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In this paper, we consider production processes when the mean of a quality characteristic
is drifted linearly with time. First, we introduce a procedure to detect the drift time of the
process mean as early as possible. Then, based on the estimate of the drift time, a new
adjustment procedure based on the maximum likelihood estimate of the drift time is
developed to keep the process mean on target. We analyze and compare the performance
of the proposed estimator with cumulative sum (CUSUM) and exponentially moving
average (EWMA) change point estimation procedures. It is observed that the proposed
procedure indeed estimates the drift time effectively for moderate and large trend rates.
However, there is a noticeable decrease in its ability to detect drift time at small trend
rates. Furthermore, the performance of the new adjustment procedure is compared with
EWMA controllers. It is shown that the new procedure is more stable through a wide
range of trend rates and its performance does not depend on any parameters of the

process.
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1. Introduction

Statistical control charts are widely used to monitor process characteristics in industry.
Shewhart developed the control chart in 1924 (see, Shewhart 1931) for differentiating
between the inevitable random causes and the assignable causes in a process. When a
control chart signals an out-of-control alarm, process engineers initiate a search for the
assignable cause of the process disturbance. The experience and the knowledge of the
process engineers allow them to identify the combination of process variables responsible
for the process change.

The output characteristics of many manufacturing processes exhibit trend patterns. The
trend can be positive or negative and linear or nonlinear. An example for a positive trend
in process mean includes tool-wear where a tool wear out results in linearly increasing
product dimension, while a continuous clogging of a spray nozzle represents a negative
trend in process mean. Identifying when the process changes would simplify the search
for assignable causes and minimize the production of defective units. When the change
time is accurately estimated, it would enable the process engineers to quickly identify the
assignable causes and make the proper adjustments. The sooner assignable causes are
detected the sooner corrective actions are activated which leads to reduction in losses due

to deviations from the mean.

The maximum likelihood estimation technique has been used to identify the point of step-
change in the process mean. Samuel et al. (1998) and Pignatiello and Samuel (2001) base
their approach on Hinkley (1970). They consider an estimator based on the maximum

likelihood estimator (MLE) for step-change point in process mean once the Shewhart



X control chart issues a signal. Hinkley discusses the asymptotic properties of the

estimator.

The problem of two-phase regression; a change from one straight line regression to
another; has been studied by a number of authors. Hudson (1966) develops the maximum
likelihood estimate of the intersection between two straight lines and Hinkley (1969,
1971) derives the asymptotic distribution for the maximum likelihood estimate of the
intersection. Bacon et al. (1971) use Bayesian analysis to estimate the transition between
two intersecting straight lines. Maronna et al. (1978) and Beckman et al. (1979) study the
same problem using likelihood ratio test and show the critical values for the test by
simulation.

The two-phase regression is different from the problem of identifying the drift time in a
process monitored by a control chart since a) drift time depends on the run length
distribution of the control chart, and b) the small data sampling in quality control makes
asymptotic distributions impractical in most of quality control applications. Hence, the
two-phase problem can be considered as a drift time identification problem without the
implications of the quality control system.

In this paper, we consider Shewhart, CUSUM, and EWMA control charts for individual
observations and the MLE procedure to identify process drift time. The procedure is
applied once the control chart issues an out-of-control signal. The MLE of the drift time
is compared with CUSUM procedure in Page (1954) and EWMA estimator procedure

proposed in Nishina (1992).



This paper is organized as follows. The process model for a process subject to a linear
trend in the process mean is introduced in section 2 followed by the derivation and
confidence interval of the drift time estimator in section 3. A numerical example is given
in section 4 to illustrate the approach. In section 5, we analyze and compare the
performance of the proposed estimator with CUSUM and EWMA estimator procedures.
A new adjustment procedure for linearly trended processes is presented in section 6. We
compare the performance of the proposed procedure with EWMA controllers in section

7.

2. Process Model

The process under study considers monitoring the characteristic of a product using a
control chart. The process is subject to linear trend. The objective is to determine the
earliest possible time to detect the trend occurrence.

We assume that the process is initially in-control; i.e., observations are assumed to be
normally and independently distributed from a normal distribution with a known mean

M, and known standard deviationo,. After an unknown point in timer , the process
starts to drift away from the standard mean p, by fo,/unit time where 8 is unknown.

In other words, the quality characteristic at time #, y,, can be represented as
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We assume that y, is the first observation to exceed the control limit of the control chart
and that this signal is not a false alarm. Thus, y,,y,,......, y, are observations from an in-

control process, while y_,,y.,,,......,y, are observations from out-of-control process.

3. Derivation of the Drift Time Estimator
The log likelihood function for the linear trend process model can be derived as:
The pdf of the trend is

1

f(yz):m

and the corresponding likelihood function is
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ﬁ — 1=t+1 - (2)

Substituting the value of ,3 from equation (2) in equation (1), we obtain 7 that

maximizes the log likelihood function

T =arg min{—2 ZT: y,(t—z'),é+2,u0 i (t—r),B+ i(f—r)zﬁzo—(& = arg min[DT] 3)

‘ t=r+1 t=r+1
where 7 is the value of 7 in the range 1 <7 <7 which minimizes D, in equation (3).

3.1. Confidence Interval Estimation

For any given value of 7, it can be shown from equation (2) that the asymptotic

distribution of A3(7) is




where Z_,is the percentage point of the standard normal distribution such that

Plz22,,)=a/2.

In order to derive the confidence interval for a drift time 7 , we present an approach based
on the likelihood ratio (LR) statistic. According to the process model in section (2), the
standard mean g, of the process is assumed to start changing at time r with an unknown
trend rate £ . The control chart issues an out-of-control signal at time 7 when the process
reaches the control limit of the control chart. The least squares estimator of S is the

value which minimizes the sum of squares function

T T
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The minimum value of S is denoted by S which is achieved at 7 and ,5’(?) Since the
least squares estimators are the MLE under Gaussian errors for linear and nonlinear
models, the MLE of f1is used for the confidence interval estimation procedure.

We use the grid search procedure described by Lerman (1980) to estimate the confidence
interval for 7. This procedure can be used for linear and nonlinear regression models.

The procedure is based on carrying out a grid search over 7 to map S (r), the minimum

value of the residual sum of squares at 7. S(r) is defined for the process model as
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where ,5’(1) is the MLE of g at 7.
In the two-phase model literature, Hinkley (1971) and Feder (1975) suggest using the

two-sided LR test for the null hypothesis H,:y =y, for finite samples, wherey
represents the intersection point of two regression lines

S-S .
2 S E,nl—p (5)

and

where m is the number of data points in the regression model. S’ is the minimum value of

residual sum of squares under hypothesis Hy, and p (=1) denotes the dimension of the

parameter space, s is the residual mean square, and F° denotes the upper a per cent

value of the central F distribution with v and w degrees of freedom.

Based on (5) the values of S(r) can be used to estimate an approximate confidence

interval for the drift timez such as

S(r)<S+s°F%_, (6)



Lerman (1980) shows that confidence intervals based on (6) give reliable results for quite
small samples in linear regression models.

Following the procedure above, we summarize the steps required to draw the confidence
intervals based on the drift timez . First, we sequentially split the observations into two

parts using different values of 7 and fit the process model, then calculate S (z‘) at the

different values of z from (4). Find S (the minimum value of S(r)), then estimate the

confidence interval from (6).

3.2. Confidence Interval Analysis

The confidence interval procedure is studied for different values of linear trend rates. A
process is simulated with the first 50 observations normally distributed with mean 10.0
and standard deviation 1.0. Starting from observation 51, observations are randomly
generated from a normal distribution with mean 10.0+(t—50)/3 (where t>50) and
standard deviation 1.0 until a Shewhart (30 ) control chart issues an out-of-control signal

at time 7. This scenario is repeated for £ =0.1,0.5, and 1.0. Figure 1 shows the relation
between S(z) and 7. It can be seen that the confidence intervals decrease and the
estimate for the change point is enhanced with the increase of the trend rate . The

estimate of the drift time 7 and its 95% confidence interval for the above example are

shown in table 1.
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Figure 1. Relation between S(r) and 7 (a)at f=0.1;(b)at f=0.5;(c)at f=1.0

Table 1. Simulated process results

Yij T T 95% C.l. of 7
0.1 67 58 (49.73, 61.09)
0.5 57 50 (44.66, 52.83)
1.0 53 50 (47.30, 51.93)

4. Numerical Example

Consider the turning process of the outside diameter of steel rods. The nominal outer
diameter (OD) of the steel rods is 10.0 mm and the in-control production output from the
turning operation is considered independent and normally distributed with a mean

M, =10.0 and standard deviation o, =1.0.
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Although, we intend to use individual observations collected at fixed intervals of time,

the same procedure can be applied for subgroups of size M.

A Shewhart control chart for individuals X-chart is used for the detection of out-of-

control process and the corresponding upper control limit UCL and lower control limit

LCL are 13.0 and 7.0 respectively.

The steel rods OD measurements are shown in table 2. The process starts to drift from the

in-control mean (4, =10.0) after the 10™ observation with a trend rate equals to 0.1.

From table 2, it can be seen that Shewhart X-chart issues an out-of-control signal at the

30" observation since y,, > UCL , hence T =30 . Figure 2, illustrates the observations

from the numerical example on a Shewhart chart.

Table 2. Steel rods OD measurements

~

Vi Vi
1 9.87 16 9.99
2 9.03 17 11.96
3 10.89 18 11.22
4 9.64 19 11.05
5 8.39 20 11.56
6 9.57 21 12.20
7 9.93 22 12.09
8 10.36 23 11.99
9 9.46 24 10.35
10 8.91 25 11.24
11 9.27 26 11.08
12 10.95 27 12.44
13 11.66 28 10.46
14 9.76 29 12.72
15 10.81 30 14.10

11



Figure 2. Shewhart chart for the numerical example

To estimate the drift time of the process using the proposed approach, we determine the
value of 7 in the range 1< 7 <7 which minimizes D, .

The values of £ and D, for the numerical example are shown in table 3. It can be seen
that the minimum value of D._ is associated with the 10™ observation. Thus, we conclude

that the 10™ observation is the last observation from in-control process. This coincides
with the exact observation from the actual generated data. Thus, process engineers would

search for the assignable causes that might have occurred between observations 10 and
11. Also, process engineers can use the estimate of the linear trend ,3 in the process to
propose corrective actions. The relation between D_and 7 for the numerical example is

shown in figure 3.
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Table 3. Example results

N A

g B D, 4 s D,

29 4.10 -16.84 14 0.17 -42.04
28 2.18 -23.87 13 0.15 -42.61
27 1.30 -23.67 12 0.14 -43.37
26 0.93 -25.99 11 0.13 -44.11
25 0.70 -27.25 10 0.12 -44.40
24 0.56 -28.30 9 0.12 -44.25
23 0.45 -28.47 8 0.11 -43.87
22 0.38 -29.46 7 0.10 -43.48
21 0.33 -30.99 6 0.09 -43.03
20 0.29 -32.96 5 0.09 -42.45
19 0.26 -34.90 4 0.08 -41.59
18 0.24 -36.56 3 0.08 -40.68
17 0.22 -38.10 2 0.07 -39.93
16 0.20 -39.85 1 0.07 -39.06

15 0.18 -41.02
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Figure 3. Estimates of D_ at different values of 7 for the numerical example

5. Performance Analysis

The performance of the proposed estimator is studied by simulation. In the simulation
study, the drift time of process is designed to occur at 7 = 50. Therefore, observations 1
to 50 are independently and randomly generated from a normal distribution with mean

10.0 and standard deviation 1.0. Starting from observation 51, observations are
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independently and randomly generated from a normal distribution with mean
10.0+ (t —50),6’ (where ¢ >50) and standard deviation 1.0 until the control chart issues a
signal. This procedure is repeated 10,000 times for each value of . This scenario is
repeated with same randomly generated data to analyze the performance of the MLE
procedure when it is accompanied with Shewhart X-chart, CUSUM, and EWMA charts.
The parameters of these charts are set such that the control charts have almost equivalent
performances based on in-control average run length value 370.

During the simulation study, when a false alarm is encountered at time ¢; before the
actual designed drift time; the control chart is restarted at time ¢ +1 without changing the
actual designed drift time. For example, when a false alarm occurs at # =10, the control
chart statistic will be restarted at ¢t =11. Therefore, the individual observation at t =11 1is
treated as if it is the first observation during the in-control period. This procedure deals
with false alarms in the same way they have been treated in practice. A similar procedure
is used in Pignatiello and Samuel (2001), Fahmy and Elsayed (2005), and Perry and

Pignatiello (2005).

5.1. CUSUM Change Point Estimation Procedure

Page (1954) proposes to use this procedure to identify the change point using CUSUM
control charts. The CUSUM estimator procedure is summarized for an CUSUM chart
with parameters K and H as follows

a) CUSUM statistics are

Ci+ = max[O, Yi— (/uo + K)"' Ci+—l] (7)

14



C = max[O,(yo ~K)-y, + Ci_—l] )

l

where the starting values are C; =C, =0

b) CUSUM chart issues an out-of-control signal when C; or C, exceeds the
control limit H

b) If C; > H, the time when shift occurs is identified by counting the number of
consecutive periods since C, is greater than zero. The same procedure is used
when C; > H . The change point estimate using CUSUM chart to identify the

change point 7 can be expressed as

Posum =11:CF<0,0<CF <H(i=t+1,..T-1),C} > H} )

5.2. EWMA Change Point Estimation Procedure

A similar approach to the CUSUM estimator is proposed by Nishina (1992) to use
EWMA control charts to identify the change point in a process. The EWMA estimator is
summarized for an EWMA chart with parameters A and L as follows

a) EWMA statistics E, at time ¢ is defined as

E, :ﬂ“yt-i_(l_l)Et—l (10)
where 0 <A <1 and E, = y,

b) EWMA chart issues an out-of-control signal when E; exceeds the control

limits
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UCL, = iy + Lo /ﬁ[l—(l—ﬂ)z’] (11)
LCL, = u,-Lo /ﬁ[l—(l—z)”] (12)

c) If E, >UCL,, the time when shift occurred will be identified by counting the
number of consecutive periods since E; exceeds the standard mean g,,. The

EWMA estimator for the change point 7 can be expressed as

s = E, < g, 1y <E, <UCL, (i =t +1,....,T-1), E, >UCL,} ~ (13)
5.3. MLE with Shewhart Chart

The simulation results for the MLE when it is accompanied with Shewhart X-chart are
shown in tables 4 and 5. Table 4 shows the average run length (ARL) and its standard
error for Shewhart (30) at different trend rates, the expected value of the deviation d
and its standard error. The deviation d is the difference between the estimate of drift

time 7 and the actual drift time (r =50); i.e., d =7 —7. The estimate of E(d) and its

standard error are

1 10,000

~ 10,000 g‘d"

E(d)

N

4/10,000

SE(d)=

where
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10,000

> (d, - E(d))

i=l1

(10,000 1)

The estimated probability of drift time detection within n observations from the actual

drift time is shown in table 5. Where ﬁQf—T| < n) is the estimated probability that the

absolute difference between 7 and 7 is less than or equal n.

Table 4. Simulation results for the estimates of drift time (Shewhart chart)

Shewhart (30)
Y Run Length MLE
ARL | SE(RL)| E(d) | SE(d)

0.05 30.69 0.100 3.51 0.106
0.1 18.54 0.056 1.97 0.071
0.2 11.04 0.032 1.02 0.048
0.3 8.13 0.023 0.64 0.038
0.4 6.55 0.018 0.43 0.033
0.5 5.53 0.015 0.28 0.030
0.6 4.84 0.013 0.18 0.027
0.7 4.29 0.012 0.12 0.025
0.8 3.87 0.010 0.02 0.024
0.9 3.55 0.010 -0.02 0.023
1.0 3.29 0.009 -0.05 0.022

As shown in table 5, the proposed estimator detects the actual drift time within 1
observation in 50% or more of the 10,000 simulation trials for trend rates greater than
0.4. These results indicate the usefulness of the proposed estimator in detecting the actual

drift time of a process and the decreasing the size of search window.
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Table 5. Estimated probability of detection for MLE with Shewhart chart based on

10,000 trials
B 005 ] 01 ] 02 03] 04 051 06] 07] 08] 09 ] 1.0
pE=7)  |0.047|0.072 | 0.114 | 0.154 | 0.189 | 0221 | 0259 | 0.201 | 0.324 | 0.351 | 0.383
AlE-71<1) | 0134 | 0207 | 0309 | 0394 | 0477 | 0.547 | 0613 | 0.668 | 0716 | 0752 | 0.792
Ale-71<2) | o215 | 0328 | 080 | 0.596 | 0.695 | 0773 | 0,833 | 0.873 | 0.905 | 0.923 | 0.936
AlE-71<3) | 0207 | 0432 | 0.617 | 0746 | 0.836 | 0.895 | 0.926 | 0945 | 0955 | 0.960 | 0.965
Ale-71<4) | 0369 | 0.526 | 0727 | 0853 | 0.920 | 0953 | 0.965 | 0971 | 0.973 | 0.976 | 0.978
AlE-71<5) | 0431 | 0,603 | 0812 | 015 | 0957 | 0.970 | 0975 | 0978 | 0.980 | 0.982 | 0.984
AlE-71<6) | gass | 0.671 | 0.876 | 0952 | 0.973
AlE-71<7) | 0537 | 0731 | 0919 | 0970 | 097
AlE-71<8) | 0550 | 0780 | 0.948 | 0977 | 0984
AlE-71<9) | 0629 | 0.828 | 0.967 | 0.982 | 0.986
AE-71<10) | 4673 | 0869 | 0976 | 0.985 | 0.988
Ale-7<11) | 0712 | 09002
Ale-71<12) | 748 | 0,005
Ale-7<13) | 0778 | 0.044
Al -71<14) | 4810 | 0.960
Al -71<15) | o835 | 0.968

5.4. MLE with CUSUM Chart

In this section, we compare the performance of the MLE using equation (3) with the

CUSUM estimator using equation (9). Both estimators are used to identify the drifting

point when an CUSUM chart issues an out-of-control signal. We consider an CUSUM

chart with parameters K= 0.25 and H= 8. The CUSUM chart with theses parameters has

the same in-control ARL as the Shewhart (30 ) control chart.

18




Table 6 shows the ARL of the CUSUM (0.25,8) and the expected value of the deviation
d for the MLE and CUSUM estimators along with their standard errors under different
trend rates.

The comparison between the MLE and CUSUM estimator shows that the CUSUM
estimator performs slightly better than MLE for £ = 0.05 but for other trend rates the MLE
performs much better than CUSUM estimator. Also, it should be noted that the standard

error of the MLE estimator is significantly reduced with the increase of the trend rate.

Table 6. Simulation results for the estimates of drift time (CUSUM chart)

CUSUM (0.25,8)
Run Length MLE CUSUM
p Estimator
ARL | SE(RL)| E(d)| SE(d) | E(d) | SE(d)

0.05 19.71 0.052 2.24 0.129 1.72 0.103
0.1 13.38 0.032 0.05 0.098 | -1.64 0.093
0.2 9.14 0.020 -0.83 | 0.075 | -3.47 0.089
0.3 7.33 0.015 -0.87 | 0.064 | -4.21 0.087
0.4 6.29 0.013 -0.87 | 0.057 | -4.62 0.087
0.5 5.59 0.011 -0.88 | 0.053 -4.89 0.086
0.6 5.09 0.010 -0.80 | 0.049 | -5.05 0.086
0.7 4.69 0.009 -0.74 | 0.045 | -5.16 0.086
0.8 4.37 0.008 -0.67 | 0.041 -5.26 0.086
0.9 4.11 0.008 -0.65 | 0.040 | -5.35 0.086
1.0 3.89 0.007 -0.61 | 0.038 | -5.41 0.086

The estimated probability for MLE and CUSUM estimators in detecting the drift time
within n observations from the actual drift time is shown in table 7.
The results in table 7 indicate that the MLE significantly outperforms the CUSUM

estimator especially in the range of trend magnitude from 0.2 to 1.0. For £ =0.05.

Although on average the CUSUM estimator slightly outperforms the proposed MLE, the

results indicate that the MLE correctly identifies the drift time similar, if not more
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effectively than the CUSUM estimator. While for f=0.1, both estimators have almost

the same performance in detecting 0.1 linear trend rate.

Table 7. Estimated probability of detecting the actual drift time for MLE and CUSUM

estimators based on 10,000 trials

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MLE

0.044

0.067

0.116

0.163

0.201

0.239

0.276

0.307

0.343

0.371

0.403

CUSUM

0.040

0.069

0.106

0.135

0.158

0.177

0.197

0.212

0.227

0.238

0.250

MLE

0.116

0.193

0.320

0.423

0.504

0.573

0.635

0.686

0.728

0.762

0.792

CUSUM

0.114

0.192

0.284

0.349

0.392

0.423

0.441

0.452

0.457

0.461

0.462

MLE

0.190

0.311

0.494

0.617

0.705

0.774

0.823

0.853

0.882

0.901

0.912

CUSUM

0.194

0.317

0.447

0.519

0.550

0.561

0.564

0.562

0.558

0.554

0.551

MLE

0.259

0.414

0.623

0.749

0.819

0.865

0.896

0.910

0.926

0.936

0.942

CUSUM

0.274

0.434

0.573

0.622

0.630

0.627

0.623

0.618

0.614

0.610

0.607

MLE

0.325

0.506

0.724

0.835

0.882

0.910

0.929

0.937

0.948

0.953

0.958

CUSUM

0.360

0.542

0.669

0.690

0.683

0.675

0.671

0.667

0.664

0.661

0.658

MLE

0.385

0.587

0.797

0.881

0.912

0.929

0.942

0.948

0.956

0.960

0.965

CUSUM

0.432

0.632

0.729

0.729

0.719

0.711

0.708

0.704

0.701

0.698

0.696

MLE

0.439

0.659

0.848

0.910

0.929

CUSUM

0.502

0.703

0.766

0.756

0.747

MLE

0.490

0.713

0.881

0.927

0.940

CUSUM

0.567

0.757

0.793

0.781

0.772

MLE

0.540

0.761

0.905

0.937

0.947

CUSUM

0.628

0.800

0.815

0.804

0.797

MLE

0.592

0.805

0.921

0.944

0.953

CUSUM

0.687

0.833

0.832

0.822

0.815

MLE

0.634

0.838

0.931

0.949

0.957

CUSUM

0.739

0.856

0.848

0.840

0.833

MLE

0.675

0.867

CUSUM

0.783

0.873

MLE

0.714

0.888

CUSUM

0.821

0.887

MLE

0.746

0.905

CUSUM

0.856

0.900

MLE

0.776

0.919

CUSUM

0.880

0.908

MLE

0.806

0.928

CUSUM

0.900

0.916
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5.5 MLE with EWMA Chart

The same simulation study is repeated to analyze the performance of the proposed MLE
when it is combined with EWMA (0.1,2.7) control chart. We compare its performance
with EWMA estimator using equation (13). The EWMA chart with these parameters has
a similar 370 in-control ARL which is the same as that of the Shewhart (30 ) and the
CUSUM (0.25,8) charts.

The ARL of EWMA (0.1,2.7) and the expected value of d, the deviation from the true
drift time 7 =50, for different trend rates along with their standard errors are shown in
table 8. The results indicate that the performance of the MLE when it is combined with
EWMA chart is similar to the previous case when it is combined with CUSUM chart. It is

also observed that at f#=0.05 and f=0.1, EWMA estimator is closer to the true drift

time than MLE. However, for trend rates greater than 0.1, the MLE provides much better

average estimate for the drift time.

Table 8. Simulation results for the estimates of drift time (EWMA chart)

EWMA (0.1,2.7)
Run Length MLE EWMA
p Estimator
ARL | SE(RL)| E(d)| SE(d) | E(d)| SE(d)

0.05 19.21 0.052 3.70 0.124 3.13 0.101
0.1 12.85 0.032 0.77 0.095 -0.07 0.092
0.2 8.68 0.020 -0.45 0.073 -1.94 | 0.087
0.3 6.93 0.016 -0.66 0.062 -2.72 0.086
0.4 5.94 0.013 -0.78 0.057 -3.11 0.085
0.5 5.26 0.011 -0.78 0.051 -3.38 0.084
0.6 4.77 0.010 -0.79 0.049 -3.57 0.084
0.7 4.40 0.009 -0.72 0.044 -3.72 0.083
0.8 4.11 0.009 -0.69 0.041 -3.81 0.083
0.9 3.86 0.008 -0.65 0.039 -3.91 0.083
1.0 3.64 0.008 -0.64 0.038 -3.98 0.082
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The estimated probability for MLE and EWMA estimators in detecting the drift time

within n observations from the actual drift time is shown in table 9.

Table 9. Estimated probability of detecting the actual drift time for MLE and EWMA

estimators based on 10,000 trials

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

MLE

0.039

0.064

0.112

0.160

0.194

0.233

0.268

0.299

0.334

0.365

0.395

EWMA

0.034

0.049

0.069

0.086

0.103

0.117

0.130

0.147

0.162

0.176

0.190

MLE

0.108

0.184

0.307

0.409

0.493

0.561

0.621

0.670

0.716

0.749

0.780

EWMA

0.094

0.139

0.203

0.255

0.303

0.343

0.380

0.414

0.442

0.470

0.496

MLE

0.182

0.297

0.476

0.602

0.696

0.765

0.810

0.842

0.874

0.891

0.904

EWMA

0.159

0.236

0.345

0.431

0.500

0.550

0.586

0.612

0.628

0.638

0.642

MLE

0.245

0.397

0.608

0.738

0.812

0.860

0.888

0.905

0.920

0.929

0.936

EWMA

0.222

0.337

0.493

0.594

0.647

0.675

0.687

0.691

0.691

0.690

0.689

MLE

0.307

0.489

0.715

0.828

0.878

0.908

0.924

0.934

0.942

0.948

0.952

EWMA

0.292

0.445

0.626

0.700

0.726

0.729

0.727

0.725

0.724

0.722

0.721

MLE

0.364

0.569

0.793

0.878

0.910

0.928

0.937

0.946

0.952

0.957

0.959

EWMA

0.362

0.546

0.716

0.760

0.761

0.757

0.754

0.751

0.750

0.749

0.748

MLE

0.417

0.637

0.847

0.911

0.928

EWMA

0.435

0.639

0.780

0.790

0.785

MLE

0.469

0.697

0.884

0.927

0.939

EWMA

0.506

0.718

0.817

0.813

0.808

MLE

0.515

0.748

0.911

0.938

0.946

EWMA

0.573

0.779

0.839

0.831

0.826

MLE

0.564

0.797

0.927

0.944

0.952

EWMA

0.638

0.827

0.854

0.845

0.841

MLE

0.609

0.835

0.936

0.949

0.957

EWMA

0.699

0.861

0.867

0.859

0.855

MLE

0.653

0.869

EWMA

0.756

0.885

MLE

0.695

0.892

EWMA

0.801

0.902

MLE

0.732

0.909

EWMA

0.843

0914

MLE

0.766

0.925

EWMA

0.874

0.921

MLE

0.795

0.934

EWMA

0.900

0.928

From table 9, we conclude that the MLE significantly outperforms the EWMA estimator

especially in the range of trend magnitudes from 0.2 to 1.0. While on average the EWMA
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estimator slightly outperforms the MLE for f =0.05. These results are similar to the

results from the comparison between MLE and CUSUM estimator.

5.6. Effect of Change Point Location on the Performance of MLE
We now investigate the sensitivity of the proposed MLE to the location /time of the
change pointz . The same simulation procedure is repeated at several instants of drift

times 7 =150,250,and 350 to compare the performance of the different estimators at

different locations of the change point 7 .

The results for the average performance of MLE when it is used with Shewhart (30)
chart at different locations of 7 are presented in table 10. This comparison shows the
robustness of the MLE against the change point location 7 .

In table 11, we show the average performance of the MLE and CUSUM estimator for
CUSUM (0.25,8) control chart at different locations of 7. This comparison between the
performance between MLE and CUSUM estimators shows that both estimators have the

same performance regardless of change point location 7 .
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Table 10. Simulation results for the estimates of drift time 7 =150, 250, and 350

(Shewhart chart)
Shewhart (30)
. Run Length MLE
s Estimator

ARL | SE(RL) | E(d) SE(d)

150 30.73 0.100 342 0.108

0.05 250 30.64 0.100 3.52 0.107
350 30.61 0.101 3.59 0.107

150 18.47 0.056 1.96 0.072

0.1 250 18.43 0.056 1.97 0.072
350 18.47 0.056 2.08 0.071

150 11.08 0.032 0.98 0.048

0.2 250 11.05 0.032 1.06 0.046
350 11.03 0.031 0.98 0.050

150 8.09 0.023 0.62 0.040

03 250 8.12 0.023 0.64 0.039
350 8.12 0.023 0.60 0.040

150 6.52 0.018 0.40 0.034

0.4 250 6.51 0.018 0.43 0.034
350 6.54 0.018 0.37 0.034

150 5.50 0.015 0.26 0.030

0.5 250 5.50 0.015 0.30 0.029
350 5.51 0.015 0.21 0.031

150 4.79 0.013 0.14 0.029

0.6 250 4.79 0.013 0.19 0.027
350 4.80 0.013 0.11 0.030

150 4.26 0.012 0.08 0.026

0.7 250 4.27 0.012 0.11 0.025
350 4.27 0.012 0.01 0.029

150 3.86 0.011 0.02 0.025

0.8 250 3.86 0.010 0.07 0.022
350 3.88 0.010 -0.02 0.026

150 3.54 0.010 0.00 0.023

0.9 250 3.54 0.010 -0.01 0.023
350 3.55 0.009 -0.04 0.023

150 3.28 0.009 -0.05 0.023

1.0 250 3.26 0.009 -0.09 0.024
350 3.28 0.009 -0.06 0.022
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Table 11. Simulation results for the estimates of drift time 7 =150, 250, and 350

(CUSUM chart)
CUSUM (0.25, 8)
. Run Length MLE CUSUM
B Estimator Estimator

ARL SE(RL) | E(d) SE(d) E(d) SE(d)

150 19.68 0.051 2.34 0.127 1.56 0.108

0.05 250 19.66 0.052 2.39 0.126 1.67 0.107
350 19.72 0.051 2.32 0.127 1.71 0.106

150 13.38 0.032 -0.01 0.098 -1.77 0.099

0.1 250 13.36 0.032 0.18 0.096 -1.76 0.097
350 13.38 0.032 0.05 0.097 -1.68 0.096

150 9.13 0.020 -0.73 0.073 -3.70 0.096

0.2 250 9.14 0.020 -0.63 0.071 -3.60 0.093
350 9.14 0.020 -0.83 0.075 -3.57 0.092

150 7.34 0.015 -0.81 0.062 -4.43 0.094

03 250 7.34 0.015 -0.85 0.061 -4.30 0.091
350 7.35 0.015 -0.90 0.063 -4.30 0.091

150 6.29 0.013 -0.84 0.055 -4.82 0.094

04 250 6.29 0.013 -0.76 0.052 -4.69 0.091
350 6.29 0.013 -0.89 0.056 -4.69 0.090

150 5.58 0.011 -0.81 0.051 -5.07 0.093

0.5 250 5.58 0.011 -0.73 0.048 -4.95 0.091
350 5.58 0.011 -0.77 0.049 -4.97 0.090

150 5.08 0.010 -0.74 0.046 -5.23 0.093

0.6 250 5.07 0.010 -0.68 0.044 -5.08 0.090
350 5.07 0.010 -0.79 0.046 -5.13 0.090

150 4.69 0.009 -0.68 0.042 -5.36 0.093

0.7 250 4.68 0.009 -0.66 0.041 -5.20 0.090
350 4.68 0.009 -0.77 0.044 -5.23 0.090

150 4.37 0.008 -0.63 0.039 -5.43 0.092

0.8 250 4.37 0.008 -0.60 0.038 -5.30 0.090
350 4.37 0.008 -0.71 0.041 -5.32 0.090

150 4.11 0.008 -0.58 0.036 -5.51 0.092

09 250 4.10 0.008 -0.56 0.036 -5.38 0.090
350 4.10 0.008 -0.66 0.039 -5.40 0.090

150 3.89 0.007 -0.58 0.035 -5.56 0.092

1.0 250 3.89 0.007 -0.53 0.034 -5.45 0.090
350 3.88 0.007 -0.62 0.037 -5.45 0.090

Finally, we show the average performance of the MLE and EWMA estimator for EWMA

(0.1,2.7) control chart whenz =150,250,and 350 in tablel12. The comparison between

these two estimators reveals that both estimators are robust to change point location 7 .
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Table 12. Simulation results for the estimates of drift time 7 =150, 250, and 350

(EWMA chart)
EWMA (0.1, 2.7)
Run Length MLE EWMA
p T Estimator Estimator

ARL | SE(RL) | E(d) SE(d) E(d) SE(d)

150 19.23 0.052 3.65 0.125 2.92 0.104

0.05 250 19.15 0.053 3.67 0.123 3.05 0.103
350 19.25 0.052 3.69 0.124 3.10 0.103

150 12.86 0.032 0.63 0.096 -0.24 0.095

0.1 250 12.84 0.032 0.86 0.092 -0.18 0.095
350 12.89 0.032 0.72 0.095 -0.23 0.096

150 8.66 0.020 -0.41 0.073 -2.19 0.091

0.2 250 8.69 0.020 -0.41 0.071 -2.11 0.091
350 8.69 0.020 -0.52 0.075 -2.16 0.092

150 6.92 0.016 -0.65 0.062 -2.90 0.089

0.3 250 6.94 0.016 -0.65 0.061 -2.82 0.090
350 6.94 0.016 -0.74 0.063 -2.89 0.091

150 5.92 0.013 -0.78 0.056 -3.29 0.088

0.4 250 5.93 0.013 -0.68 0.053 -3.22 0.089
350 5.93 0.013 -0.78 0.056 -3.30 0.090

150 5.25 0.011 -0.80 0.051 -3.56 0.088

0.5 250 5.25 0.011 -0.68 0.048 -3.49 0.088
350 5.25 0.011 -0.75 0.050 -3.53 0.089

150 4.76 0.010 -0.80 0.049 -3.75 0.087

0.6 250 4.76 0.010 -0.68 0.046 -3.66 0.088
350 4.77 0.010 -0.81 0.048 -3.72 0.089

150 4.39 0.010 -0.76 0.045 -3.87 0.087

0.7 250 4.39 0.009 -0.67 0.043 -3.79 0.087
350 4.39 0.009 -0.81 0.046 -3.87 0.089

150 4.09 0.009 -0.66 0.040 -3.99 0.087

0.8 250 4.09 0.009 -0.63 0.040 -3.91 0.087
350 4.10 0.009 -0.76 0.043 -3.97 0.088

150 3.85 0.008 -0.63 0.038 -4.07 0.087

0.9 250 3.85 0.008 -0.61 0.038 -3.99 0.087
350 3.85 0.008 -0.70 0.040 -4.06 0.088

150 3.63 0.008 -0.65 0.038 -4.14 0.086

1.0 250 3.65 0.008 -0.57 0.035 -4.07 0.087
350 3.64 0.008 -0.66 0.038 -4.12 0.088

6. Derivation of the Adjustment Procedure
In this section, we present a new feedback adjustment procedure for linearly trended
processes. The procedure is based on the maximum likelihood estimators for the process

linear trend £ and the drift time 7 presented in section 3.
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It is assumed that the changes in properties of the quality characteristic / process output
v, are only due to a linear trend disturbance according to the model

= +x_,+tpo\t—-7T)+&g, >T
{yt Mo+ X, + P 0( ) ‘ (14)

Y= Hy T & 17
where x, | is the level of the controllable factor at time -land &, ~ N(0,5;).

The adjustment procedure works under a hierarchical three-phase methodology. During
the first phase, process output is monitored using a statistical process control chart. In the

second phase estimates £ and 7



att=T:

T T
Y -9, X -7)
_ =7+l t=7+1
ﬂT - T N
o, Z(t - r)
t=t+1
atr=T+1:
T R R T+1 R
R Zyt(t_f)+WT+l(T+l_T)_lu0Z(t_z-)
ﬂ _ t=t+1 t=7+1
T+l T+l
o, Z(t - f)2
t=7+1
T
X IBTO'O Z(t_f)z+WT+1(T+1_22)_,U0(T+1_€)
ﬂT+1 — t=7+l1 —
oy Y (t-7)
t=7+1

where w, is the unadjusted process output. w, is defined as

W, =Y, =X,

Generally,
A T+i-1 )
o Praaoy Z(t_f) +wp (T +i=7)= (T +i-7)
ﬂT+i = = T+i (1 6)
o, z (t - f)z
t=7+1

It is clear from equation (16) that the updating process for the estimate of linear trend rate
depends on the previous estimate value of ,3, the current unadjusted process value and

7 . This recursive nature of the updating process makes it more practical.
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7. Process Adjustment Simulations

Simulation is used to study the performance of the proposed adjustment procedure and
compare it with the Exponentially Weighted Moving Average (EWMA) controllers at
different levels of linear trend disturbance according to the model described in equation
(14).

EWMA feedback controllers have been used for years in semiconductor industry and
many authors study their performance especially under linear trend disturbance
(Ingolfsson and Sachs (1993), and Del Castillo (1999, 2001)).

The so-called double EWMA controller developed by Butler and Stefani (1994) can be

written according to equation (14) as

X, :luO_at_Rt (17)
a, :ﬂ“l(yz _xz—1)+(1_ﬂ*1)az—1a 0<4 <1 (18)
R, :ﬂ'z(yz — X _at—1)+(l_/’i’2)Rt—1’ 0<4, <1 (19)

A single EWMA is obtained when 4, =0 and R, =0 in Equation (19).

The performance of the proposed adjustment procedure is compared with single EWMA

and double EWMA controllers. As for the adjustment performance characterization, we
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use the normalized mean square error as the performance index. The smaller the value,

the better the performance. The normalized mean square error is defined as
1 ’
MSE /ol = _z(uJ (20)

where 7 is the number of adjustments in each simulation run.

In the simulation study we assume that the process starts to drift away from the target
value at time 7 = 50. Namely, the first 50 observations are independently and randomly
generated from a normal distribution with mean 10.0 and standard deviation 1.0. Starting
from observation 51, observations are independently and randomly generated from a

normal distribution with mean 10.0 + (¢ —50)/3 (where ¢ > 50) and standard deviation 1.0.

The adjustment starts after a Shewhart (30 ) chart issues an out-of-control signal at time

T. The performa



optimal trade-off between the long-run performance and transient performance at lower

and higher trend rate respectively (Del Castillo 1999).

Tables 13 shows the mean and standard deviation (in parentheses) of the normalized

mean square error for the different controllers under linear trend rates from 0.1 to 1.0

when production ends at # =100.

It is shown that the proposed adjustment procedure has a more stable performance over a

wide range of trend rates while the performance of the EWMA controllers depends on the

controller parameters and their performances gradually deteriorate especially at higher

trend rates £ > 0.40.

Table 13. Mean and standard deviation (in parentheses) of the normalized mean square

error for the different controllers based on 1000 trials (production ends at  =100)

p Proposed Single EWMA Double EWMA
Procedure | 1, =0.30 | 4,=0.90 | 4, =0.03,4,=0.29 | 4, =0.20,1, =0.85
01 2.037 1.353 1.830 1.266 2.165
' (0.640) (0.345) (0.562) (0.345) (0.652)
02 2.010 1.727 1.848 1.398 2.125
' (0.570) (0.319) (0.501) (0.313) (0.581)
03 2.005 2.303 1.904 1.593 2.112
' (0.544) (0.320) (0.479) (0.304) (0.553)
0.4 2.005 3.090 1.989 1.861 2.107
' (0.539) (0.334) (0.475) (0.305) (0.548)
05 2.008 4.098 2.102 2.203 2.104
' (0.534) (0.363) (0.472) (0.316) (0.546)
06 2.012 5.297 2.236 2.607 2.102
' (0.528) (0.387) (0.466) (0.322) (0.537)
07 2.017 6.711 2.394 3.082 2.101
' (0.522) (0.413) (0.461) (0.332) (0.530)
08 2.020 8.328 2.576 3.625 2.099
' (0.519) (0.435) (0.457) (0.337) (0.525)
09 2.026 10.160 2.785 4.241 2.100
' (0.520) (0.461) (0.458) (0.345) (0.524)
1.0 2.032 12.206 3.019 4.930 2.103
' (0.520) (0.491) (0.457) (0.358) (0.522)
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The behaviour of the proposed adjustment procedure is investigated further when a
production ends atz =150; i.e. adjustment period is extended by 50 observations. As
shown in table 14, the results indicate that the standard deviation of the normalized mean
square error is decreased for all controllers. The performance of the proposed procedure
is consistent throughout the entire simulation study. In general, a better performance of
the EWMA controllers is achieved when the adjustment period is extended due to the
long run property of the EWMA controllers. However, the proposed procedure still

outperforms EWMA controllers when £ > 0.6.

Table 14. Mean and standard deviation (in parentheses) of the normalized mean square

error for the different controllers based on 1000 trials (production ends at ¢ =150)

p Proposed Single EWMA Double EWMA
Procedure | 1, =0.30 | 4,=0.90 | 4, =0.03,4,=0.29 | 4, =0.20,1, =0.85
01 2.007 1.307 1.822 1.223 2.126
' (0.377) (0.190) (0.331) (0.192) (0.383)
02 1.998 1.664 1.851 1.290 2.113
' (0.360) (0.186) (0.316) (0.185) (0.365)
03 1.996 2.230 1.910 1.388 2.107
' (0.354) (0.188) 0.311) (0.184) (0.360)
04 1.997 3.013 1.994 1.523 2.103
' (0.350) (0.195) (0.308) (0.184) (0.357)
05 1.997 4.015 2.103 1.696 2.099
' (0.345) (0.208) (0.305) (0.188) (0.353)
06 1.999 5.228 2.238 1.904 2.098
' (0.345) (0.215) (0.304) (0.189) (0.351)
07 2.002 6.658 2.397 2.149 2.097
' (0.344) (0.225) (0.303) (0.191) (0.350)
08 2.005 8.299 2.581 2.430 2.097
' (0.344) (0.232) (0.302) (0.190) (0.350)
09 2.009 10.161 2.791 2.750 2.098
' (0.344) (0.249) (0.302) (0.194) (0.349)
1.0 2.014 12.238 3.024 3.106 2.099
' (0.346) (0.265) (0.302) (0.198) (0.349)

From an operating point of view, the proposed procedure can be applied using computer-

controlled system especially with the increasing computational power of today’s
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computers which allow for efficient real time use of this procedure in practice. Also, it
should be noted that the proposed procedure is not intended for a continuous adjustment
scheme. Rather, it is triggered when the accompanied control chart issues an out-of-
control signal. Based on the results of this research, it can be seen that the proposed
adjustment procedure has better performance and consistency than EWMA controllers

when a short adjustment period is considered.

8. Conclusions

In this paper, we propose an estimator for identifying the change point in processes
subject to a linear trend in process mean. The performance of the proposed estimator is
analyzed when it is used with a Shewhart X-chart, CUSUM and EWMA charts. The
results show that the proposed estimator outperforms the CUSUM and the EWMA
estimators in estimating the actual drift time for almost all investigated trend rates. The
study also shows that the proposed estimator maintains same performance regardless of
the location of the change point.

We also introduce a new adjustment procedure for linearly trended processes. Simulation
study shows that the proposed adjustment procedure is more stable than EWMA
controllers over a wide range of linear trend rates and its performance does not depend on
the selection of any parameters. These characteristics make it also an ideal controller for
processes subject to random trend rates. The proposed adjustment procedure can be easily

implemented in practice especially for computer-controlled processes.
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A possible extension of this research could be the detection of the drift time and the
adjustment procedure for nonlinear drifts as well as considering a drift in the process

variance.
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