rendering

Drawing b. shows a top view of the same scene
rendered with impostors. Each character’s geometry
is replaced with a single textured plane. Each plane
is oriented so that its normal vector points back to
the eye i.e. the origin of the subjective camera
coordinate system.

Articulated
Characters

 Orthographic
Camera

coordinates systems

 World
coordinate
 system

c Impostors viewing and projection

Subjective Camera
coordinate system

Vo

Drawing c. explains how the textures mapped onto
the planes in drawing b. are generated i.e. how
snapshots of virtual humans are taken. In the
drawing there are two orthographic camera
coordinates systems corresponding to the cameras in
the texture windows associated with each articulated
character. The viewing direction Vo of the
orthographic camera is determined by the eye’s
position and a fixed point (later referred to as Ta) of
the articulated character, as will be explained.

8

Subjective Camera orientation :
 Rs =(Hs,Vs,Us)

 World
coordinate
 system

d Building the vi ewing transformation

Articulated Characters
 coordinate system

Orthographic Camera

coordinate system

 To=Ta-DVo
 Ro=(Vo*Us,Vo,Uo)

viewing vector Vs

Vo

D

Ta

To

Hs

Ho

Drawing d. is a more detailed version of the
previous drawing. It mainly shows how the
orthographic camera coordinate system is
constructed. Vo is the unit vector derived from Ta
and the position of the subjective camera. The two
other unit vectors that give the orthographic
camera’s orientation Ro are determined as follows:
the first vector Ho is the cross product of Vo and Us
where Us is the normalized up vector of the
subjective camera’s frame. The cross product of Ho
and Vo then yields Uo. Note that this method
ensures we obtain a correct frame (Ho≠0) as long as
the field of view is smaller than a half sphere.

Finally, the camera of the texture window (termed orthographic camera so far) must be positioned so
that the virtual human is always entirely visible and of a constant global size when we take a snapshot. We
proceed in two steps to do so. First, an orthographic projection is used because it incurs no distortion and
actual sizes of objects are maintained when they are projected. Second, a fixed point named Ta is chosen in
the body (it corresponds to the spine base) so that it is always projected onto the middle of the texture
window. Practically, Ta is determined to be the “middle” point of the virtual human assuming a standing
posture in which its arms and hands are fully stretched above its head. Note that this posture is the one in
which the virtual human’s apparent size is maximal. The orthographic camera is placed at distance D from
Ta (D is a scalar). During the simulation, the camera is then moved at To = Ta – D.Vo. Hence Ta’s
projection necessarily coincides with the center of the texture window. On account of the orthographic
projection, D actually does not influence the virtual human’s projection size. On the other hand the viewing
frustum does. Consequently, it must be carefully chosen so that no parts of the virtual character are culled
away. This is done in a pre-processing stage in which the viewing frustum’s dimensions (in the texture
window) are set to the maximal size of the virtual human (i.e. with arms raised above its head).

4.3. Several Texture Resolutions

All the work has been realized on Silicon Graphics workstations using the Performer graphics toolkit.
Because of hardware/software restrictions concerning textures, texture windows have dimensions that are
powers of two. Several texture windows of decreasing size can be associated with every virtual human. As
the virtual human moves farther, which leads to smaller image-space size in the scene window, a smaller
texture window can be used thus reducing texture memory consumption. Practically, we allocated 256x256,
128x128, 64x64 and 32x32 pixel texture windows for a simulation running at a 1280x1024 resolution. The
largest windows were only used for close-up views. As always, it can be a bit difficult to strike the right
balance between texture memory consumption and visual realism. In addition to better managing texture
memory, using several texture windows of decreasing size also helps to reduce visual artifacts. As a matter
of fact large textures of virtual humans that are mapped onto very small (far) planes might shimmer and
flash as the impostors move. When several texture resolutions are employed, these artifacts tend to
disappear because the appropriate texture resolution is selected according to the impostor image-space size,
thus mimicking the well-known effect obtained with “mip mapping”. Finally, when a texture is generated
the appropriate LOD of the virtual human can be chosen based on the texture window size.

4.4. Main current limitation

Replacing a polygonal model of a virtual human with a single textured plane may introduce visibility
problems: depth values of the texels are unlikely to match those of the actual geometry, which may lead to
incorrect visibility, as illustrated in figure 5. We did not address this issue in this paper.

9

Figure 5: Incorrect Visibility

5. Duration of the image cache

For static objects camera motion is the one and only factor to take into consideration for cache
invalidation [9,11]. The algorithm that decides whether a snapshot of a virtual human is stale or not is
obviously a bit more complex. However, that algorithm has to execute very quickly because it must be
performed for every virtual human at each frame. In our approach we distinguish two main factors: self-
deformation of the virtual actor and its global motion with respect to the camera.

5.1. Virtual humans as self-deforming objects

Virtual humans can be considered as self-deforming objects. The basic idea for a cache invalidation
algorithm is that the viewer need not see every posture of the virtual humans to fully understand what they
are doing. A few key postures are often meaningful enough. We propose a simple algorithm that reflects
the idea of sub-sampling the motion. The idea is to test distance variations between some pre-selected
points in the skeleton. Using this scheme the virtual human is re-rendered if and only if the posture has
changed significantly.

Once we have updated the skeleton hierarchy we have direct access
to joints’ positions in world space. It is therefore quite straightforward
to compute distances (or rather squared distances to avoid unnecessary
square roots) between some particular joints. In concrete terms we
compare four distances (figure 6) with those stored when the texture
was last generated. As soon as the variation exceeds a certain threshold
the texture is to be re-generated. Of course the thresholds depend on
the precision the viewer demands. Furthermore, length variations are
weighted with the distance to the viewer to decrease the texture
refreshment rate as the virtual human moves away from the viewpoint.

We found out that four tests suffice to reflect any significant change
in the virtual human’s posture. Nevertheless, other tests should be
performed if the simulation is meant to underscore some peculiar
actions e.g. grasping of an object requires additional testing of the hand
motion. Similarly, it might be necessary to increase or decrease the
number of tests when using non-human characters. Figure 6: posture variations to

test

10

5.2. Relative motion of the actor in the camera frame

Instead of testing independently camera motion and actor’s orientation we have come up with a simple
algorithm that checks both in a single test. The algorithm’s main idea stems from the fact that every virtual
human is always seen under a certain viewing angle which varies during simulation whether because of
camera motion or actor’s motion. Yet, there is basically no need to know what factor actually caused the
variation.

 In practice we test the variation of a “view” matrix, which corresponds to the transformation under
which the viewer sees the virtual human. This matrix is plainly the product of the subjective camera matrix
(camera in the scene window) and that of the articulated character. The cache invalidation algorithm runs in
pseudo-code as follows:

For every virtual human at frame 0 /* Initialization stage */
Generate texture
Store View Matrix

End for

For every virtual human at frame N>0 /* Simulation */
Compute new View Matrix
 Compute View Variation Matrix M (from previously stored view matrix to the newly computed one).
 Build axis/angle representation from the 3x3-rotation sub-matrix of M

 If angle>threshold
Generate texture
Store current View Matrix

End if
End for

Building the axis-angle representation of a rotation matrix M consists in finding its equivalent rotation
axis as well as the angle to rotate about it [16]. In practice, computing the rotation axis can be skipped since
only the angle is needed afterwards. Finally, the threshold that indicates when the texture is to be
regenerated can be weighted once again with the euclidian distance from the impostor to the viewer.

6. The human flow test bed

Our work on impostors originates from earlier research on human crowd simulation that was carried out
in our laboratory. However, simulating a human crowd introduces many parameters that alter the frame rate
results. We preferred to use a simpler environment in order to assess reliably the gain of impostors on
geometry. In our simulation twenty walking virtual humans keep circling. They all move at different yet
constant speeds, along more or less long circles (figure 7). A fast walking engine handles the motion of the
actors, collision between characters are not detected and finally every articulated character always lies in
the field of vision so that visibility culling does not play a role.

11

Figure 7: Simulating two football teams (left: impostors, right: real geometry)

The first graph shows the influence of the posture variation thresholds used in the texture cache
invalidation mechanism. The other factor, that is the viewing angle, was deactivated throughout this test.
Along the horizontal axis are noted the posture variation thresholds beyond which a texture is re-generated
while the vertical axis shows the amount of time required for rendering the complete scene. The vertical
axis is normalized with respect to the amount of time needed to render the whole scene using the real
geometry. When the threshold is set to zero every change in the posture triggers a re-computation of the
texture, in which case the rendering time logically exceeds the reference rendering time. Note that there is
only a marginal difference of 15% though, which clearly shows that impostors are hardly slower than the
actual geometry even in the worst cases. Rendering time plummets when the variation threshold is
increased: a threshold of 40%, 60% and 80% cuts respectively by two, three and five the rendering time. In
practice there is no noticeable difference in the animation of the actors as long as the threshold is smaller
than 15%. However, it makes perfect sense to set the threshold to a much higher limit (between 40% and
80%) because the motion remains absolutely understandable. On the other hand it becomes hard to grasp
that the actors are walking beyond 90%.

The second test focuses on the impact of the viewing angle on the rendering time. Like previously, the
vertical axis is normalized with respect to a reference rendering time (that needed to render the whole scene
with the actual geometry). On the horizontal axis are marked the viewing angle thresholds in degrees.
Similarly to the first test we disabled the other factor in the cache invalidation mechanism. The critical
threshold is reached for a viewing angle variation of two degrees only. Viewing angle thresholds of 5, 8
and 17 degrees cut respectively by two, three and five the rendering time. We consider that there is no real
degradation of the animation up to 20 degrees. Refreshment of the actors’ texture becomes too obvious
beyond 30 degrees.

Graph 1&2: rendering speedups measurements

0

0.2

0.4

0.6

0.8

1

1.2

0% 20% 40% 60% 80% 100%

Posture Variation Threshold

N
o

rm
a
li
ze

d
 r

e
n

d
e
ri

n
g

T

im
e
 (

g
e
o

m
e
tr

y
=

1
)

0
0.2
0.4
0.6
0.8

1
1.2

0 10 20 30 40

Viewing Angle Variation Threshold

12

7. Conclusion

This paper shows that image-based rendering can be applied successfully to virtual humans. In
particular, we have explained how to generate a texture representing a virtual human and proposed an
image cache invalidation algorithm that works for any articulated character and executes reasonably fast.
Two major issues, which were beyond the scope of this paper, could be addressed in future work:

1. Our texture refreshment algorithm performs on an individual basis. From the application point of view,
the image cache invalidation mechanism should also consider virtual characters as a whole. Above all
this would help achieve a quasi-constant frame rate, which is often regarded in virtual reality
applications as more important than a high peak frame rate.

2. Because depth information is lost when complex 3D geometry is replaced with an impostor, especially
with a plane, visibility may not be correctly resolved. Schaufler recently showed how to correct the
visibility by directly modifying the depth value for every texel [17]. However, faster techniques could
be investigated in the specific case of virtual humans. For example, the concrete problem depicted in
figure 5 could be solved by decomposing the impostor’s plane into several planes e.g. one for each
major body part.

References

 [1] T. K. Capin, I. Pandzic, H. Noser, N. Magnenat-Thalmann, D. Thalmann, “Virtual Human Representation
and Communication in VLNET”. In IEEE Computer Graphics and Applications, Vol. 17, No. 2, March - April
1997, pp. 42-53

[2] M.Regan, R.Post, “Priority Rendering with a Virtual Reality Address Recalculation Pipeline”. In Computer
Graphics (SIGGRAPH ’94 Proceedings) pp. 155-162.

[3] F.Sillon, G.Drettakis, B.Bodelet “Efficient Impostor Manipulation for Real-Time Visualization of Urban
Scenery”. In Proceedings of Eurographics’97, 1997, pp. C-207 - C-217.

[4] P. Heckbert, M. Garland, “Muliresolution modelling for fast rendering”. In Proceedings of Graphics
Interface’94, pp. 43-50.

[5] J. Popovic, H. Hoppe, “Progressive Simplicial Complexes”. In Computer Graphics (SIGGRAPH ’97
Proceedings), pp. 217-224.

[6] M. Garland, P.S. Heckbert, “Surface Simplification Using Quadric Error Metrics”. In Computer Graphics
(SIGGRAPH ’97 Proceedings), pp. 209-216.

[7] J. Torborg, J.T. Kajiya, “Talisman: Commodity Real-time 3D Graphics for the PC”. In Computer Graphics
(SIGGRAPH ’96 Proceedings), pp. 353-363.

[8] P.W.C. Maciel, P. Shirley, “Visual Navigation of Large Environments using Textured Clusters”. In 1995
Symposium on Interactive 3D Graphics, pp. 95–102

[9] G. Schaufler, W. Stürzlinger, “A Three Dimensional Image Cache for virtual reality”. In Proceedings of
Eurographics’96, pp. C-227 – C-234

[10] J. Shade, D. Lichinski, D.H. Salesin, T. DeRose, J. Snyder, “Hierarchical Image Caching for Accelerated
Walthroughs of Complex Environments”. In Computer Graphics (SIGGRAPH’96 Proceedings), pp. 75-82.

[11] G. Schaufler, “Exploiting Frame to Frame Coherence in a Virtual Reality System”. In Proceedings of
VRAIS’96, Santa Cruz, California (April 1996), pp.95-102.

[12] R. Boulic., T.K. Capin, Z. Huang, P. Kalra., B. Lintermann., N. Magnenat-Thalmann, L. Moccozet, T.
Molet, I. Pandzic, K. Saar, A. Schmitt, J. Shen, D. Thalmann, “The HUMANOID Environment for Interactive
Animation of Multiple Deformable Human Characters”. In Proceedings of Eurographics’95, Maastricht, August
1995, pp. 337-348.

13

[13] J. Shen, E. Chauvineau, D. Thalmann, “Fast Realistic Human Body Deformations for Animation and VR
Applications”. In Computer Graphics International'96, Pohang,Korea, June 1996, pp. 166-173.

[14] D.R. Pratt, S.M. Pratt, Paul T. Barham, R.E. Barker, M.S. Waldrop, J.F. Ehlert, C.A.Chrislip, “Humans in
Large-scale, Networked Virtual Environments”. In Presence, Vol. 6, No. 5, October 1997, pp. 547-564.

[15] T. A. Funkhouser, C.H. Séquin, “Adaptative display algorithm for interactive frame rates during
visualization of complex virtual environments”. In Computer Graphics (SIGGRAPH’93 Proceedings), pp. 247-
254.

[16] M. E. Pique “Converting between Matrix and Axis-Amount representations”. In Graphics Gems (Vol. 1),
Academic Press, pp. 466-467.

[17] G. Schaufler, “Nailboards: A Rendering Primitive for Image Caching in Dynamic Scenes”. In Proceedings
of 8th Eurographics workshop’97. St. Etienne, France, June 16-18, 1997, pp. 151-162.

