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In this paper, we consider production processes when the mean of a quality characteristic 

is drifted linearly with time. First, we introduce a procedure to detect the drift time of the 

process mean as early as possible. Then, based on the estimate of the drift time, a new 

adjustment procedure based on the maximum likelihood estimate of the drift time is 

developed to keep the process mean on target.  We analyze and compare the performance 

of the proposed estimator with cumulative sum (CUSUM) and exponentially moving 

average (EWMA) change point estimation procedures. It is observed that the proposed 

procedure indeed estimates the drift time effectively for moderate and large trend rates. 

However, there is a noticeable decrease in its ability to detect drift time at small trend 

rates. Furthermore, the performance of the new adjustment procedure is compared with 

EWMA controllers. It is shown that the new procedure is more stable through a wide 

range of trend rates and its performance does not depend on any parameters of the 

process.  
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1. Introduction 

Statistical control charts are widely used to monitor process characteristics in industry. 

Shewhart developed the control chart in 1924 (see, Shewhart 1931) for differentiating 

between the inevitable random causes and the assignable causes in a process. When a 

control chart signals an out-of-control alarm, process engineers initiate a search for the 

assignable cause of the process disturbance. The experience and the knowledge of the 

process engineers allow them to identify the combination of process variables responsible 

for the process change.   

The output characteristics of many manufacturing processes exhibit trend patterns. The 

trend can be positive or negative and linear or nonlinear. An example for a positive trend 

in process mean includes tool-wear where a tool wear out results in linearly increasing 

product dimension, while a continuous clogging of a spray nozzle represents a negative 

trend in process mean. Identifying when the process changes would simplify the search 

for assignable causes and minimize the production of defective units. When the change 

time is accurately estimated, it would enable the process engineers to quickly identify the 

assignable causes and make the proper adjustments. The sooner assignable causes are 

detected the sooner corrective actions are activated which leads to reduction in losses due 

to deviations from the mean. 

 

The maximum likelihood estimation technique has been used to identify the point of step-

change in the process mean. Samuel et al. (1998) and Pignatiello and Samuel (2001) base 

their approach on Hinkley (1970). They consider an estimator based on the maximum 

likelihood estimator (MLE) for step-change point in process mean once the Shewhart 
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X control chart issues a signal. Hinkley discusses the asymptotic properties of the 

estimator.  

 

The problem of two-phase regression; a change from one straight line regression to 

another; has been studied by a number of authors. Hudson (1966) develops the maximum 

likelihood estimate of the intersection between two straight lines and Hinkley (1969, 

1971) derives the asymptotic distribution for the maximum likelihood estimate of the 

intersection. Bacon et al. (1971) use Bayesian analysis to estimate the transition between 

two intersecting straight lines. Maronna et al. (1978) and Beckman et al. (1979) study the 

same problem using likelihood ratio test and show the critical values for the test by 

simulation.  

The two-phase regression is different from the problem of identifying the drift time in a 

process monitored by a control chart since a) drift time depends on the run length 

distribution of the control chart, and b) the small data sampling in quality control makes 

asymptotic distributions impractical in most of quality control applications. Hence, the 

two-phase problem can be considered as a drift time identification problem without the 

implications of the quality control system. 

In this paper, we consider Shewhart, CUSUM, and EWMA control charts for individual 

observations and the MLE procedure to identify process drift time. The procedure is 

applied once the control chart issues an out-of-control signal. The MLE of the drift time 

is compared with CUSUM procedure in Page (1954) and EWMA estimator procedure 

proposed in Nishina (1992). 
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This paper is organized as follows. The process model for a process subject to a linear 

trend in the process mean is introduced in section 2 followed by the derivation and 

confidence interval of the drift time estimator in section 3. A numerical example is given 

in section 4 to illustrate the approach. In section 5, we analyze and compare the 

performance of the proposed estimator with CUSUM and EWMA estimator procedures. 

A new adjustment procedure for linearly trended processes is presented in section 6. We 

compare the performance of the proposed procedure with EWMA controllers in section 

7.  

 

2. Process Model 

The process under study considers monitoring the characteristic of a product using a 

control chart. The process is subject to linear trend. The objective is to determine the 

earliest possible time to detect the trend occurrence. 

We assume that the process is initially in-control; i.e., observations are assumed to be 

normally and independently distributed from a normal distribution with a known mean 

0µ  and known standard deviation 0σ . After an unknown point in timeτ , the process 

starts to drift away from the standard mean 0µ  by timeunit /0βσ  where β  is unknown. 

In other words, the quality characteristic at time t, , can be represented as ty

 

( ) τσµ ≤tNyt                              ,,~ 2
00   

( )( ) τστβσµ >−+ ttNyt         ,,~ 2
000  
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We assume that  is the first observation to exceed the control limit of the control chart 

and that this signal is not a false alarm. Thus, are observations from an in- 

control process, while are observations from out-of-control process. 

Ty

τ,......,y,yy 21

Tττ ,......,y,yy 21 ++

 

3. Derivation of the Drift Time Estimator 

The log likelihood function for the linear trend process model can be derived as: 

The pdf of the trend is  

( ) ( ) 2
0

2 2

2
02

1 σµ

πσ
tty

t eyf −−=   

and the corresponding likelihood function is 
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The log likelihood function is  
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Substituting the value of  from equation (2) in equation (1), we obtain β̂ τ̂  that 

maximizes the log likelihood function 

 

( ) ( ) ( ) [ τττ τ ττ
σβτβτµβττ Dttty

T

t

T

t

T

t
t min argˆˆ2ˆ2min argˆ

1 1 1
0

22
0 =








−+−+−−= ∑ ∑ ∑

+= += +=

]      (3) 

 

whereτ̂  is the value of τ in the range T<≤τ1  which minimizes  in equation (3). τD

 

3.1. Confidence Interval Estimation 

For any given value of τ̂ , it can be shown from equation (2) that the asymptotic 

distribution of  is ( )τβ ˆˆ

 

( ) ( )
( )( )[ ] 
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Therefore a ( )α−1100  confidence interval on β  is given by 

 

( ) ( )
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where 2αZ is the percentage point of the standard normal distribution such that 

( ) 22 αα =≥ ZzP . 

 

In order to derive the confidence interval for a drift timeτ , we present an approach based 

on the likelihood ratio (LR) statistic. According to the process model in section (2), the 

standard mean 0µ  of the process is assumed to start changing at time τ  with an unknown 

trend rate β . The control chart issues an out-of-control signal at time T when the process 

reaches the control limit of the control chart. The least squares estimator of β  is the 

value which minimizes the sum of squares function 

 

  ( ) ( )( )∑∑
+==
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00
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The minimum value of S is denoted by  which is achieved at Ŝ τ̂  and . Since the 

least squares estimators are the MLE under Gaussian errors for linear and nonlinear 

models, the MLE of 

( )τβ ˆˆ

β is used for the confidence interval estimation procedure. 

We use the grid search procedure described by Lerman (1980) to estimate the confidence 

interval for τ . This procedure can be used for linear and nonlinear regression models. 

The procedure is based on carrying out a grid search over τ  to map ( )τS , the minimum 

value of the residual sum of squares at τ . ( )τS  is defined for the process model as 
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where  is the MLE of ( )τβ̂ β  at τ . 

In the two-phase model literature, Hinkley (1971) and Feder (1975) suggest using the 

two-sided LR test for the null hypothesis 00 : γγ =H  for finite samples, whereγ  

represents the intersection point of two regression lines 

 

 ( ) α
pmF

s
SS

−≤
−

,12

0 ˆ
        (5) 

 

and 

 ( )pmSs −= ˆ2  

 

where m is the number of data points in the regression model. S0 is the minimum value of 

residual sum of squares under hypothesis H0, and p (=1) denotes the dimension of the 

parameter space,  is the residual mean square, and denotes the upper 2s α
wvF , α  per cent 

value of the central F distribution with v and w degrees of freedom. 

Based on (5) the values of ( )τS  can be used to estimate an approximate confidence 

interval for the drift timeτ  such as 

  

          (6) ( ) ατ pmFsSS −+≤ ,1
2ˆ
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Lerman (1980) shows that confidence intervals based on (6) give reliable results for quite 

small samples in linear regression models.  

Following the procedure above, we summarize the steps required to draw the confidence 

intervals based on the drift timeτ .  First, we sequentially split the observations into two 

parts using different values of τ and fit the process model, then calculate ( )τS  at the 

different values of τ  from (4). Find  (the minimum value of Ŝ ( )τS ), then estimate the 

confidence interval from (6).  

 

3.2. Confidence Interval Analysis 

The confidence interval procedure is studied for different values of linear trend rates. A 

process is simulated with the first 50 observations normally distributed with mean 10.0 

and standard deviation 1.0. Starting from observation 51, observations are randomly 

generated from a normal distribution with mean ( )β500.10 −+ t  (where ) and 

standard deviation 1.0 until a Shewhart (

50>t

σ3 ) control chart issues an out-of-control signal 

at time T. This scenario is repeated for ,5.0,1.0=β  and 1 . Figure 1 shows the relation 

between 

0.

( )τS  and τ . It can be seen that the confidence intervals decrease and the 

estimate for the change point is enhanced with the increase of the trend rateβ . The 

estimate of the drift time τ  and its 95% confidence interval for the above example are 

shown in table 1. 
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                                 (a)                                                                 (b) 

 
(c) 

 
Figure 1. Relation between ( )τS  and τ   (a) at 1.0=β ; (b) at 5.0=β ; (c) at 0.1=β  

 
 

Table 1. Simulated process results 
β  T τ̂  95% C.I. of τ  

0.1 67 58 (49.73, 61.09) 
0.5 57 50 (44.66, 52.83) 
1.0 53 50 (47.30, 51.93) 

 
 

4. Numerical Example 

Consider the turning process of the outside diameter of steel rods. The nominal outer 

diameter (OD) of the steel rods is 10.0 mm and the in-control production output from the 

turning operation is considered independent and normally distributed with a mean 

0.100 =µ  and standard deviation 0.10 =σ . 
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Although, we intend to use individual observations collected at fixed intervals of time, 

the same procedure can be applied for subgroups of size M. 

A Shewhart control chart for individuals X-chart is used for the detection of out-of-

control process and the corresponding upper control limit UCL and lower control limit 

LCL are 13.0 and 7.0 respectively.  

The steel rods OD measurements are shown in table 2. The process starts to drift from the 

in-control mean ( 100 =µ .0) after the 10th observation with a trend rate equals to 0.1. 

From table 2, it can be seen that Shewhart X-chart issues an out-of-control signal at the 

30th observation since , hence UCL>y30 30=T . Figure 2, illustrates the observations 

from the numerical example on a Shewhart chart. 

 

Table 2. Steel rods OD measurements 

t  
ty  t  

ty  
1 9.87 16 9.99 
2 9.03 17 11.96 
3 10.89 18 11.22 
4 9.64 19 11.05 
5 8.39 20 11.56 
6 9.57 21 12.20 
7 9.93 22 12.09 
8 10.36 23 11.99 
9 9.46 24 10.35 

10 8.91 25 11.24 
11 9.27 26 11.08 
12 10.95 27 12.44 
13 11.66 28 10.46 
14 9.76 29 12.72 
15 10.81 30 14.10 
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Figure 2. Shewhart chart for the numerical example 

To estimate the drift time of the process using the proposed approach, we determine the 

value of τ  in the range T<≤τ1  which minimizes .  τD

The values of  and for the numerical example are shown in table 3. It can be seen 

that the minimum value of  is associated with the 10

β̂ τD

τD th observation. Thus, we conclude 

that the 10th observation is the last observation from in-control process. This coincides 

with the exact observation from the actual generated data. Thus, process engineers would 

search for the assignable causes that might have occurred between observations 10 and 

11. Also, process engineers can use the estimate of the linear trend  in the process to 

propose corrective actions. The relation between and 

β̂

τD τ  for the numerical example is 

shown in figure 3. 
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Table 3. Example results 

τ  β̂  τD  τ  β̂  τD  
29 4.10 -16.84 14 0.17 -42.04 
28 2.18 -23.87 13 0.15 -42.61 
27 1.30 -23.67 12 0.14 -43.37 
26 0.93 -25.99 11 0.13 -44.11 
25 0.70 -27.25 10 0.12 -44.40 
24 0.56 -28.30 9 0.12 -44.25 
23 0.45 -28.47 8 0.11 -43.87 
22 0.38 -29.46 7 0.10 -43.48 
21 0.33 -30.99 6 0.09 -43.03 
20 0.29 -32.96 5 0.09 -42.45 
19 0.26 -34.90 4 0.08 -41.59 
18 0.24 -36.56 3 0.08 -40.68 
17 0.22 -38.10 2 0.07 -39.93 
16 0.20 -39.85 1 0.07 -39.06 
15 0.18 -41.02    

 

-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

τ

τD

 

Figure 3. Estimates of  at different values of τD τ for the numerical example 

 

5. Performance Analysis 

The performance of the proposed estimator is studied by simulation. In the simulation 

study, the drift time of process is designed to occur at 50=τ . Therefore, observations 1 

to 50 are independently and randomly generated from a normal distribution with mean 

10.0 and standard deviation 1.0. Starting from observation 51, observations are 

 13



independently and randomly generated from a normal distribution with mean 

( )β500.10 −+ t  (where t ) and standard deviation 1.0 until the control chart issues a 

signal. This procedure is repeated 10,000 times for each value of

50>

β . This scenario is 

repeated with same randomly generated data to analyze the performance of the MLE 

procedure when it is accompanied with Shewhart X-chart, CUSUM, and EWMA charts. 

The parameters of these charts are set such that the control charts have almost equivalent 

performances based on in-control average run length value 370.  

t

During the simulation study, when a false alarm is encountered at time t ; before the 

actual designed drift time; the control chart is restarted at time 1+t  without changing the 

actual designed drift time. For example, when a false alarm occurs at , the control 

chart statistic will be restarted at 

10=

11=t . Therefore, the individual observation at  is 

treated as if it is the first observation during the in-control period. This procedure deals 

with false alarms in the same way they have been treated in practice. A similar procedure 

is used in Pignatiello and Samuel (2001), Fahmy and Elsayed (2005), and Perry and 

Pignatiello (2005).  

11=t

 

5.1. CUSUM Change Point Estimation Procedure 

Page (1954) proposes to use this procedure to identify the change point using CUSUM 

control charts. The CUSUM estimator procedure is summarized for an CUSUM chart 

with parameters K and H as follows 

a) CUSUM statistics are 

 

( )[ ]+
−

+ ++−= 10,0max iti CKyC µ      (7) 
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( )[ ]−
−

− +−−= 10,0max iti CyKC µ      (8) 

      where the starting values are  000 == −+ CC

 

b) CUSUM chart issues an out-of-control signal when C  or C  exceeds the 

control limit H 

+
i

−
i

b) If C , the time when shift occurs is identified by counting the number of 

consecutive periods since C  is greater than zero. The same procedure is used 

when . The change point estimate using CUSUM chart to identify the 

change point 

Hi ≥+

Ci ≥−

+
i

H

τ  can be expressed as 

 

 ( ){ }HCTtiHCCt TitCUSUM ≥−+=<<≤= ±±±  ,1,....1 0 ,0:τ̂   (9) 

 

5.2. EWMA Change Point Estimation Procedure 

A similar approach to the CUSUM estimator is proposed by Nishina (1992) to use 

EWMA control charts to identify the change point in a process. The EWMA estimator is 

summarized for an EWMA chart with parameters λ  and L as follows 

a) EWMA statistics E  at time t is defined as t

 

( ) 11 −−+= ttt EyE λλ        (10) 

        where 0 1≤< λ  and 00 µ=E   

b) EWMA chart issues an out-of-control signal when Et exceeds the control 

limits  
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( ) ( )[ ]t
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λ

λσµ −−
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( ) ( )[ ]     (12) t
t LLCL 2

0 11
2

λ
λ

λσµ −−
−

−=

 

c) If E , the time when shift occurred will be identified by counting the 

number of consecutive periods since E

tt UCL≥

t exceeds the standard mean 0µ . The 

EWMA estimator for the change point τ  can be expressed as 

 

( ){ }TTiitEWMA UCLETtiUCLEEt ≥−+=<<≤=  ,1,....,1  ,:ˆ 00 µµτ  (13) 

 

5.3. MLE with Shewhart Chart 

The simulation results for the MLE when it is accompanied with Shewhart X-chart are 

shown in tables 4 and 5. Table 4 shows the average run length (ARL) and its standard 

error for Shewhart ( σ3 ) at different trend rates, the expected value of the deviation d  

and its standard error. The deviation  is the difference between the estimate of drift 

time 

d

τ̂  and the actual drift time ( )50=τ ; i.e., ττ −= ˆd . The estimate of  and its 

standard error are 

( )dE

 

 ( ) ∑
=

=
000,10

1000,10
1

i
iddE  

 

( )
000,10

sdSE =  

where 
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( )( )

( )1000,10

000,10

1

−

−
=

∑
=i

i dEd
s  

 

The estimated probability of drift time detection within n observations from the actual 

drift time is shown in table 5. Where ( )np ≤−ττ̂ˆ  is the estimated probability that the 

absolute difference between τ̂  and τ is less than or equal n. 

 

Table 4. Simulation results for the estimates of drift time (Shewhart chart) 

Shewhart ( σ3 ) 
Run Length MLE β  

ARL ( )RLSE
 

( )dE
 

( )dSE  

0.05 30.69 0.100 3.51 0.106 
0.1 18.54 0.056 1.97 0.071 
0.2 11.04 0.032 1.02 0.048 
0.3 8.13 0.023 0.64 0.038 
0.4 6.55 0.018 0.43 0.033 
0.5 5.53 0.015 0.28 0.030 
0.6 4.84 0.013 0.18 0.027 
0.7 4.29 0.012 0.12 0.025 
0.8 3.87 0.010 0.02 0.024 
0.9 3.55 0.010 -0.02 0.023 
1.0 3.29 0.009 -0.05 0.022 

 

As shown in table 5, the proposed estimator detects the actual drift time within 1±  

observation in 50% or more of the 10,000 simulation trials for trend rates greater than 

0.4. These results indicate the usefulness of the proposed estimator in detecting the actual 

drift time of a process and the decreasing the size of search window.  
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Table 5. Estimated probability of detection for MLE with Shewhart chart based on 

10,000 trials 

β  0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

( )ττ =ˆp̂  0.047 0.072 0.114 0.154 0.189 0.221 0.259 0.291 0.324 0.351 0.383 
( )1ˆˆ ≤−ττp  0.134 0.207 0.309 0.394 0.477 0.547 0.613 0.668 0.716 0.752 0.792 
( )2ˆˆ ≤−ττp  0.218 0.328 0.480 0.596 0.695 0.773 0.833 0.873 0.905 0.923 0.936 
( )3ˆˆ ≤−ττp  0.297 0.432 0.617 0.746 0.836 0.895 0.926 0.945 0.955 0.960 0.965 
( )4ˆˆ ≤−ττp  0.369 0.526 0.727 0.853 0.920 0.953 0.965 0.971 0.973 0.976 0.978 
( )5ˆˆ ≤−ττp  0.431 0.603 0.812 0.915 0.957 0.970 0.975 0.978 0.980 0.982 0.984 
( )6ˆˆ ≤−ττp  0.485 0.671 0.876 0.952 0.973       

( )7ˆˆ ≤−ττp  0.537 0.731 0.919 0.970 0.979       

( )8ˆˆ ≤−ττp  0.582 0.780 0.948 0.977 0.984       

( )9ˆˆ ≤−ττp  0.629 0.828 0.967 0.982 0.986       

( )10ˆˆ ≤−ττp  0.673 0.869 0.976 0.985 0.988       

( )11ˆˆ ≤−ττp  0.712 0.902          

( )12ˆˆ ≤−ττp  0.748 0.925          

( )13ˆˆ ≤−ττp  0.778 0.944          

( )14ˆˆ ≤−ττp  0.810 0.960          

( )15ˆˆ ≤−ττp  0.835 0.968          

 

5.4. MLE with CUSUM Chart 

In this section, we compare the performance of the MLE using equation (3) with the 

CUSUM estimator using equation (9). Both estimators are used to identify the drifting 

point when an CUSUM chart issues an out-of-control signal. We consider an CUSUM 

chart with parameters K= 0.25 and H= 8. The CUSUM chart with theses parameters has 

the same in-control ARL as the Shewhart ( σ3 ) control chart.  
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Table 6 shows the ARL of the CUSUM (0.25,8) and the expected value of the deviation 

 for the MLE and CUSUM estimators along with their standard errors under different 

trend rates. 

d

The comparison between the MLE and CUSUM estimator shows that the CUSUM 

estimator performs slightly better than MLE for 050.β = but for other trend rates the MLE 

performs much better than CUSUM estimator. Also, it should be noted that the standard 

error of the MLE estimator is significantly reduced with the increase of the trend rate. 

 

Table 6. Simulation results for the estimates of drift time (CUSUM chart) 

CUSUM (0.25,8) 
Run Length MLE CUSUM 

Estimator β  
ARL ( )RLSE

 
( )dE
 

( )dSE
 

( )dE
 

( )dSE  

0.05 19.71 0.052 2.24 0.129 1.72 0.103 
0.1 13.38 0.032 0.05 0.098 -1.64 0.093 
0.2 9.14 0.020 -0.83 0.075 -3.47 0.089 
0.3 7.33 0.015 -0.87 0.064 -4.21 0.087 
0.4 6.29 0.013 -0.87 0.057 -4.62 0.087 
0.5 5.59 0.011 -0.88 0.053 -4.89 0.086 
0.6 5.09 0.010 -0.80 0.049 -5.05 0.086 
0.7 4.69 0.009 -0.74 0.045 -5.16 0.086 
0.8 4.37 0.008 -0.67 0.041 -5.26 0.086 
0.9 4.11 0.008 -0.65 0.040 -5.35 0.086 
1.0 3.89 0.007 -0.61 0.038 -5.41 0.086 

 

The estimated probability for MLE and CUSUM estimators in detecting the drift time 

within n observations from the actual drift time is shown in table 7. 

The results in table 7 indicate that the MLE significantly outperforms the CUSUM 

estimator especially in the range of trend magnitude from 0.2 to 1.0. For 05.0=β . 

Although on average the CUSUM estimator slightly outperforms the proposed MLE, the 

results indicate that the MLE correctly identifies the drift time similar, if not more 
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effectively than the CUSUM estimator. While for 1.0=β , both estimators have almost 

the same performance in detecting 0.1 linear trend rate. 

 

Table 7. Estimated probability of detecting the actual drift time for MLE and CUSUM  

estimators based on 10,000 trials 

β   0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

MLE 0.044 0.067 0.116 0.163 0.201 0.239 0.276 0.307 0.343 0.371 0.403 ( )ττ =ˆp̂  
CUSUM 0.040 0.069 0.106 0.135 0.158 0.177 0.197 0.212 0.227 0.238 0.250 

E 0.116 0.193 0.320 0.423 0.504 0.573 0.635 0.686 0.728 0.762 0.792 ( )1ˆˆ ≤−ττp  
CUSUM 0.114 0.192 0.284 0.349 0.392 0.423 0.441 0.452 0.457 0.461 0.462 

 0.190 0.311 0.494 0.617 0.705 0.774 0.823 0.853 0.882 0.901 0.912 ( )2ˆˆ ≤−ττp  
CUSUM 0.194 0.317 0.447 0.519 0.550 0.561 0.564 0.562 0.558 0.554 0.551 

 0.259 0.414 0.623 0.749 0.819 0.865 0.896 0.910 0.926 0.936 0.942 ( )3ˆˆ ≤−ττp  
CUSUM 0.274 0.434 0.573 0.622 0.630 0.627 0.623 0.618 0.614 0.610 0.607 

 0.325 0.506 0.724 0.835 0.882 0.910 0.929 0.937 0.948 0.953 0.958 ( )4ˆˆ ≤−ττp  
CUSUM 0.360 0.542 0.669 0.690 0.683 0.675 0.671 0.667 0.664 0.661 0.658 

 0.385 0.587 0.797 0.881 0.912 0.929 0.942 0.948 0.956 0.960 0.965 ( )5ˆˆ ≤−ττp  
CUSUM 0.432 0.632 0.729 0.729 0.719 0.711 0.708 0.704 0.701 0.698 0.696 

 0.439 0.659 0.848 0.910 0.929       ( )6ˆˆ ≤−ττp  
CUSUM 0.502 0.703 0.766 0.756 0.747       

 0.490 0.713 0.881 0.927 0.940       ( )7ˆˆ ≤−ττp  
CUSUM 0.567 0.757 0.793 0.781 0.772       

 0.540 0.761 0.905 0.937 0.947       ( )8ˆˆ ≤−ττp  
CUSUM 0.628 0.800 0.815 0.804 0.797       

 0.592 0.805 0.921 0.944 0.953       ( )9ˆˆ ≤−ττp  
CUSUM 0.687 0.833 0.832 0.822 0.815       

0.634 0.838 0.931 0.949 0.957       ( )10ˆˆ ≤−ττp  
CUSUM 0.739 0.856 0.848 0.840 0.833       

0.675 0.867          ( )11ˆˆ ≤−ττp  
CUSUM 0.783 0.873          

0.714 0.888          ( )12ˆˆ ≤−ττp  
CUSUM 0.821 0.887          

0.746 0.905          ( )13ˆˆ ≤−ττp  
CUSUM 0.856 0.900          

0.776 0.919          ( )14ˆˆ ≤−ττp  
CUSUM 0.880 0.908          

0.806 0.928          ( )15ˆˆ ≤−ττp  
CUSUM 0.900 0.916          

ML

MLE

MLE

MLE

MLE

MLE

MLE

MLE

MLE

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 
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5.5 MLE with EWMA Chart 

The same simulation study is repeated to analyze the performance of the proposed MLE 

when it is combined with EWMA (0.1,2.7) control chart. We compare its performance 

with EWMA estimator using equation (13). The EWMA chart with these parameters has 

a similar 370 in-control ARL which is the same as that of the Shewhart ( σ3 ) and the 

CUSUM (0.25,8) charts.  

The ARL of EWMA (0.1,2.7) and the expected value of d , the deviation from the true 

drift time 50=τ , for different trend rates along with their standard errors are shown in 

table 8. The results indicate that the performance of the MLE when it is combined with 

EWMA chart is similar to the previous case when it is combined with CUSUM chart. It is 

also observed that at  and 050.β = 10.β = , EWMA estimator is closer to the true drift 

time than MLE. However, for trend rates greater than 0.1, the MLE provides much better 

average estimate for the drift time. 

 

Table 8. Simulation results for the estimates of drift time (EWMA chart) 

EWMA (0.1,2.7) 
Run Length MLE EWMA 

Estimator β  
ARL ( )RLSE

 
( )dE
 

( )dSE  ( )dE
 

( )dSE
 

0.05 19.21 0.052 3.70 0.124 3.13 0.101 
0.1 12.85 0.032 0.77 0.095 -0.07 0.092 
0.2 8.68 0.020 -0.45 0.073 -1.94 0.087 
0.3 6.93 0.016 -0.66 0.062 -2.72 0.086 
0.4 5.94 0.013 -0.78 0.057 -3.11 0.085 
0.5 5.26 0.011 -0.78 0.051 -3.38 0.084 
0.6 4.77 0.010 -0.79 0.049 -3.57 0.084 
0.7 4.40 0.009 -0.72 0.044 -3.72 0.083 
0.8 4.11 0.009 -0.69 0.041 -3.81 0.083 
0.9 3.86 0.008 -0.65 0.039 -3.91 0.083 
1.0 3.64 0.008 -0.64 0.038 -3.98 0.082 
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The estimated probability for MLE and EWMA estimators in detecting the drift time 

within n observations from the actual drift time is shown in table 9. 

 

Table 9. Estimated probability of detecting the actual drift time for MLE and EWMA  

estimators based on 10,000 trials 

β   0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
MLE 0.039 0.064 0.112 0.160 0.194 0.233 0.268 0.299 0.334 0.365 0.395 ( )ττ =ˆp̂  

EWMA 0.034 0.049 0.069 0.086 0.103 0.117 0.130 0.147 0.162 0.176 0.190 
 0.108 0.184 0.307 0.409 0.493 0.561 0.621 0.670 0.716 0.749 0.780 ( )1ˆˆ ≤−ττp  

EWMA 0.094 0.139 0.203 0.255 0.303 0.343 0.380 0.414 0.442 0.470 0.496 
0.182 0.297 0.476 0.602 0.696 0.765 0.810 0.842 0.874 0.891 0.904 ( )2ˆˆ ≤−ττp  

EWMA 0.159 0.236 0.345 0.431 0.500 0.550 0.586 0.612 0.628 0.638 0.642 
0.245 0.397 0.608 0.738 0.812 0.860 0.888 0.905 0.920 0.929 0.936 ( )3ˆˆ ≤−ττp  

EWMA 0.222 0.337 0.493 0.594 0.647 0.675 0.687 0.691 0.691 0.690 0.689 
0.307 0.489 0.715 0.828 0.878 0.908 0.924 0.934 0.942 0.948 0.952 ( )4ˆˆ ≤−ττp  

EWMA 0.292 0.445 0.626 0.700 0.726 0.729 0.727 0.725 0.724 0.722 0.721 
0.364 0.569 0.793 0.878 0.910 0.928 0.937 0.946 0.952 0.957 0.959 ( )5ˆˆ ≤−ττp  

EWMA 0.362 0.546 0.716 0.760 0.761 0.757 0.754 0.751 0.750 0.749 0.748 
0.417 0.637 0.847 0.911 0.928       ( )6ˆˆ ≤−ττp  

EWMA 0.435 0.639 0.780 0.790 0.785       
0.469 0.697 0.884 0.927 0.939       ( )7ˆˆ ≤−ττp  

EWMA 0.506 0.718 0.817 0.813 0.808       
0.515 0.748 0.911 0.938 0.946       ( )8ˆˆ ≤−ττp  

EWMA 0.573 0.779 0.839 0.831 0.826       
0.564 0.797 0.927 0.944 0.952       ( )9ˆˆ ≤−ττp  

EWMA 0.638 0.827 0.854 0.845 0.841       
0.609 0.835 0.936 0.949 0.957       ( )10ˆˆ ≤−ττp  

EWMA 0.699 0.861 0.867 0.859 0.855       
0.653 0.869          ( )11ˆˆ ≤−ττp  

EWMA 0.756 0.885          
0.695 0.892          ( )12ˆˆ ≤−ττp  

EWMA 0.801 0.902          
0.732 0.909          ( )13ˆˆ ≤−ττp  

EWMA 0.843 0.914          
0.766 0.925          ( )14ˆˆ ≤−ττp  

EWMA 0.874 0.921          
0.795 0.934          ( )15ˆˆ ≤−ττp  

EWMA 0.900 0.928          

MLE

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 

MLE 

 

From table 9, we conclude that the MLE significantly outperforms the EWMA estimator 

especially in the range of trend magnitudes from 0.2 to 1.0. While on average the EWMA 
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estimator slightly outperforms the MLE for 05.0=β . These results are similar to the 

results from the comparison between MLE and CUSUM estimator.  

 

5.6. Effect of Change Point Location on the Performance of MLE  

We now investigate the sensitivity of the proposed MLE to the location /time of the 

change pointτ . The same simulation procedure is repeated at several instants of drift 

times and ,250150=  ,τ 350 to compare the performance of the different estimators at 

different locations of the change point τ . 

The results for the average performance of MLE when it is used with Shewhart ( σ3 ) 

chart at different locations of τ  are presented in table 10. This comparison shows the 

robustness of the MLE against the change point location τ . 

In table 11, we show the average performance of the MLE and CUSUM estimator for 

CUSUM (0.25,8) control chart at different locations of τ . This comparison between the 

performance between MLE and CUSUM estimators shows that both estimators have the 

same performance regardless of change point location τ . 
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Table 10. Simulation results for the estimates of drift time 150=τ , 250, and 350 

(Shewhart chart) 

Shewhart ( σ3 ) 
Run Length MLE 

Estimator 

 
 
β  

 
 
τ  

ARL ( )RLSE  ( )dE  ( )dSE  
150 30.73 0.100 3.42 0.108 
250 30.64 0.100 3.52 0.107 

 
0.05 

350 30.61 0.101 3.59 0.107 
150 18.47 0.056 1.96 0.072 
250 18.43 0.056 1.97 0.072 

 
0.1 

350 18.47 0.056 2.08 0.071 
150 11.08 0.032 0.98 0.048 
250 11.05 0.032 1.06 0.046 

 
0.2 

350 11.03 0.031 0.98 0.050 
150 8.09 0.023 0.62 0.040 
250 8.12 0.023 0.64 0.039 

 
0.3 

350 8.12 0.023 0.60 0.040 
150 6.52 0.018 0.40 0.034 
250 6.51 0.018 0.43 0.034 

 
0.4 

350 6.54 0.018 0.37 0.034 
150 5.50 0.015 0.26 0.030 
250 5.50 0.015 0.30 0.029 

 
0.5 

350 5.51 0.015 0.21 0.031 
150 4.79 0.013 0.14 0.029 
250 4.79 0.013 0.19 0.027 

 
0.6 

350 4.80 0.013 0.11 0.030 
150 4.26 0.012 0.08 0.026 
250 4.27 0.012 0.11 0.025 

 
0.7 

350 4.27 0.012 0.01 0.029 
150 3.86 0.011 0.02 0.025 
250 3.86 0.010 0.07 0.022 

 
0.8 

350 3.88 0.010 -0.02 0.026 
150 3.54 0.010 0.00 0.023 
250 3.54 0.010 -0.01 0.023 

 
0.9 

350 3.55 0.009 -0.04 0.023 
150 3.28 0.009 -0.05 0.023 
250 3.26 0.009 -0.09 0.024 

 
1.0 

350 3.28 0.009 -0.06 0.022 
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Table 11. Simulation results for the estimates of drift time 150=τ , 250, and 350 

(CUSUM chart) 

CUSUM (0.25, 8) 
Run Length MLE 

Estimator 
CUSUM 
Estimator 

 
 
β  

 
 
τ  

ARL ( )RLSE  ( )dE  ( )dSE  ( )dE  ( )dSE  
150 19.68 0.051 2.34 0.127 1.56 0.108 
250 19.66 0.052 2.39 0.126 1.67 0.107 

 
0.05 

350 19.72 0.051 2.32 0.127 1.71 0.106 
150 13.38 0.032 -0.01 0.098 -1.77 0.099 
250 13.36 0.032 0.18 0.096 -1.76 0.097 

 
0.1 

350 13.38 0.032 0.05 0.097 -1.68 0.096 
150 9.13 0.020 -0.73 0.073 -3.70 0.096 
250 9.14 0.020 -0.63 0.071 -3.60 0.093 

 
0.2 

350 9.14 0.020 -0.83 0.075 -3.57 0.092 
150 7.34 0.015 -0.81 0.062 -4.43 0.094 
250 7.34 0.015 -0.85 0.061 -4.30 0.091 

 
0.3 

350 7.35 0.015 -0.90 0.063 -4.30 0.091 
150 6.29 0.013 -0.84 0.055 -4.82 0.094 
250 6.29 0.013 -0.76 0.052 -4.69 0.091 

 
0.4 

350 6.29 0.013 -0.89 0.056 -4.69 0.090 
150 5.58 0.011 -0.81 0.051 -5.07 0.093 
250 5.58 0.011 -0.73 0.048 -4.95 0.091 

 
0.5 

350 5.58 0.011 -0.77 0.049 -4.97 0.090 
150 5.08 0.010 -0.74 0.046 -5.23 0.093 
250 5.07 0.010 -0.68 0.044 -5.08 0.090 

 
0.6 

350 5.07 0.010 -0.79 0.046 -5.13 0.090 
150 4.69 0.009 -0.68 0.042 -5.36 0.093 
250 4.68 0.009 -0.66 0.041 -5.20 0.090 

 
0.7 

350 4.68 0.009 -0.77 0.044 -5.23 0.090 
150 4.37 0.008 -0.63 0.039 -5.43 0.092 
250 4.37 0.008 -0.60 0.038 -5.30 0.090 

 
0.8 

350 4.37 0.008 -0.71 0.041 -5.32 0.090 
150 4.11 0.008 -0.58 0.036 -5.51 0.092 
250 4.10 0.008 -0.56 0.036 -5.38 0.090 

 
0.9 

350 4.10 0.008 -0.66 0.039 -5.40 0.090 
150 3.89 0.007 -0.58 0.035 -5.56 0.092 
250 3.89 0.007 -0.53 0.034 -5.45 0.090 

 
1.0 

350 3.88 0.007 -0.62 0.037 -5.45 0.090 
 

Finally, we show the average performance of the MLE and EWMA estimator for EWMA 

(0.1,2.7) control chart when 350 and 250, ,150=τ  in table12. The comparison between 

these two estimators reveals that both estimators are robust to change point location τ . 
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Table 12. Simulation results for the estimates of drift time 150=τ , 250, and 350 

(EWMA chart) 

EWMA (0.1, 2.7) 
Run Length MLE 

Estimator 
EWMA 

Estimator 

 
 
β  

 
 
τ  

ARL ( )RLSE  ( )dE  ( )dSE  ( )dE  ( )dSE  
150 19.23 0.052 3.65 0.125 2.92 0.104 
250 19.15 0.053 3.67 0.123 3.05 0.103 

 
0.05 

350 19.25 0.052 3.69 0.124 3.10 0.103 
150 12.86 0.032 0.63 0.096 -0.24 0.095 
250 12.84 0.032 0.86 0.092 -0.18 0.095 

 
0.1 

350 12.89 0.032 0.72 0.095 -0.23 0.096 
150 8.66 0.020 -0.41 0.073 -2.19 0.091 
250 8.69 0.020 -0.41 0.071 -2.11 0.091 

 
0.2 

350 8.69 0.020 -0.52 0.075 -2.16 0.092 
150 6.92 0.016 -0.65 0.062 -2.90 0.089 
250 6.94 0.016 -0.65 0.061 -2.82 0.090 

 
0.3 

350 6.94 0.016 -0.74 0.063 -2.89 0.091 
150 5.92 0.013 -0.78 0.056 -3.29 0.088 
250 5.93 0.013 -0.68 0.053 -3.22 0.089 

 
0.4 

350 5.93 0.013 -0.78 0.056 -3.30 0.090 
150 5.25 0.011 -0.80 0.051 -3.56 0.088 
250 5.25 0.011 -0.68 0.048 -3.49 0.088 

 
0.5 

350 5.25 0.011 -0.75 0.050 -3.53 0.089 
150 4.76 0.010 -0.80 0.049 -3.75 0.087 
250 4.76 0.010 -0.68 0.046 -3.66 0.088 

 
0.6 

350 4.77 0.010 -0.81 0.048 -3.72 0.089 
150 4.39 0.010 -0.76 0.045 -3.87 0.087 
250 4.39 0.009 -0.67 0.043 -3.79 0.087 

 
0.7 

350 4.39 0.009 -0.81 0.046 -3.87 0.089 
150 4.09 0.009 -0.66 0.040 -3.99 0.087 
250 4.09 0.009 -0.63 0.040 -3.91 0.087 

 
0.8 

350 4.10 0.009 -0.76 0.043 -3.97 0.088 
150 3.85 0.008 -0.63 0.038 -4.07 0.087 
250 3.85 0.008 -0.61 0.038 -3.99 0.087 

 
0.9 

350 3.85 0.008 -0.70 0.040 -4.06 0.088 
150 3.63 0.008 -0.65 0.038 -4.14 0.086 
250 3.65 0.008 -0.57 0.035 -4.07 0.087 

 
1.0 

350 3.64 0.008 -0.66 0.038 -4.12 0.088 
 

6. Derivation of the Adjustment Procedure 

In this section, we present a new feedback adjustment procedure for linearly trended 

processes. The procedure is based on the maximum likelihood estimators for the process 

linear trend β  and the drift time τ  presented in section 3. 
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It is assumed that the changes in properties of the quality characteristic / process output 

are only due to a linear trend disturbance according to the model ty
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where is the unadjusted process output.  is defined as tw tw
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It is clear from equation (16) that the updating process for the estimate of linear trend rate 

depends on the previous estimate value of , the current unadjusted process value and β̂

τ̂ . This recursive nature of the updating process makes it more practical. 
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7. Process Adjustment Simulations 

Simulation is used to study the performance of the proposed adjustment procedure and 

compare it with the Exponentially Weighted Moving Average (EWMA) controllers at 

different levels of linear trend disturbance according to the model described in equation 

(14).  

EWMA feedback controllers have been used for years in semiconductor industry and 

many authors study their performance especially under linear trend disturbance 

(Ingolfsson and Sachs (1993), and Del Castillo (1999, 2001)).  

The so-called double EWMA controller developed by Butler and Stefani (1994) can be 

written according to equation (14) as 

 

 ttt Rax −−= 0µ         (17) 

 

 ( ) ( ) 10     ,1 11111 ≤≤−+−= −− λλλ tttt axya      (18) 

 

 ( ) ( ) 10   ,1 212112 ≤≤−+−−= −−− λλλ ttttt RaxyR     (19) 

 

 

A single EWMA is obtained when 02 =λ  and 00 =R  in Equation (19). 

 

The performance of the proposed adjustment procedure is compared with single EWMA 

and double EWMA controllers. As for the adjustment performance characterization, we 
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use the normalized mean square error as the performance index. The smaller the value, 

the better the performance. The normalized mean square error is defined as 
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where n is the number of adjustments in each simulation run. 

In the simulation study we assume that the process starts to drift away from the target 

value at time 50=τ . Namely, the first 50 observations are independently and randomly 

generated from a normal distribution with mean 10.0 and standard deviation 1.0. Starting 

from observation 51, observations are independently and randomly generated from a 

normal distribution with mean ( )β500.10 −+ t  (where t ) and standard deviation 1.0. 

The adjustment starts after a Shewhart (

50>

σ3 ) chart issues an out-of-control signal at time 

T. The performa



optimal trade-off between the long-run performance and transient performance at lower 

and higher trend rate respectively (Del Castillo 1999). 

Tables 13 shows the mean and standard deviation (in parentheses) of the normalized 

mean square error for the different controllers under linear trend rates from 0.1 to 1.0 

when production ends at . 100=t

It is shown that the proposed adjustment procedure has a more stable performance over a 

wide range of trend rates while the performance of the EWMA controllers depends on the 

controller parameters and their performances gradually deteriorate especially at higher 

trend rates 40.0>β .  

 

Table 13. Mean and standard deviation (in parentheses) of the normalized mean square 

error for the different controllers based on 1000 trials (production ends at t ) 100=

Single EWMA Double EWMA β  Proposed 
Procedure 30.01 =λ 90.01 =λ 29.0,03.0 21 == λλ 85.0,20.0 21 == λλ

0.1 2.037 
(0.640) 

1.353 
(0.345) 

1.830 
(0.562) 

1.266 
(0.345) 

2.165 
(0.652) 

0.2 2.010 
(0.570) 

1.727 
(0.319) 

1.848 
(0.501) 

1.398 
(0.313) 

2.125 
(0.581) 

0.3 2.005 
(0.544) 

2.303 
(0.320) 

1.904 
(0.479) 

1.593 
(0.304) 

2.112 
(0.553) 

0.4 2.005 
(0.539) 

3.090 
(0.334) 

1.989 
(0.475) 

1.861 
(0.305) 

2.107 
(0.548) 

0.5 2.008 
(0.534) 

4.098 
(0.363) 

2.102 
(0.472) 

2.203 
(0.316) 

2.104 
(0.546) 

0.6 2.012 
(0.528) 

5.297 
(0.387) 

2.236 
(0.466) 

2.607 
(0.322) 

2.102 
(0.537) 

0.7 2.017 
(0.522) 

6.711 
(0.413) 

2.394 
(0.461) 

3.082 
(0.332) 

2.101 
(0.530) 

0.8 2.020 
(0.519) 

8.328 
(0.435) 

2.576 
(0.457) 

3.625 
(0.337) 

2.099 
(0.525) 

0.9 2.026 
(0.520) 

10.160 
(0.461) 

2.785 
(0.458) 

4.241 
(0.345) 

2.100 
(0.524) 

1.0 2.032 
(0.520) 

12.206 
(0.491) 

3.019 
(0.457) 

4.930 
(0.358) 

2.103 
(0.522) 
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The behaviour of the proposed adjustment procedure is investigated further when a 

production ends at t ; i.e. adjustment period is extended by 50 observations. As 

shown in table 14, the results indicate that the standard deviation of the normalized mean 

square error is decreased for all controllers. The performance of the proposed procedure 

is consistent throughout the entire simulation study. In general, a better performance of 

the EWMA controllers is achieved when the adjustment period is extended due to the 

long run property of the EWMA controllers.  However, the proposed procedure still 

outperforms EWMA controllers when 

150=

6.0>β . 

 

Table 14. Mean and standard deviation (in parentheses) of the normalized mean square 

error for the different controllers based on 1000 trials (production ends at t ) 150=

Single EWMA Double EWMA β  Proposed 
Procedure 30.01 =λ 90.01 =λ 29.0,03.0 21 == λλ 85.0,20.0 21 == λλ

0.1 2.007 
(0.377) 

1.307 
(0.190) 

1.822 
(0.331) 

1.223 
(0.192) 

2.126 
(0.383) 

0.2 1.998 
(0.360) 

1.664 
(0.186) 

1.851 
(0.316) 

1.290 
(0.185) 

2.113 
(0.365) 

0.3 1.996 
(0.354) 

2.230 
(0.188) 

1.910 
(0.311) 

1.388 
(0.184) 

2.107 
(0.360) 

0.4 1.997 
(0.350) 

3.013 
(0.195) 

1.994 
(0.308) 

1.523 
(0.184) 

2.103 
(0.357) 

0.5 1.997 
(0.345) 

4.015 
(0.208) 

2.103 
(0.305) 

1.696 
(0.188) 

2.099 
(0.353) 

0.6 1.999 
(0.345) 

5.228 
(0.215) 

2.238 
(0.304) 

1.904 
(0.189) 

2.098 
(0.351) 

0.7 2.002 
(0.344) 

6.658 
(0.225) 

2.397 
(0.303) 

2.149 
(0.191) 

2.097 
(0.350) 

0.8 2.005 
(0.344) 

8.299 
(0.232) 

2.581 
(0.302) 

2.430 
(0.190) 

2.097 
(0.350) 

0.9 2.009 
(0.344) 

10.161 
(0.249) 

2.791 
(0.302) 

2.750 
(0.194) 

2.098 
(0.349) 

1.0 2.014 
(0.346) 

12.238 
(0.265) 

3.024 
(0.302) 

3.106 
(0.198) 

2.099 
(0.349) 

 

From an operating point of view, the proposed procedure can be applied using computer-

controlled system especially with the increasing computational power of today’s 
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computers which allow for efficient real time use of this procedure in practice. Also, it 

should be noted that the proposed procedure is not intended for a continuous adjustment 

scheme. Rather, it is triggered when the accompanied control chart issues an out-of-

control signal. Based on the results of this research, it can be seen that the proposed 

adjustment procedure has better performance and consistency than EWMA controllers 

when a short adjustment period is considered. 

 

8. Conclusions 

In this paper, we propose an estimator for identifying the change point in processes 

subject to a linear trend in process mean. The performance of the proposed estimator is 

analyzed when it is used with a Shewhart X-chart, CUSUM and EWMA charts. The 

results show that the proposed estimator outperforms the CUSUM and the EWMA 

estimators in estimating the actual drift time for almost all investigated trend rates. The 

study also shows that the proposed estimator maintains same performance regardless of 

the location of the change point.  

We also introduce a new adjustment procedure for linearly trended processes. Simulation 

study shows that the proposed adjustment procedure is more stable than EWMA 

controllers over a wide range of linear trend rates and its performance does not depend on 

the selection of any parameters. These characteristics make it also an ideal controller for 

processes subject to random trend rates. The proposed adjustment procedure can be easily 

implemented in practice especially for computer-controlled processes.  
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A possible extension of this research could be the detection of the drift time and the 

adjustment procedure for nonlinear drifts as well as considering a drift in the process 

variance. 
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